1
|
Moura JP, Oliveira PJ, Urbano AM. Mitochondrial classic metabolism and its often-underappreciated facets. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167839. [PMID: 40220877 DOI: 10.1016/j.bbadis.2025.167839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
For many decades, mitochondria were essentially regarded as the main providers of the adenosine triphosphate (ATP) required to maintain the viability and function of eukaryotic cells, thus the widely popular metaphor "powerhouses of the cell". Besides ATP generation - via intermediary metabolism - these intracellular organelles have also traditionally been known, albeit to a lesser degree, for their notable role in biosynthesis, both as generators of biosynthetic intermediates and/or as the sites of biosynthesis. From the 1990s onwards, the concept of mitochondria as passive organelles providing the rest of the cell, from which they were otherwise isolated, with ATP and biomolecules on an on-demand basis has been challenged by a series of paradigm-shifting discoveries. Namely, it was shown that mitochondria act as signaling effectors to upregulate ATP generation in response to growth-promoting stimuli and are actively engaged, through signaling and epigenetics, in the regulation of a plethora of cellular processes, ultimately deciding cell function and fate. With the focus of mitochondrial research increasingly placed in these "non-classical" functions, the centrality of mitochondrial intermediary metabolism to other mitochondrial functions tends to be overlooked. In this article, we revisit mitochondrial intermediary metabolism and illustrate how its intermediates, by-products and molecular machinery underpin other mitochondrial functions. A certain emphasis is given to frequently overlooked mitochondrial functions, namely the biosynthesis of iron-sulfur (Fe-S) clusters, the only known function shared by all mitochondria and mitochondrion-related organelles. The generation of reactive oxygen species (ROS) and their putative role in signaling is also discussed in detail.
Collapse
Affiliation(s)
- João P Moura
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Ana M Urbano
- Molecular Physical-Chemistry R&D Unit, Centre for Investigation in Environment, Genetics and Oncobiology (CIMAGO), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Mills DB, Macalady JL, Frank A, Wright JT. A reassessment of the "hard-steps" model for the evolution of intelligent life. SCIENCE ADVANCES 2025; 11:eads5698. [PMID: 39951518 PMCID: PMC11827626 DOI: 10.1126/sciadv.ads5698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
According to the "hard-steps" model, the origin of humanity required "successful passage through a number of intermediate steps" (so-called "hard steps") that were intrinsically improbable in the time available for biological evolution on Earth. This model similarly predicts that technological life analogous to human life on Earth is "exceedingly rare" in the Universe. Here, we critically reevaluate core assumptions of the hard-steps model through the lens of historical geobiology. Specifically, we propose an alternative model where there are no hard steps, and evolutionary singularities required for human origins can be explained via mechanisms outside of intrinsic improbability. Furthermore, if Earth's surface environment was initially inhospitable not only to human life, but also to certain key intermediate steps required for human existence, then the timing of human origins was controlled by the sequential opening of new global environmental windows of habitability over Earth history.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
| | - Jennifer L. Macalady
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
- Department of Geosciences, Penn State, University Park, PA 16802, USA
- Astrobiology Research Center, Penn State, University Park, PA 16802, USA
| | - Adam Frank
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14620, USA
| | - Jason T. Wright
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
- Department of Astronomy and Astrophysics, Penn State, University Park, PA 16802, USA
| |
Collapse
|
3
|
Furuhashi T, Toda K, Weckwerth W. Review of cancer cell volatile organic compounds: their metabolism and evolution. Front Mol Biosci 2025; 11:1499104. [PMID: 39840075 PMCID: PMC11747368 DOI: 10.3389/fmolb.2024.1499104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer is ranked as the top cause of premature mortality. Volatile organic compounds (VOCs) are produced from catalytic peroxidation by reactive oxygen species (ROS) and have become a highly attractive non-invasive cancer screening approach. For future clinical applications, however, the correlation between cancer hallmarks and cancer-specific VOCs requires further study. This review discusses and compares cellular metabolism, signal transduction as well as mitochondrial metabolite translocation in view of cancer evolution and the basic biology of VOCs production. Certain cancerous characteristics as well as the origin of the ROS removal system date back to procaryotes and early eukaryotes and share commonalities with non-cancerous proliferative cells. This calls for future studies on metabolic cross talks and regulation of the VOCs production pathway.
