1
|
Krawic C, Luczak MW, Zhitkovich A. Sensitive Detection of Histones and γ-H2AX by Immunoblotting: Problems and Solutions. Chem Res Toxicol 2024; 37:1588-1597. [PMID: 39237351 PMCID: PMC11409373 DOI: 10.1021/acs.chemrestox.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Histones and their posttranslational modifications (PTMs) are critical regulators of gene expression. Differentiation, environmental stressors, xenobiotics, and major human diseases cause significant changes in histone variants and PTMs. Western blotting is the mainstay methodology for detection of histones and their PTMs in the majority of studies. Surprisingly, despite their high abundance in cells, immunoblotting of histones typically involves loading of large protein amounts that are normally used for detection of sparse cellular proteins. We systematically examined technical factors in the Western-blotting-based detection of human histones with >30 antibodies. We found that under multiple protein transfer conditions, many histone epitopes on polyvinylidene fluoride (PVDF) membranes had a very low antibody accessibility, which was dramatically increased by the addition of a simple denaturation step. Denaturation of membrane-bound proteins also enhanced the specificity of some histone antibodies. In comparison to standard PVDF membranes, the sensitivity of histone detection on standard nitrocellulose membranes was typically much higher, which was further increased by the inclusion of the same denaturation step. Optimized protocols increased by >100-times detection sensitivity for the genotoxic marker γ-H2AX with two monoclonal antibodies. The impact of denaturation and nitrocellulose use varied for different histones, but for each histone, it was generally similar for antibodies targeting N-terminal and C-terminal regions. In summary, denaturation of membrane-bound histones strongly improves their detection by Westerns, resulting in more accurate measurements and permitting analyses with small biological samples.
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02903, United States
| | - Michal W Luczak
- Unlocked Laboratories, Laramie, Wyoming 82072, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02903, United States
| |
Collapse
|
2
|
Krawic C, Luczak MW, Valiente S, Zhitkovich A. Atypical genotoxicity of carcinogenic nickel(II): Linkage to dNTP biosynthesis, DNA-incorporated rNMPs, and impaired repair of TOP1-DNA crosslinks. J Biol Chem 2023; 299:105385. [PMID: 37890780 PMCID: PMC10692736 DOI: 10.1016/j.jbc.2023.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a genetic disease requiring multiple mutations for its development. However, many carcinogens are DNA-unreactive and nonmutagenic and consequently described as nongenotoxic. One of such carcinogens is nickel, a global environmental pollutant abundantly emitted by burning of coal. We investigated activation of DNA damage responses by Ni and identified this metal as a replication stressor. Genotoxic stress markers indicated the accumulation of ssDNA and stalled replication forks, and Ni-treated cells were dependent on ATR for suppression of DNA damage and long-term survival. Replication stress by Ni resulted from destabilization of RRM1 and RRM2 subunits of ribonucleotide reductase and the resulting deficiency in dNTPs. Ni also increased DNA incorporation of rNMPs (detected by a specific fluorescent assay) and strongly enhanced their genotoxicity as a result of repressed repair of TOP1-DNA protein crosslinks (TOP1-DPC). The DPC-trap assay found severely impaired SUMOylation and K48-polyubiquitination of DNA-crosslinked TOP1 due to downregulation of specific enzymes. Our findings identified Ni as the human carcinogen inducing genome instability via DNA-embedded ribonucleotides and accumulation of TOP1-DPC which are carcinogenic abnormalities with poor detectability by the standard mutagenicity tests. The discovered mechanisms for Ni could also play a role in genotoxicity of other protein-reactive carcinogens.
