1
|
Wu Q, Hu Z, Zhang G, Jin Y, Wang Z. BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues. BIOSENSORS 2024; 14:638. [PMID: 39727903 DOI: 10.3390/bios14120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Peroxynitrite (ONOO-) plays an important role in many physiological and pathological processes. Excessive ONOO- in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO- levels in specific organelles (e.g., mitochondria) is still lacking and urgently needed. Herein, we rationally designed a mitochondria-targeted ratiometric fluorescent probe, MOBDP-I, for imaging of ONOO- in the mitochondria of inflammatory cells and model mice. This probe, MOBDP-I, was synthesized by conjugating a BODIPY fluorophore to a mitochondria-targeting moiety-indole-salt group by a carbon-carbon double bond (C=C). In the presence of ONOO-, the C=C bond between the BODIPY backbone and the indole-salt group was oxidized and broken, leading to an 18-fold enhancement of fluorescence at 510 nm, along with a significant fluorescence decrease at 596 nm. The ratiometric response property bestowed the probe with advantages in the precise quantification of ONOO- in cells, thus allowing estimation of the extent of inflammation in living cells and mouse models of rheumatoid arthritis, peritonitis, and brain inflammation. MOBDP-I could act as an effective molecular tool to study the relationship between ONOO- and the occurrence and development of inflammatory diseases.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziwei Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yulong Jin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Tang S, Wang W, Wang Y, Gao Y, Dai K, Zhang W, Wu X, Yuan X, Jin C, Zan X, Zhu L, Geng W. Sustained release of 5-aminosalicylic acid from azoreductase-responsive polymeric prodrugs for prolonged colon-targeted colitis therapy. J Nanobiotechnology 2024; 22:468. [PMID: 39103846 PMCID: PMC11302195 DOI: 10.1186/s12951-024-02724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
Ulcerative colitis (UC) is a challenging inflammatory gastrointestinal disorder, whose therapies encounter limitations in overcoming insufficient colonic retention and rapid systemic clearance. In this study, we report an innovative polymeric prodrug nanoformulation for targeted UC treatment through sustained 5-aminosalicylic acid (5-ASA) delivery. Amphiphilic polymer-based 13.5 nm micelles were engineered to incorporate azo-linked 5-ASA prodrug motifs, enabling cleavage via colonic azoreductases. In vitro, micelles exhibited excellent stability under gastric/intestinal conditions while demonstrating controlled 5-ASA release over 24 h in colonic fluids. Orally administered micelles revealed prolonged 24-h retention and a high accumulation within inflamed murine colonic tissue. At an approximately 60% dose reduction from those most advanced recent studies, the platform halted DSS colitis progression and outperformed standard 5-ASA therapy through a 77-97% suppression of inflammatory markers. Histological analysis confirmed intact colon morphology and restored barrier protein expression. This integrated prodrug nanoformulation addresses limitations in colon-targeted UC therapy through localized bioactivation and tailored pharmacokinetics, suggesting the potential of nanotechnology-guided precision delivery to transform disease management.
Collapse
Affiliation(s)
- Sicheng Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China.
| | - Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yijian Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Gao
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325001, Zhejiang, China
| | - Keke Dai
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenjing Zhang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xudong Wu
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaodie Yuan
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China
| | - Chaofan Jin
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China
| | - Xingjie Zan
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China
| | - Limeng Zhu
- University of Chinese Academy of Sciences, Wenzhou Institute, Wenzhou, 325001, Zhejiang, China.