Collapse
Affiliation(s)
- Takeshi Furuhashi
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Kanako Toda
- Department of Oral Health Sciences, Health Sciences, Saitama Prefectural University, Koshigaya-shi, Japan
| | - Wolfram Weckwerth
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Health in Society Research Network, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Ruff SE, Schwab L, Vidal E, Hemingway JD, Kraft B, Murali R. Widespread occurrence of dissolved oxygen anomalies, aerobic microbes, and oxygen-producing metabolic pathways in apparently anoxic environments. FEMS Microbiol Ecol 2024; 100:fiae132. [PMID: 39327011 PMCID: PMC11549561 DOI: 10.1093/femsec/fiae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Nearly all molecular oxygen (O2) on Earth is produced via oxygenic photosynthesis by plants or photosynthetically active microorganisms. Light-independent O2 production, which occurs both abiotically, e.g. through water radiolysis, or biotically, e.g. through the dismutation of nitric oxide or chlorite, has been thought to be negligible to the Earth system. However, recent work indicates that O2 is produced and consumed in dark and apparently anoxic environments at a much larger scale than assumed. Studies have shown that isotopically light O2 can accumulate in old groundwaters, that strictly aerobic microorganisms are present in many apparently anoxic habitats, and that microbes and metabolisms that can produce O2 without light are widespread and abundant in diverse ecosystems. Analysis of published metagenomic data reveals that the enzyme putatively capable of nitric oxide dismutation forms four major phylogenetic clusters and occurs in at least 16 bacterial phyla, most notably the Bacteroidota. Similarly, a re-analysis of published isotopic signatures of dissolved O2 in groundwater suggests in situ production in up to half of the studied environments. Geochemical and microbiological data support the conclusion that "dark oxygen production" is an important and widespread yet overlooked process in apparently anoxic environments with far-reaching implications for subsurface biogeochemistry and ecology.
Collapse
Affiliation(s)
- S Emil Ruff
- Marine Biological Laboratory, Ecosystems Center and J Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA 02543, United States
| | - Laura Schwab
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Emeline Vidal
- Marine Biological Laboratory, Ecosystems Center and J Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA 02543, United States
| | - Jordon D Hemingway
- Geological Institute, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Beate Kraft
- Nordcee, Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Ranjani Murali
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89119, United States
| |
Collapse
|
5
|
Indo HP, Chatatikun M, Nakanishi I, Matsumoto KI, Imai M, Kawakami F, Kubo M, Abe H, Ichikawa H, Yonei Y, Beppu HJ, Minamiyama Y, Kanekura T, Ichikawa T, Phongphithakchai A, Udomwech L, Sukati S, Charong N, Somsak V, Tangpong J, Nomura S, Majima HJ. The Roles of Mitochondria in Human Being's Life and Aging. Biomolecules 2024; 14:1317. [PMID: 39456251 PMCID: PMC11506671 DOI: 10.3390/biom14101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The universe began 13.8 billion years ago, and Earth was born 4.6 billion years ago. Early traces of life were found as soon as 4.1 billion years ago; then, ~200,000 years ago, the human being was born. The evolution of life on earth was to become individual rather than cellular life. The birth of mitochondria made this possible to be the individual life. Since then, individuals have had a limited time of life. It was 1.4 billion years ago that a bacterial cell began living inside an archaeal host cell, a form of endosymbiosis that is the development of eukaryotic cells, which contain a nucleus and other membrane-bound compartments. The bacterium started to provide its host cell with additional energy, and the interaction eventually resulted in a eukaryotic cell, with both archaeal (the host cell) and bacterial (mitochondrial) origins still having genomes. The cells survived high concentrations of oxygen producing more energy inside the cell. Further, the roles of mitochondria in human being's life and aging will be discussed.
Collapse
Affiliation(s)
- Hiroko P. Indo
- Department of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City 890-8544, Japan; (H.P.I.)
- Amanogawa Galactic Astronomy Research Center (AGARC), Kagoshima University Graduate School of Sciences and Engineering, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Motoki Imai
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Hiroshi Abe
- Department of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City 890-8544, Japan; (H.P.I.)
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshishia University, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Hisashi J. Beppu
- Dr. Beppu’s Oral Health Care & Anti-Aging Clinic, Chuo-ku, Tokyo 103-0027, Japan
| | - Yukiko Minamiyama
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Atthaphong Phongphithakchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Lunla Udomwech
- School of Medicine, Walailak University, Thasala 80161, Thailand
| | - Suriyan Sukati
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Hematology and Transfusion Science Research Center (HTSRC), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nurdina Charong
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Hematology and Transfusion Science Research Center (HTSRC), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Sachiyo Nomura
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
- Isotope Science Center, The University of Tokyo, 2-22-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Gastrointestinal Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideyuki J. Majima
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
6
|
Stefano GB, Weissenberger S, Ptacek R, Anders M, Raboch J, Büttiker P. Viruses and Mitochondrial Dysfunction in Neurodegeneration and Cognition: An Evolutionary Perspective. Cell Mol Neurobiol 2024; 44:68. [PMID: 39417916 PMCID: PMC11486811 DOI: 10.1007/s10571-024-01503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria, the cellular powerhouses with bacterial evolutionary origins, play a pivotal role in maintaining neuronal function and cognitive health. Several viruses have developed sophisticated mechanisms to target and disrupt mitochondrial function which contribute to cognitive decline and neurodegeneration. The interplay between viruses and mitochondria might be traced to their co-evolutionary history with bacteria and may reflect ancient interactions that have shaped modern mitochondrial biology.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague, Czech Republic.