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Sophia Valiente
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
3
|
Zhang J, Wang J, Shang Y, Chen Y, Chen S, He Q. Boningmycin induces AMPK-mediated endoplasmic reticulum-associated degradation of PD-L1 protein in human cancer cells. Int Immunopharmacol 2023; 124:110905. [PMID: 37717372 DOI: 10.1016/j.intimp.2023.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Anti-PD-1/PD-L1 monoclonal antibodies have displayed remarkable clinical benefits and revolutionized the treatment of multiple tumor types, but the low response rates and immune-related adverse events limit their application, which promoting the development of small molecule agents to improve the efficacy of PD-1/PD-L1 blockade therapy. Boningmycin (BON), a new small molecule belonging to bleomycin (BLM) family, exhibits potent anticancer activity in vitro and in vivo, as well as negligible lung toxicity, thereby can be an alternative of BLM. However, understandings about the anticancer mechanism of BLM-related compounds are extremely rare, it remains unclear if they affect PD-L1 level in a manner similar to that of other antitumor drugs. In this study, we discover that BON significantly reduces PD-L1 protein level in NCI-H460 and HT-1080 cells. Meanwhile, BON decreases the protein level of PD-L1 in a tumor xenograft model of NCI-H460 cells. Nevertheless, the mRNA level is not influenced after BON exposure. Furthermore, BON-induced PD-L1 reduction is proteasome- dependent. By using specific inhibitors and RNA interference technology, we confirm that the decline of PD-L1 protein by BON is mediated by AMPK-activated endoplasmic reticulum-associated degradation pathway, which is like to the action of metformin. Last but not the least, BON has synergism on gefitinib in vitro and in vivo. In conclusion, it is the first report demonstrating that BON decreases PD-L1 protein level through AMPK-mediated endoplasmic reticulum-associated degradation pathway. These findings will benefit the clinical transformation of BON and aid in the elucidation of molecular mechanism of BLM-related compounds.
Collapse
Affiliation(s)
- Juan Zhang
- Key Laboratory of Nano-imaging and Drug-loaded Preparation of Shanxi Province, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Jincai Wang
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union College, Beijing 100050, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union College, Beijing 100050, China
| | - Shuzhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union College, Beijing 100050, China.
| | - Qiyang He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union College, Beijing 100050, China.
| |
Collapse
|
4
|
Valiente S, Krawic C, Zhitkovich A. ATR activation by Cr-DNA damage is a major survival response establishing late S and G2 checkpoints after Cr(VI) exposure. Toxicol Appl Pharmacol 2023; 477:116696. [PMID: 37734571 PMCID: PMC10591798 DOI: 10.1016/j.taap.2023.116696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Inhalation exposure to hexavalent chromium is known to cause lung cancer and other pulmonary toxicity. Cellular metabolism of chromium(VI) entering cells as chromate anion produces different amounts of reactive Cr(V) intermediates and finally yields Cr(III). Direct reduction of Cr(VI) by ascorbate (Asc), the dominant metabolic reaction in vivo but not in standard cell cultures, skips production of Cr(V) but still permits extensive formation of Cr-DNA damage. To understand the importance of different forms of biological injury in Cr(VI) toxicity, we examined activation of several protein- and DNA damage-sensitive stress responses in human lung cells under Asc-restored conditions. We found that Asc-restored cells suppressed upregulation of oxidant-sensitive stress systems by Cr(VI) but showed a strong activation of the apical DNA damage-responsive kinase ATR. ATR signaling was triggered in late S phase and persisted upon entry of cells into G2 phase. Inhibition of ATR prevented the establishment of late-S and G2 cell cycle checkpoints and did not lead to a compensatory activation of a related kinase ATM. Inactivation of ATR also strongly impaired viability of Cr(VI)-treated lung cells including stem-like cells and revealed a significant formation of toxic Cr-DNA damage at low Cr(VI) doses. Our findings identified a major Cr(VI) resistance mechanism involving sensing of Cr-DNA damage by ATR in late S phase and a subsequent establishment of protective cell cycle checkpoints.
Collapse
Affiliation(s)
- Sophia Valiente
- Brown University, Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA
| | - Casey Krawic
- Brown University, Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA
| | - Anatoly Zhitkovich
- Brown University, Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA.
| |
Collapse
|
5
|
MitoQ demonstrates connexin- and p53-mediated cancer chemoprevention in N-nitrosodiethylamine-induced hepatocarcinogenesis rodent model. Toxicol Appl Pharmacol 2022; 453:116211. [PMID: 36037915 DOI: 10.1016/j.taap.2022.116211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Cancer chemoprevention is an approach that offers huge potential for preventing/retarding carcinogenesis. MitoQ is well-known and extensively studied mitochondria-targeted antioxidants for its applications in diseases linked with oxidative stress. In the present study chemopreventive potential of mitoQ was studied with a focus on the role of gap-junctions and p53 at an advanced stage of HCC. BALB/c mice model of hepatocarcinogenesis was established using N-nitrosodiethylamine as a carcinogen (200 mg/kg b. w., cumulative dose, intraperitoneally). The chemopreventive effect of mitoQ was studied by pre-protecting animals with mitoQ (0.125 mg/kg b. w., orally once a week) till the termination of the study. The tumors developed in the course of the study were histopathologically analyzed and statistically evaluated. The mechanistic role of mitoQ was investigated in terms of mitochondrial oxidative stress, expression of 8-OHdG, Cx26, Cx32, p53 and status of gap-junctional intercellular communication (GJIC) in tumors. Chemopreventive activity of mitoQ was evident from improved survival of animals, significantly (p ≤ 0.05) lower tumor multiplicity, tumor incidence and a total number of tumors. MitoQ treatment significantly (p ≤ 0.05) decreased mitochondrial oxidative stress as indicated by reduced mtROS and mtLPO. Increased staining intensity of 8-OHdG and internalization of Cx26, Cx32 which was observed in hepatic tumors was reduced upon mitoQ treatment. Furthermore, the expression of Cx26, Cx32 and p53 was significantly increased along with improvement in GJIC in mitoQ treatment group. MitoQ demonstrated its chemopreventive potential probably by regulating mtROS, connexins and p53 in hepatocarcinogenesis.