| | - Wujun Geng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
3
|
Bouhend A, Keddari S, Yahla I, Sadouki O, Bououdina M. Therapeutic Benefits of Tuna Oil by In Vitro and In Vivo Studies Using a Rat Model of Acetic Acid-Induced Ulcerative Colitis. Appl Biochem Biotechnol 2024; 196:3817-3843. [PMID: 37787891 DOI: 10.1007/s12010-023-04736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Ulcerative colitis (UC), an inflammation of the colon lining, represents the main form of inflammatory bowel disease IBD. Nutritional therapy is extremely important in the management of ulcerative colitis. Fish oil contains long-chain omega-3 polyunsaturated fatty acids, which have beneficial effects on health, including anti-inflammatory effects. This study aims to investigate the benefits of bluefin tuna oil extracted by the Soxhlet method in vitro by determining the anti-radical and anti-inflammatory activities and in vivo by evaluating the preventive and curative effects. The experiments were carried out using two doses of oil (100 and 260 mg/kg) and glutamine (400 and 1000 mg/kg) on the acetic acid-induced UC model. UC has been induced in Wistar rats by intrarectal administration of a single dose of 1 mL acetic acid (5% v/v in distilled water). The obtained results indicate that tuna oil and glutamine have a significant anti-free radical effect. Tuna oil has a marked anti-inflammatory power based on membrane stabilization and inhibiting protein denaturation. The reduction of various UC parameters, such as weight loss, disease activity score DAS, and colonic ulceration in rats pre-treated with tuna oil and glutamine, demonstrate that these treatments have a significant effect on UC. Total glutathione GSH, superoxide dismutase SOD, and catalase activities are significantly restored in the tuna oil and glutamine groups, while lipid peroxidation has been markedly reduced.
Collapse
Affiliation(s)
- Abla Bouhend
- Laboratory of Bioeconomics, Food safety and Health, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University of Mostaganem, 188, 27000, Mostaganem, BP, Algeria
| | - Soumia Keddari
- Laboratory of Bioeconomics, Food safety and Health, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University of Mostaganem, 188, 27000, Mostaganem, BP, Algeria.
| | - Imen Yahla
- Laboratory of Beneficial Microorganisms, Functional Food and Health (LMBAFS), Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Omar Sadouki
- Laboratory of Anapathology Histology, University Hospital Centre, Mostaganem, Algeria
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Chernyavskij DA, Galkin II, Pavlyuchenkova AN, Fedorov AV, Chelombitko MA. Role of Mitochondria in Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease. Mol Biol 2023; 57:1024-1037. [DOI: 10.1134/s0026893323060043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 01/05/2025]
Abstract
Abstract
Inflammatory bowel disease (IBD) is widespread in industrial countries with every 20th citizen being affected. Dysregulation of the epithelial barrier function is considered to play a key role in IBD. Permeability of the intestinal epithelium depends mostly on its self-renewal potential and the condition of intercellular junctions. Mitochondria are involved in regulating various intracellular processes in addition to their energy function. Recent data implicate mitochondria in intestinal epithelial barrier regulation and IBD. Mitochondrial dysfunction is possibly one of the factors that underlie the structural abnormalities of tight junctions and the cytoskeleton in intestinal epithelial cells and decrease the self-renewal capacity of the epithelium. The barrier function of the intestinal epithelium is consequently distorted, and IBD develops. The mechanisms of these processes are still unclear and require further research.
Collapse
|
5
|
Boudries D, Massot P, Parzy E, Seren S, Mellet P, Franconi JM, Miraux S, Bezançon E, Marque SRA, Audran G, Muetzel M, Wintzheimer S, Fidler F, Thiaudiere E. A system for in vivo on-demand ultra-low field Overhauser-enhanced 3D-Magnetic resonance imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107383. [PMID: 36724576 DOI: 10.1016/j.jmr.2023.107383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Development of very-low field MRI is an active area of research. It aims at reducing operating costs and improve portability. However, the signal-to-noise issue becomes prominent at ultra-low field (<1 mT), especially for molecular imaging purposes that addresses specific biochemical events. In the context of preclinical molecular MRI of abnormal proteolysis the paper describes a MRI system able to produce Overhauser-enhanced MR images in living rats through in situ Dynamic Nuclear Polarization at 206 µT using stable and non-toxic nitroxides. In parallel conventional images are generated at 206 µT following pre-polarization at 20 mT. Results show that nitroxides are visualized in 3D within a few minutes in the lungs, kidneys and bladder post-administration. This system will be used for molecular imaging of inflammation using protease-specific nitroxide probes.