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, Prague, Czech Republic
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague, Czech Republic
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague, Czech Republic
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague, Czech Republic
| | - Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague, Czech Republic
| |
Collapse
|
7
|
Mrnjavac N, Nagies FSP, Wimmer JLE, Kapust N, Knopp MR, Trost K, Modjewski L, Bremer N, Mentel M, Esposti MD, Mizrahi I, Allen JF, Martin WF. The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third. FEBS Lett 2024; 598:1692-1714. [PMID: 38750628 PMCID: PMC7616280 DOI: 10.1002/1873-3468.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/15/2024]
Abstract
Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Michael R Knopp
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Katharina Trost
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Luca Modjewski
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nico Bremer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and The National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, UK
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
8
|
Fanchon E, Stéphanou A. Is Cancer Metabolism an Atavism? Cancers (Basel) 2024; 16:2415. [PMID: 39001477 PMCID: PMC11240651 DOI: 10.3390/cancers16132415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The atavistic theory of cancer posits that cancer emerges and progresses through the reversion of cellular phenotypes to more ancestral types with genomic and epigenetic changes deactivating recently evolved genetic modules and activating ancient survival mechanisms. This theory aims at explaining the known cancer hallmarks and the paradox of cancer's predictable progression despite the randomness of genetic mutations. Lineweaver and colleagues recently proposed the Serial Atavism Model (SAM), an enhanced version of the atavistic theory, which suggests that cancer progression involves multiple atavistic reversions where cells regress through evolutionary stages, losing recently evolved traits first and reactivating primitive ones later. The Warburg effect, where cancer cells upregulate glycolysis and lactate production in the presence of oxygen instead of using oxidative phosphorylation, is one of the key feature of the SAM. It is associated with the metabolism of ancient cells living on Earth before the oxygenation of the atmosphere. This review addresses the question of whether cancer metabolism can be considered as an atavistic reversion. By analyzing several known characteristics of cancer metabolism, we reach the conclusion that this version of the atavistic theory does not provide an adequate conceptual frame for cancer research. Cancer metabolism spans a whole spectrum of metabolic states which cannot be fully explained by a sequential reversion to an ancient state. Moreover, we interrogate the nature of cancer metabolism and discuss its characteristics within the framework of the SAM.
Collapse
Affiliation(s)
- Eric Fanchon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
9
|
Wu X, Tong Y, Li T, Guo J, Liu W, Mo J. Metabolomic Response of Thalassiosira weissflogii to Erythromycin Stress: Detoxification Systems, Steroidal Metabolites, and Energy Metabolism. PLANTS (BASEL, SWITZERLAND) 2024; 13:354. [PMID: 38337887 PMCID: PMC10856835 DOI: 10.3390/plants13030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
Erythromycin, a macrolide antibiotic, is a prioritized pollutant that poses a high risk to environmental health. It has been detected in different environmental matrices and can cause undesired effects in aquatic organisms, particularly freshwater algae, which are primary producers. However, the impact of erythromycin on marine algae remains largely unexplored. Erythromycin has been reported to induce hormetic effects in the marine diatom Thalassiosira weissflogii (T. weissflogii). These effects are associated with the molecular pathways and biological processes of ribosome assembly, protein translation, photosynthesis, and oxidative stress. However, the alterations in the global gene expression have yet to be validated at the metabolic level. The present study used non-targeted metabolomic analysis to reveal the altered metabolic profiles of T. weissflogii under erythromycin stress. The results showed that the increased cell density was possibly attributed to the accumulation of steroidal compounds with potential hormonic action at the metabolic level. Additionally, slight increases in the mitochondrial membrane potential (MMP) and viable cells were observed in the treatment of 0.001 mg/L of erythromycin (an environmentally realistic level). Contrarily, the 0.75 and 2.5 mg/L erythromycin treatments (corresponding to EC20 and EC50, respectively) showed decreases in the MMP, cell density, and viable algal cells, which were associated with modified metabolic pathways involving ATP-binding cassette (ABC) transporters, the metabolism of hydrocarbons and lipids, thiamine metabolism, and the metabolism of porphyrin and chlorophyll. These findings suggest that metabolomic analysis, as a complement to the measurement of apical endpoints, could provide novel insights into the molecular mechanisms of hormesis induced by antibiotic agents in algae.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Tong Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China;