Collapse
|
6
|
Xiong Y, Xu S, Fu B, Tang W, Zaky MY, Tian R, Yao R, Zhang S, Zhao Q, Nian W, Lin X, Wu H. Vitamin C-induced competitive binding of HIF-1α and p53 to ubiquitin E3 ligase CBL contributes to anti-breast cancer progression through p53 deacetylation. Food Chem Toxicol 2022; 168:113321. [PMID: 35931247 DOI: 10.1016/j.fct.2022.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
Vitamin C (VC), in regard to its effectiveness against tumors, has had a controversial history in cancer treatment. However, the anticancer mechanisms of VC are not fully understood. Here, we reported that VC exerted an anticancer effect on cancer cell and xenograft models via inhibiting HIF-1α-dependent cell proliferation and promoting p53-dependent cell apoptosis. To be specific, VC modulated the competitive binding of HIF-1α and p53 to their common E3 ubiquitin ligase CBL, thereby inhibiting tumorigenesis. Moreover, VC treatment activated SIRT1, resulting in p53 deacetylation and CBL-p53 complex dissociation, which in turn facilitated CBL recruitment of HIF-1α for ubiquitination in a proteasome-dependent manner. Altogether, our results provided a mechanistic rationale for exploring the therapeutic use of VC in cancer therapy.
Collapse
Affiliation(s)
- Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Wanyan Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Shanfu Zhang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Qingting Zhao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
7
|
Vitamin C and cancer risk and treatment. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Vitamin C (L-ascorbic acid) works as a strong reductant, radical scavenger, and protector of cell membranes against primary peroxidative damage in tissues and in the extracellular fluid. L-ascorbic acid is involved in the synthesis of collagen and many other biologically relevant substances, enzyme activity, xenobiotic detoxification, and prevention of forming carcinogenic nitrosamines. It also plays a role in the immune system. Numerous data indicate that cancer patients suffer from vitamin C deficiency. Studies show that people with a low vitamin C intake have an increased risk of head and neck cancers as well as lung, gastric, pancreatic, cervical, rectal, or breast cancer. On the other hand, there is no clinical evidence to support the thesis that antioxidant supplements (including vitamin C) prevent cancer. Observational trials investigating high doses of intravenous L-ascorbic acid in previously treated cancer patients have shown that it allows an increase in quality of life and may improve physical, mental, and emotional functions, as well as reducing adverse effects of standard anticancer treatment, including fatigue, nausea, vomiting, and appetite loss. So far, there were a few randomized controlled trials and they have not reported any statistically significant improvements in the overall or progression-free survival with vitamin C, as compared to the control arm. However, preclinical data indicating a role of L-ascorbic acid in modulation of immune response and its involvement in epigenome remodeling suggest its new potential clinical applications in cancer patients, especially in combination with immunotherapy. It seems reasonable to further investigate the value of vitamin C as a supportive treatment or in combination with anticancer targeted therapy.