Collapse
Affiliation(s)
| | - Philippe Massot
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - Elodie Parzy
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - Seda Seren
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - Philippe Mellet
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France; INSERM, Bordeaux, France
| | | | - Sylvain Miraux
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - Eric Bezançon
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - Sylvain R A Marque
- Aix-Marseille University, CNRS, ICR, UMR 7273, F-13013 Marseille, France
| | - Gérard Audran
- Aix-Marseille University, CNRS, ICR, UMR 7273, F-13013 Marseille, France
| | | | | | - Florian Fidler
- Würzburg University Fraunhofer IIS D-97074 Würzburg, Germany
| | - Eric Thiaudiere
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France.
| |
Collapse
|
6
|
Takakusagi Y, Kobayashi R, Saito K, Kishimoto S, Krishna MC, Murugesan R, Matsumoto KI. EPR and Related Magnetic Resonance Imaging Techniques in Cancer Research. Metabolites 2023; 13:metabo13010069. [PMID: 36676994 PMCID: PMC9862119 DOI: 10.3390/metabo13010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI is unique in its ability to provide quantitative images of pO2 in vivo. The short electron spin relaxation times have been posing formidable challenge to the technology development for clinical application. With the availability of the narrow line width trityl compounds, pulsed EPR imaging techniques were developed for pO2 imaging. EPRI visualizes the exogenously administered spin probes/contrast agents and hence lacks the complementary morphological information. Dynamic nuclear polarization (DNP), a phenomenon that transfers the high electron spin polarization to the surrounding nuclear spins (1H and 13C) opened new capabilities in molecular imaging. DNP of 13C nuclei is utilized in metabolic imaging of 13C-labeled compounds by imaging specific enzyme kinetics. In this article, imaging strategies mapping physiologic and metabolic aspects in vivo are reviewed within the framework of their application in cancer research, highlighting the potential and challenges of each of them.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| | - Ryoma Kobayashi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Keita Saito
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Ramachandran Murugesan
- Karpaga Vinayaga Institute of Medical Sciences and Research Center, Palayanoor (PO), Chengalpattu 603308, India
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| |
Collapse
|
7
|
Enomoto A, Ichikawa K. Research and Development of Preclinical Overhauser-Enhanced Magnetic Resonance Imaging. Antioxid Redox Signal 2022; 37:1094-1110. [PMID: 35369734 DOI: 10.1089/ars.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Imaging free radicals, including reactive oxygen species and reactive nitrogen species, can be useful for understanding the pathology of diseases in animal disease models, as they are related to various physiological functions or diseases. Among the methods used for imaging free radicals, Overhauser-enhanced magnetic resonance imaging (OMRI) has a short image acquisition time and high spatial resolution. Therefore, OMRI is used to obtain various biological parameters. In this study, we review the methodology for improving the biological OMRI system and its applications. Recent Advances: The sensitivity of OMRI systems has been enhanced significantly to allow the visualization of various biological parameters, such as redox state, partial oxygen pressure, and pH, in different body parts of small animals, using spin probes. Furthermore, both endogenous free radicals and exogenous free radicals present in drugs can be visualized using OMRI. Critical Issues: To acquire accurate biological parameters at a high resolution, it is essential to increase the electron paramagnetic resonance (EPR) excitation efficiency and achieve a high enhancement factor. In addition, the size and magnetic field strength also need to be optimized for the measurement target. Future Directions: The advancement of in vivo OMRI techniques will be useful for understanding the pathology, diagnosis, and evaluation of therapeutic effects of drugs in various disease models. Antioxid. Redox Signal. 37, 1094-1110.
Collapse
Affiliation(s)
- Ayano Enomoto
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Kazuhiro Ichikawa
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| |
Collapse
|
8
|
Fedorov AV, Chelombitko MA, Chernyavskij DA, Galkin II, Pletjushkina OY, Vasilieva TV, Zinovkin RA, Chernyak BV. Mitochondria-Targeted Antioxidant SkQ1 Prevents the Development of Experimental Colitis in Mice and Impairment of the Barrier Function of the Intestinal Epithelium. Cells 2022; 11:3441. [PMID: 36359839 PMCID: PMC9659222 DOI: 10.3390/cells11213441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Mitochondria-targeted antioxidants have become promising candidates for the therapy of various pathologies. The mitochondria-targeted antioxidant SkQ1, which is a derivative of plastoquinone, has been successfully used in preclinical studies for the treatment of cardiovascular and renal diseases, and has demonstrated anti-inflammatory activity in a number of inflammatory disease models. The present work aimed to investigate the therapeutic potential of SkQ1 and C12TPP, the analog of SkQ1 lacking the antioxidant quinone moiety, in the prevention of sodium dextran sulfate (DSS) experimental colitis and impairment of the barrier function of the intestinal epithelium in mice. DSS-treated animals exhibited weight loss, bloody stool, dysfunction of the intestinal epithelium barrier (which was observed using FITC-dextran permeability), reduced colon length, and histopathological changes in the colon mucosa. SkQ1 prevented the development of clinical and histological changes in DSS-treated mice. SkQ1 also reduced mRNA expression of pro-inflammatory molecules TNF, IL-6, IL-1β, and ICAM-1 in the proximal colon compared with DSS-treated animals. SkQ1 prevented DSS-induced tight junction disassembly in Caco-2 cells. Pretreatment of mice by C12TPP did not protect against DSS-induced colitis. Furthermore, C12TPP did not prevent DSS-induced tight junction disassembly in Caco-2 cells. Our results suggest that SkQ1 may be a promising therapeutic agent for the treatment of inflammatory bowel diseases, in particular ulcerative colitis.