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| |
Collapse
|
10
|
Tkachenko A, Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 2023; 69:116-126. [PMID: 38410969 DOI: 10.14712/fb2023069040116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
11
|
McCall CE, Zhu X, Zabalawi M, Long D, Quinn MA, Yoza BK, Stacpoole PW, Vachharajani V. Sepsis, pyruvate, and mitochondria energy supply chain shortage. J Leukoc Biol 2022; 112:1509-1514. [PMID: 35866365 PMCID: PMC9796618 DOI: 10.1002/jlb.3mr0322-692rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/04/2023] Open
Abstract
Balancing high energy-consuming danger resistance and low energy supply of disease tolerance is a universal survival principle that often fails during sepsis. Our research supports the concept that sepsis phosphorylates and deactivates mitochondrial pyruvate dehydrogenase complex control over the tricarboxylic cycle and the electron transport chain. StimulatIng mitochondrial energetics in septic mice and human sepsis cell models can be achieved by inhibiting pyruvate dehydrogenase kinases with the pyruvate structural analog dichloroacetate. Stimulating the pyruvate dehydrogenase complex by dichloroacetate reverses a disruption in the tricarboxylic cycle that induces itaconate, a key mediator of the disease tolerance pathway. Dichloroacetate treatment increases mitochondrial respiration and ATP synthesis, decreases oxidant stress, overcomes metabolic paralysis, regenerates tissue, organ, and innate and adaptive immune cells, and doubles the survival rate in a murine model of sepsis.
Collapse
Affiliation(s)
- Charles E. McCall
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Xuewei Zhu
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Manal Zabalawi
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - David Long
- Department of MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Matthew A. Quinn
- Department of Pathology – Comparative MedicineWake Forest School of MedicineWinston SalemNCUSA
| | - Barbara K. Yoza
- Department of SurgeryWake Forest School of MedicineWinston SalemNCUSA
| | - Peter W. Stacpoole
- Department of Medicine and BiochemistryUniversity of Florida Medical SchoolGainesvilleFloridaUSA
| | - Vidula Vachharajani
- Department of Critical Care MedicineCleveland Clinic Lerner College of Medicine of CWRUClevelandOhioUSA
| |
Collapse
|
12
|
Song B, Modjewski LD, Kapust N, Mizrahi I, Martin WF. The origin and distribution of the main oxygen sensing mechanism across metazoans. Front Physiol 2022; 13:977391. [PMID: 36324306 PMCID: PMC9618697 DOI: 10.3389/fphys.2022.977391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen sensing mechanisms are essential for metazoans, their origin and evolution in the context of oxygen in Earth history are of interest. To trace the evolution of a main oxygen sensing mechanism among metazoans, the hypoxia induced factor, HIF, we investigated the phylogenetic distribution and phylogeny of 11 of its components across 566 eukaryote genomes. The HIF based oxygen sensing machinery in eukaryotes can be traced as far back as 800 million years (Ma) ago, likely to the last metazoan common ancestor (LMCA), and arose at a time when the atmospheric oxygen content corresponded roughly to the Pasteur point, or roughly 1% of present atmospheric level (PAL). By the time of the Cambrian explosion (541–485 Ma) as oxygen levels started to approach those of the modern atmosphere, the HIF system with its key components HIF1α, HIF1β, PHD1, PHD4, FIH and VHL was well established across metazoan lineages. HIF1α is more widely distributed and therefore may have evolved earlier than HIF2α and HIF3α, and HIF1β and is more widely distributed than HIF2β in invertebrates. PHD1, PHD4, FIH, and VHL appear in all 13 metazoan phyla. The O2 consuming enzymes of the pathway, PHDs and FIH, have a lower substrate affinity, Km, for O2 than terminal oxidases in the mitochondrial respiratory chain, in line with their function as an environmental signal to switch to anaerobic energy metabolic pathways. The ancient HIF system has been conserved and widespread during the period when metazoans evolved and diversified together with O2 during Earth history.