Collapse
|
8
|
Zhou L, Chen J, Li R, Wei L, Xiong H, Wang C, Chai K, Chen M, Zhu Z, Yao T, Lin Y, Dong C, Shi S. Metal-Polyphenol-Network Coated Prussian Blue Nanoparticles for Synergistic Ferroptosis and Apoptosis via Triggered GPX4 Inhibition and Concurrent In Situ Bleomycin Toxification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103919. [PMID: 34623753 DOI: 10.1002/smll.202103919] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Given that traditional anticancer therapies fail to significantly improve the prognoses of triple negative breast cancer (TNBC), new modalities with high efficiency are urgently needed. Herein, by mixing the metal-phenolic network formed by tannic acid (TA), bleomycin (BLM), and Fe3+ with glutathione peroxidase 4 (GPX4) inhibitor (ML210) loaded hollow mesoporous Prussian blue (HMPB) nanocubes, the HMPB/ML210@TA-BLM-Fe3+ (HMTBF) nanocomplex is prepared to favor the ferroptosis/apoptosis synergism in TNBC. During the intracellular degradation, Fe3+ /Fe2+ conversion mediated by TA can initiate the Fenton reaction to drastically upregulate the reactive oxygen species level in cells, subsequently induce the accumulation of lipid peroxidation, and thereby cause ferroptotic cell death; meanwhile, the released ML210 efficiently represses the activity of GPX4 to activate ferroptosis pathway. Besides, the chelation of Fe2+ with BLM leads to in situ BLM toxification at tumor site, then triggers an effective apoptosis to synergize with ferroptosis for tumor therapy. As a result, the superior in vivo antitumor efficacy of HMTBF is corroborated in a 4T1 tumor-bearing mice model regarding tumor growth suppression, indicating that the nanoformulations can serve as efficient ferroptosis and apoptosis inducers for use in combinatorial TNBC therapy.
Collapse
Affiliation(s)
- Lulu Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Jinjin Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
- Department of Oncology, The Fourth Affiliated Hospital of Nantong University, First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P. R. China
| | - Ruihao Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Lizhen Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Haitao Xiong
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Chunhui Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Keke Chai
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Mengyao Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Zhounan Zhu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Tianming Yao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Yun Lin
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Chunyan Dong
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| | - Shuo Shi
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
9
|
Zhitkovich A. Ascorbate: antioxidant and biochemical activities and their importance for in vitro models. Arch Toxicol 2021; 95:3623-3631. [PMID: 34596731 DOI: 10.1007/s00204-021-03167-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Ascorbate has many biological activities that involve fundamental cellular functions such as gene expression, differentiation, and redox homeostasis. Biochemically, it serves as a cofactor for a large family of dioxygenases (> 60 members) which control transcription, formation of extracellular matrix, and epigenetic processes of histone and DNA demethylation. Ascorbate is also a major antioxidant acting as a very effective scavenger of primary reactive oxygen species. Reduction of Fe(III) by ascorbate is important for cellular uptake of iron via DMT1. Cell culture models are extensively used in toxicology and pharmacology for mechanistic studies of nutrients, drugs and other xenobiotics. High-throughput screens in vitro, such as a large-scale Tox21 program in the US, offers opportunities to assess hazardous properties of a vast and growing number of industrial chemicals. However, cells in typical cultures are severely deficient in ascorbate, raising concerns about their ability to accurately recapitulate toxic and other responses in vivo. Scarcity of ascorbate and a frequently unrecognized use of media with its thiol substitute alters stress sensitivity of cells in different directions. Remediation of ascorbate deficiency in tissue culture restores the physiological state of many cellular processes and it should improve a currently limited toxicity predictability of in vitro bioassays.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Room 507, Providence, RI, 02912, USA.
| |
Collapse
|
10
|
Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9924328. [PMID: 34257824 PMCID: PMC8257365 DOI: 10.1155/2021/9924328] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer arises through a complex interplay between genetic, behavioral, metabolic, and environmental factors that combined trigger cellular changes that over time promote malignancy. In terms of cancer prevention, behavioral interventions such as diet can promote genetic programs that may facilitate tumor suppression; and one of the key tumor suppressors responsible for initiating such programs is p53. The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. Due to its role in cell fate decisions after DNA damage, regulatory pathways controlled by p53 help to maintain genome stability and thus “guard the genome” against mutations that cause cancer. Dietary intake of flavonoids, a C15 group of polyphenols, is known to inhibit cancer progression and assist DNA repair through p53-mediated mechanisms in human cells via their antioxidant activities. For example, quercetin arrests human cervical cancer cell growth by blocking the G2/M phase cell cycle and inducing mitochondrial apoptosis through a p53-dependent mechanism. Other polyphenols such as resveratrol upregulate p53 expression in several cancer cell lines by promoting p53 stability, which in colon cancer cells results in the activation of p53-mediated apoptosis. Finally, among vitamins, folic acid seems to play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in patients with premalignant lesions by significantly increased expression of p53. In this review, we discuss the role of these and other dietary antioxidants in p53-mediated cell signaling in relation to cancer chemoprevention and tumor suppression in normal and cancer cells.