Collapse
Affiliation(s)
- Artem V. Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Daniil A. Chernyavskij
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan I. Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Yu. Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tamara V. Vasilieva
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HSE University, 101000 Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
9
|
Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols. Biomaterials 2022; 281:121373. [DOI: 10.1016/j.biomaterials.2022.121373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
|
10
|
Hyodo F, Eto H, Naganuma T, Koyasu N, Elhelaly AE, Noda Y, Kato H, Murata M, Akahoshi T, Hashizume M, Utsumi H, Matsuo M. In Vivo Dynamic Nuclear Polarization Magnetic Resonance Imaging for the Evaluation of Redox-Related Diseases and Theranostics. Antioxid Redox Signal 2022; 36:172-184. [PMID: 34015957 DOI: 10.1089/ars.2021.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance:In vivo molecular and metabolic imaging is an emerging field in biomedical research that aims to perform noninvasive detection of tissue metabolism in disease states and responses to therapeutic agents. The imbalance in tissue oxidation/reduction (Redox) states is related to the onset and progression of several diseases. Tissue redox metabolism provides biomarkers for early diagnosis and drug treatments. Thus, noninvasive imaging of redox metabolism could be a useful, novel diagnostic tool for diagnosis of redox-related disease and drug discovery. Recent Advances:In vivo dynamic nuclear polarization magnetic resonance imaging (DNP-MRI) is a technique that enables the imaging of free radicals in living animals. DNP enhances the MRI signal by irradiating the target tissue or solution with the free radical molecule's electron paramagnetic resonance frequency before executing pulse sequence of the MRI. In vivo DNP-MRI with redox-sensitive nitroxyl radicals as the DNP redox contrast agent enables the imaging of the redox metabolism on various diseases. Moreover, nitroxyl radicals show antioxidant effects that suppress oxidative stress. Critical Issues: To date, considerable progress has been documented preclinically in the development of animal imaging systems. Here, we review redox imaging of in vivo DNP-MRI with a focus on the recent progress of this system and its uses in patients with redox-related diseases. Future Directions: This technique could have broad applications in the study of other redox-related diseases, such as cancer, inflammation, and neurological disorders, and facilitate the evaluation of treatment response as a theranostic tool. Antioxid. Redox Signal. 36, 172-184.
Collapse
Affiliation(s)
- Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan
| | - Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | | | | | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan.,Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan.,Graduate School of Medicine, Disaster and Emergency Medicine, Kyushu University, Fukuoka, Japan
| | - Tomohiko Akahoshi
- Graduate School of Medicine, Disaster and Emergency Medicine, Kyushu University, Fukuoka, Japan
| | | | - Hideo Utsumi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|
11
|
Yasukawa K. Redox-Based Theranostics of Gastric Ulcers Using Nitroxyl Radicals. Antioxid Redox Signal 2022; 36:160-171. [PMID: 34498915 DOI: 10.1089/ars.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Redox-based theranostics involves redox monitoring and therapeutics that normalize redox imbalance. It may be a promising approach to markedly improve a patient's quality of life through streamlined treatment. Nitroxyl radicals are useful for both redox monitoring and treating gastric ulcers in rodents. Recent Advances: Redox monitoring using in vivo electron paramagnetic resonance (EPR) spectroscopy in a gastric ulcer rat model showed the production of reactive oxygen species in the whole stomach. A combination of Overhauser-enhanced magnetic resonance imaging (MRI) and nitroxyl radicals provided high-resolution images of redox imbalance in the stomach of rats with a gastric ulcer. Treatment with nitroxyl radicals was effective to treat ulcers that were formed using model experiments of Helicobacter pylori and mental stress as well as nonsteroidal anti-inflammatory drugs. Critical Issues: For redox monitoring using Overhauser-enhanced MRI, the EPR irradiation power that is delivered to subjects must be within the range of the specific absorption rate regulation to protect against microwave damage regardless of a decrease in image contrast. The effect of long-term treatment with a nitroxyl radical in patients with a gastric ulcer remains unclear. Future Directions: Further research on redox-based theranostics in redox-related diseases, including gastric ulcers, would be accelerated by improving the redox imager and by developing functional nitroxyl radicals that localize in the target organ, tissue, or cell and that have specific reactivity for the redox-related biomolecule.