Collapse
|
11
|
Liang SB, Wang F, Luo M, Zhang H, Wu SC, Chen Z, Fu LW. PBA2, a novel compound, enhances radiosensitivity in various carcinoma cells by activating the p53 pathway in vitro and in vivo. Free Radic Biol Med 2020; 161:224-233. [PMID: 33080341 DOI: 10.1016/j.freeradbiomed.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022]
Abstract
Radiotherapy is the main method used to treat human carcinoma; however, certain types of carcinomas are radiation-insensitive. The present study aimed to explore whether a novel compound, PBA2, could enhance the radiosensitivity of various carcinoma cells in vitro and in vivo, and investigate its underlying mechanism. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess the cytotoxicity of PBA2. Colony formation assays were used to observe the radiosensitivity effect of PBA2 in vitro. Cell cycle distributions and cell apoptosis were estimated using flow cytometry. Comet assays and Immunofluorescence assays were used to analyze DNA damage. The intracellular RNA was extracted and analyzed by sequencing. Western blotting was used to determine protein levels. A stable cell line with TP53 (encoding p53) knockdown was constructed by cell transfection. A mouse xenograft model was used to assess the radiosensitivity effect of PBA2 in vivo. We found that PBA2 at a low concentration (0.1 μM) enhanced radiosensitivity in various carcinoma cells, including CNE1, MG63, KB, HEP2, GLC82, and SMMC7221, in vitro. Combined with PBA2, radiation induced significant cell apoptosis in CNE1 and MG63 cells, accompanied by increased DNA damage, but did not affect cell cycle arrest. Mechanistically, PBA2 promoted p53 expression significantly; however, when p53 was mutated, functionally impaired, or knocked down, PBA2 could not enhance the radiosensitivity of these cells. Additionally, the combination of PBA2 and radiation reduced the tumor volume and tumor weight in CNE1 xenograft models significantly, without obvious toxicities. Our results demonstrated that PBA2 enhanced the radiosensitivity of various carcinoma cells in vitro and in vivo. The underlying mechanism might involve increasing DNA damage and cell apoptosis via activating the p53 pathway.
Collapse
Affiliation(s)
- Shao-Bo Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China; Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Fang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Min Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hong Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shao-Cong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhen Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Li-Wu Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
12
|
Abstract
![]()
Vitamin
C (ascorbic acid) is a water-soluble antioxidant and a
cofactor for a large number of enzymes. It is present in all tissues
and especially abundant in corneal epithelium, stem cells, and neurons.
Although similar to thiols in its ability to react with many reactive
oxygen species (ROS), ascorbate is much better (>100× faster)
than glutathione at scavenging of primary ROS (superoxide radical
and singlet oxygen). Ascorbate appears to be especially important
for elimination of O2•– in the
nucleus which contains little or no SOD activity. Cofactor functions
of ascorbate involve the maintenance of activity of Fe(II)/2-oxoglutarate-dependent
dioxygenases via reduction of Fe(III). The most prominent activity
of ascorbate-dependent dioxygenases in the cytoplasm is hydroxylation
of prolines in proteins involved in the formation of extracellular
matrix and regulation of metabolism and hypoxia responses. In the
nucleus, ascorbate is important for oxidative demethylation of 5-methylcytosine
in DNA (by TET proteins) and removal of methyl groups from histone
lysines (by JmjC demethylases). Differentiation and other cellular
reprograming processes involving DNA demethylation are especially
sensitive to ascorbate insufficiency. High doses of vitamin C alone
or in combinations with drugs produced cancer-suppressive effects
which involved redox, immune, and epigenetic mechanisms. Solutions
to vitamin C deficiency in cultured cells are discussed to improve
the physiological relevance of in vitro models. An
abundance of vitamin C in rodents limits their ability to fully recapitulate
human sensitivity to adverse health effects of malnutrition and xenobiotics,
including neurotoxicity, lung injury, and intergenerational and other
epigenetic effects.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
13
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
14
|
Thakkar DN, Prapath I, Adithan S, Ramasamy K, Selvarajan S, Dubashi B. Variants in XPC, Noxa and TLR4 genes are not associated with bleomycin-induced lung injury in Hodgkin lymphoma patients. Per Med 2020; 17:203-212. [PMID: 32320335 DOI: 10.2217/pme-2019-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Pulmonary toxicity is a well-known adverse reaction of bleomycin. In this study, we investigated the influence of XPC, PMAIP1/Noxa and TLR4 genetic variants on the development of bleomycin-induced lung injury (BILI) in south Indian patients with Hodgkin lymphoma. Materials & methods: Hodgkin lymphoma patients receiving adriamycin, bleomycin, vinblastine and dacarbazine regimen were recruited for the study and BILI was diagnosed based on symptoms and/or radiological signs. DNA samples were genotyped using real-time PCR. Results: A total of 78 patients were recruited in the study and BILI was observed in 17 (21.8%) patients. Polymorphisms in XPC, PMAIP1/Noxa and TLR4 genes were not associated with the development of BILI. Conclusion: The selected genetic polymorphisms do not predict the risk of BILI in south Indian population.