Collapse
Affiliation(s)
- Keiji Yasukawa
- Laboratory of Advanced Pharmacology, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| |
Collapse
|
12
|
Enomoto A, Kato N, Shirouzu N, Tamura C, Ichikawa K. Imaging analysis for multiple paramagnetic agents using OMRI and electrophoresis. J Clin Biochem Nutr 2022; 70:103-107. [PMID: 35400821 PMCID: PMC8921720 DOI: 10.3164/jcbn.20-172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/05/2021] [Indexed: 11/22/2022] Open
Abstract
Nitroxides have been widely used as a molecular probe for analysis of various diseases models. This article describes an analytical method for separation and semi-quantification of multiple paramagnetic contrast agents with simple procedure combining electrophoresis and Overhauser enhancement magnetic resonance imaging (OMRI) imaging. We used three nitroxides, 3-carbamoyl PROXYL, 3-carboxy PROXYL, and CAT-1, which have different ionic charges in the molecule. In addition, we showed that this method could apply for in vitro measurement using biological sample. The results showed the nitroxides were successfully separated with electrophoresis depending on their charge, and their separation was visualized with OMRI after electrophoresis. Vehicle media such as whole blood did not affect the electrophoresis results and OMRI enhancement factor. Thus, the method can be used to analyze the redox status of biological samples without preprocessing. This analytical method enables in vitro measurement of biological samples to determine the redox status of specific tissue layers using paramagnetic agents, which is helpful for detailed analysis of redox-related diseases.
Collapse
Affiliation(s)
- Ayano Enomoto
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Nao Kato
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Naomi Shirouzu
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Chihiro Tamura
- Innovation Center for Medical Redox Navigation, Kyushu University
| | - Kazuhiro Ichikawa
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
13
|
Zhang Z, Chen F, Feng J, Chen J, Chen L, Zhang Z, Wang H, Cheng X, Liu M, Liu C. −22-Fold of 1H signal enhancement in-situ low-field liquid NMR using nanodiamond as polarizer of overhauser dynamic nuclear polarization. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Eto H, Naganuma T, Nakao M, Murata M, Elhelaly AE, Noda Y, Kato H, Matsuo M, Akahoshi T, Hashizume M, Hyodo F. Development of 20 cm sample bore size dynamic nuclear polarization (DNP)-MRI at 16 mT and redox metabolic imaging of acute hepatitis rat model. Free Radic Biol Med 2021; 169:149-157. [PMID: 33865961 DOI: 10.1016/j.freeradbiomed.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023]
Abstract
Tissue redox metabolism is involved in various diseases, and an understanding of the spatio-temporal dynamics of tissue redox metabolism could be useful for diagnosis of progression and treatment. In in vivo dynamic nuclear polarization (DNP)-MRI, electron paramagnetic resonance (EPR) irradiation at the resonance frequency of nitroxyl radicals administered as a redox probe for induction of DNP, increases the intensity of MRI signals. For electron spin, it is necessary to apply a resonant frequency 658 times higher than that required for nuclear spin because of the higher magnetic moment of unpaired electrons. Previous studies using a disease model of small animals and in vivo DNP-MRI have revealed that an abnormal redox status is involved in many diseases, and that it could be used to visualize the dynamics of alterations in redox metabolism. To use the current methods in clinical practice, the development of a prototype DNP-MRI system for preclinical examinations of large animals is indispensable for clarifying the problems peculiar to the increase in size of the DNP-MRI device. Therefore, we developed a in vivo DNP-MRI system with a sample bore size of 20 cm and a 16-mT magnetic field using a U-shaped permanent magnet. Because the NMR frequency is very low, we adopted a digital radiofrequency transmission/reception system with excellent filter and dynamic range characteristics and equipped with a digital eddy current compensation system to suppress large eddy currents. The pulse sequence was based on the fast spin-echo sequence, which was improved for low frequency and large-eddy current equipment. The in vivo DNP-MRI system developed was used to non-invasively image the redox reaction of a carbamoyl-PROXYL probe in the livers of large rats weighing 800 g. Furthermore, DNP-MRI analysis was able to capture significant changes in redox metabolism in hepatitis-model rats.