Collapse
Affiliation(s)
- Dimpal N Thakkar
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Gorimedu, Puducherry 605006, India
| | - Indumathi Prapath
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Gorimedu, Puducherry 605006, India
| | - Subathra Adithan
- Department of Radio Diagnosis, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Gorimedu, Puducherry 605006, India
| | - Kesavan Ramasamy
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Gorimedu, Puducherry 605006, India
| | - Sandhiya Selvarajan
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Gorimedu, Puducherry 605006, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Gorimedu, Puducherry 605006, India
| |
Collapse
|
15
|
Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7286737. [PMID: 31934267 PMCID: PMC6942884 DOI: 10.1155/2019/7286737] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Vitamin C is an antioxidant that may scavenge reactive oxygen species preventing DNA damage and other effects important in cancer transformation. Dietary vitamin C from natural sources is taken with other compounds affecting its bioavailability and biological effects. High pharmacological doses of vitamin C may induce prooxidant effects, detrimental for cancer cells. An oxidized form of vitamin C, dehydroascorbate, is transported through glucose transporters, and cancer cells switch from oxidative phosphorylation to glycolysis in energy production so an excess of vitamin C may limit glucose transport and ATP production resulting in energetic crisis and cell death. Vitamin C may change the metabolomic and epigenetic profiles of cancer cells, and activation of ten-eleven translocation (TET) proteins and downregulation of pluripotency factors by the vitamin may eradicate cancer stem cells. Metastasis, the main reason of cancer-related deaths, requires breakage of anatomical barriers containing collagen, whose synthesis is promoted by vitamin C. Vitamin C induces degradation of hypoxia-inducible factor, HIF-1, essential for the survival of tumor cells in hypoxic conditions. Dietary vitamin C may stimulate the immune system through activation of NK and T cells and monocytes. Pharmacological doses of vitamin C may inhibit cancer transformation in several pathways, but further studies are needed to address both mechanistic and clinical aspects of this effect.
Collapse
|
16
|
Luczak MW, Krawic C, Zhitkovich A. p53 activation by Cr(VI): a transcriptionally limited response induced by ATR kinase in S-phase. Toxicol Sci 2019; 172:11-22. [PMID: 31388677 PMCID: PMC6813752 DOI: 10.1093/toxsci/kfz178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023] Open
Abstract
Cellular reduction of carcinogenic chromium(VI) causes several forms of Cr-DNA damage with different genotoxic properties. Chromate-treated cultured cells have shown a strong proapoptotic activity of the DNA damage-sensitive transcription factor p53. However, induction of p53 transcriptional targets by Cr(VI) in rodent lungs was weak or undetectable. We examined Cr(VI) effects on the p53 pathway in human cells with restored levels of ascorbate that acts as a principal reducer of Cr(VI) in vivo but is nearly absent in standard cell cultures. Ascorbate-restored H460 and primary human cells treated with Cr(VI) contained higher levels of p53 and its Ser15 phosphorylation, which were induced by ATR kinase. Cr(VI)-stimulated p53 phosphorylation occurred in S-phase by a diffusible pool of ATR that was separate from the chromatin-bound pool targeting DNA repair substrates at the sites of toxic mismatch repair of Cr-DNA adducts. Even when more abundantly present than after exposure to the radiomimetic bleomycin, Cr(VI)-stabilized p53 showed a much more limited activation of its target genes in two types of primary human cells. No increases in mRNA were found for nucleotide excision repair factors and a majority of proapoptotic genes. A weak transcription activity of Cr(VI)-upregulated p53 was associated with its low lysine acetylation in the regulatory C-terminal domain, resulting from the inability of Cr(VI) to activate ATM in ascorbate-restored cells. Thus, p53 activation by ascorbate-metabolized Cr(VI) represents a limited genome-protective response that is defective in upregulation of DNA repair genes and proapoptotic transcripts for elimination of damaged cells.
Collapse
Affiliation(s)
- Michal W Luczak
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Casey Krawic
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Anatoly Zhitkovich
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| |
Collapse
|