Collapse
Affiliation(s)
- Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatuya Naganuma
- Japan Redox limited, 4-29-49-805 Chiyo Hakata-ku, Fukuoka, Japan
| | - Motonao Nakao
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Advanced Medical Medicine, Disaster and Emergency Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yoshifumi Noda
- Department of Radiology, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan; Department of Radiology, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomohiko Akahoshi
- Center for Advanced Medical Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Advanced Medical Medicine, Disaster and Emergency Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | | | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
15
|
Ansari MN, Rehman NU, Karim A, Soliman GA, Ganaie MA, Raish M, Hamad AM. Role of Oxidative Stress and Inflammatory Cytokines (TNF-α and IL-6) in Acetic Acid-Induced Ulcerative Colitis in Rats: Ameliorated by Otostegia fruticosa. Life (Basel) 2021; 11:life11030195. [PMID: 33802553 PMCID: PMC8001148 DOI: 10.3390/life11030195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes irritation, inflammation, and ulceration in the linings of the colon and rectum. Otostegia fruticosa is traditionally used to treat various disorders in different parts of the Middle East and sub-Saharan Africa. In the present study, we evaluated the ameliorative effects of crude leaves extract of O. fruticosa (OF.Cr) on acetic acid (AA)-induced UC model in Wistar albino rats. Wistar rats were administered orally with either vehicle (10 mL/kg), OF.Cr (200 and 400 mg/kg), or prednisolone (2 mg/kg) once a day for 6 days. On day 6, UC was induced in rats by intrarectal administration of a single dose of 5% AA (1.0 mL). Disease activity index (DAI) was recorded after one day of colitis induction by assessing the symptoms of colitis and then the rats were euthanized by cervical dislocation, and colon tissues were isolated for the histopathological examination and biochemical analysis of oxidative stress parameters and cytokines (Interleukin-6 and Tumor Necrosis Factor-α). OF.Cr pretreatment exhibits significant prevention against UC, as confirmed by a significant decrease of DAI, colonic ulceration, and reduced inflammatory score as compared to the AA-induced colitis rats. Depletion of total glutathione (GSH) levels and catalase (CAT) activities in the colitis group was significantly restored in the OF.Cr treated groups, while increased lipid peroxidation in the colon tissues was significantly reduced. OF.Cr prevented the activation of the IL-6 and TNF-α pathways in the colonic tissues, which were clearly observed by the decreased levels of IL-6 and TNF-α in the OF.Cr treated animals. Hence, OF.Cr could be developed in the future for the treatment of UC.
Collapse
Affiliation(s)
- Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Correspondence: (M.N.A.); (N.U.R.); Tel.: +966-11-5886037 (M.N.A.); +966-11-5886035 (N.U.R.)
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Correspondence: (M.N.A.); (N.U.R.); Tel.: +966-11-5886037 (M.N.A.); +966-11-5886035 (N.U.R.)
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle 1871, Ethiopia
| | - Gamal A. Soliman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Majid A. Ganaie
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 51452, Saudi Arabia;
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abubaker M. Hamad
- Department of Basic Sciences, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Histopathology and Cytopathology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani 21111, Sudan
| |
Collapse
|
16
|
Yasukawa K. [Free Radical Production and Production Mechanism in the Early and Advanced Stages of Gastrointestinal Lesions]. YAKUGAKU ZASSHI 2020; 140:1343-1350. [PMID: 33132270 DOI: 10.1248/yakushi.20-00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of redox balance due to the overproduction of free radicals and reactive oxygen species (ROS) could cause protein denaturation, lipid peroxidation, and DNA mutation. These lead to an induction of gastrointestinal diseases such as gastric ulcers induced by long-term administration of non-steroidal anti-inflammatory drugs (NSAIDs) and ulcerative colitis. Magnetic resonance technique, which is non-invasive and free of radiation exposure, is a promising tool for evaluating redox status in the living body. This study investigated ROS production in rats with gastric ulcers induced by a typical NSAIDs indomethacin using in vivo ESR/spin probe technique. The ESR signal intensity of membrane-permeable nitroxyl probe in the indomethacin group showed enhanced decay compared with the vehicle group, but the enhancement was not observed in the presence of a membrane-permeable ROS scavenger, suggesting the intracellular ROS production. The imaging analysis using Overhauser-enhanced MRI (OMRI) with dual probes labeled with 14N and 15N enabled visualization of ROS production in the glandular stomach of rat with indomethacin-induced gastric ulcers. The intracellular ROS production in the distal and proximal colon in the initiation stage and intra- and extra-cellular ROS production of the advanced stage of colitis induced by dextran sodium sulfate (DSS) using the OMRI/dual-probe technique was observed. Furthermore, nitration of src homology protein tyrosine phosphatase 2 in macrophages might be involved in the activation of Toll-like receptor 4 and NF-κB, inducing infiltration of activated neutrophils into colonic mucosa to produce ROS in DSS-induced colitis mice.
Collapse
Affiliation(s)
- Keiji Yasukawa
- Daiichi University of Pharmacy, Faculty of Pharmaceutical Sciences
| |
Collapse
|
17
|
Lin Y, Zheng X, Chen J, Luo D, Xie J, Su Z, Huang X, Yi X, Wei L, Cai J, Sun Z. Protective Effect of Bruguiera gymnorrhiza (L.) Lam. Fruit on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice: Role of Keap1/Nrf2 Pathway and Gut Microbiota. Front Pharmacol 2020; 10:1602. [PMID: 32116661 PMCID: PMC7008401 DOI: 10.3389/fphar.2019.01602] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Bruguiera gymnorrhiza (BG), a medicinal mangrove, and its fruit (a food material) (BGF), have traditionally been used to treat diarrhea (also known as ulcerative colitis) in folk medicine. However, the mechanism of action against colitis remains ambiguous. This study aimed to investigate the potential efficacy and mechanism of BGF on experimental colitis. Colitis was induced by oral intake of dextran sulfate sodium (DSS) and treated with aqueous extract of BGF (25, 50 and 100 mg/kg) for a week. The Disease Activity Index (DAI), colon length, and histological changes of colon were analyzed. The inflammatory and oxidative stress status was explored. The protein expression of Nrf2 and Keap1 in the colon was detected by Western blotting. The mRNA expression of Nrf2 downstream genes (GCLC, GCLM, HO-1 and NQO1) was determined by RT-PCR. Furthermore, the effect on intestinal flora was analyzed. Results indicated that BGF was rich in pinitol, and showed strong antioxidative activity in vitro. Compared with the DSS model, BGF effectively reduced the body weight loss and DAI, restored the colon length, repaired colonic pathological variations, and decreased the histological scores, which was superior to salicylazosulfapyridine (SASP) with smaller dosage. Moreover, BGF not only abated the levels of MDA and inflammatory mediators (TNF-α, IL-6, IL-1β, and IFN-γ), increased the level of IL-10, but also prevented the depletion of SOD and GSH. BGF upregulated the protein level of nuclear Nrf2 and mRNA levels of GCLC, GCLM, HO-1 and NQO1, while significantly inhibited the protein expression of Keap1 and cytosolic Nrf2. Besides, BGF promoted the growth of probiotics (Bifidobacterium, Anaerotruncus, and Lactobacillus) in the gut, and inhibited the colonization of pathogenic bacteria (Bacteroides and Streptococcus), which contributed to the maintenance of intestinal homeostasis. BGF possessed protective effect against DSS-induced colitis. The potential mechanism of BGF may involve the amelioration of inflammatory and oxidative status, activation of Keap1/Nrf2 signaling pathway, and maintenance of micro-ecological balance of the host. This study provides experimental evidence for the traditional application of BGF in the treatment of diarrhea, and indicates that BGF may be a promising candidate against colitis.
Collapse
Affiliation(s)
- Yinsi Lin
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinghan Zheng
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinfen Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dandan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqi Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqing Yi
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
- Guangdong Academy of Forestry, Guangzhou, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
- Guangdong Academy of Forestry, Guangzhou, China
| | - Jian Cai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
- Guangdong Academy of Forestry, Guangzhou, China
| | - Zhanghua Sun
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|