Collapse
Affiliation(s)
- Bing Song
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Luca David Modjewski
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nils Kapust
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be’er-Sheva, Israel
| | - William F. Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- *Correspondence: William F. Martin,
| |
Collapse
|
13
|
Talapko J, Talapko D, Matić A, Škrlec I. Microorganisms as New Sources of Energy. ENERGIES 2022; 15:6365. [DOI: 10.3390/en15176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of fossil energy sources has a negative impact on the economic and socio-political stability of specific regions and countries, causing environmental changes due to the emission of greenhouse gases. Moreover, the stocks of mineral energy are limited, causing the demand for new types and forms of energy. Biomass is a renewable energy source and represents an alternative to fossil energy sources. Microorganisms produce energy from the substrate and biomass, i.e., from substances in the microenvironment, to maintain their metabolism and life. However, specialized microorganisms also produce specific metabolites under almost abiotic circumstances that often do not have the immediate task of sustaining their own lives. This paper presents the action of biogenic and biogenic–thermogenic microorganisms, which produce methane, alcohols, lipids, triglycerides, and hydrogen, thus often creating renewable energy from waste biomass. Furthermore, some microorganisms acquire new or improved properties through genetic interventions for producing significant amounts of energy. In this way, they clean the environment and can consume greenhouse gases. Particularly suitable are blue-green algae or cyanobacteria but also some otherwise pathogenic microorganisms (E. coli, Klebsiella, and others), as well as many other specialized microorganisms that show an incredible ability to adapt. Microorganisms can change the current paradigm, energy–environment, and open up countless opportunities for producing new energy sources, especially hydrogen, which is an ideal energy source for all systems (biological, physical, technological). Developing such energy production technologies can significantly change the already achieved critical level of greenhouse gases that significantly affect the climate.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Anita Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| |
Collapse
|
14
|
Cote-L’Heureux A, Maurer-Alcalá XX, Katz LA. Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet 2022; 18:e1010239. [PMID: 35731825 PMCID: PMC9255765 DOI: 10.1371/journal.pgen.1010239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/05/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.
Collapse
Affiliation(s)
- Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | | | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic Biology and Evolution, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
15
|
Evolutionary Adaptations of Parasitic Flatworms to Different Oxygen Tensions. Antioxidants (Basel) 2022; 11:antiox11061102. [PMID: 35739999 PMCID: PMC9220675 DOI: 10.3390/antiox11061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
During the evolution of the Earth, the increase in the atmospheric concentration of oxygen gave rise to the development of organisms with aerobic metabolism, which utilized this molecule as the ultimate electron acceptor, whereas other organisms maintained an anaerobic metabolism. Platyhelminthes exhibit both aerobic and anaerobic metabolism depending on the availability of oxygen in their environment and/or due to differential oxygen tensions during certain stages of their life cycle. As these organisms do not have a circulatory system, gas exchange occurs by the passive diffusion through their body wall. Consequently, the flatworms developed several adaptations related to the oxygen gradient that is established between the aerobic tegument and the cellular parenchyma that is mostly anaerobic. Because of the aerobic metabolism, hydrogen peroxide (H2O2) is produced in abundance. Catalase usually scavenges H2O2 in mammals; however, this enzyme is absent in parasitic platyhelminths. Thus, the architecture of the antioxidant systems is different, depending primarily on the superoxide dismutase, glutathione peroxidase, and peroxiredoxin enzymes represented mainly in the tegument. Here, we discuss the adaptations that parasitic flatworms have developed to be able to transit from the different metabolic conditions to those they are exposed to during their life cycle.
Collapse
|
16
|
Eukaryogenesis and oxygen in Earth history. Nat Ecol Evol 2022; 6:520-532. [PMID: 35449457 DOI: 10.1038/s41559-022-01733-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
The endosymbiotic origin of mitochondria during eukaryogenesis has long been viewed as an adaptive response to the oxygenation of Earth's surface environment, presuming a fundamentally aerobic lifestyle for the free-living bacterial ancestors of mitochondria. This oxygen-centric view has been robustly challenged by recent advances in the Earth and life sciences. While the permanent oxygenation of the atmosphere above trace concentrations is now thought to have occurred 2.2 billion years ago, large parts of the deep ocean remained anoxic until less than 0.5 billion years ago. Neither fossils nor molecular clocks correlate the origin of mitochondria, or eukaryogenesis more broadly, to either of these planetary redox transitions. Instead, mitochondria-bearing eukaryotes are consistently dated to between these two oxygenation events, during an interval of pervasive deep-sea anoxia and variable surface-water oxygenation. The discovery and cultivation of the Asgard archaea has reinforced metabolic evidence that eukaryogenesis was initially mediated by syntrophic H2 exchange between an archaeal host and an α-proteobacterial symbiont living under anoxia. Together, these results temporally, spatially and metabolically decouple the earliest stages of eukaryogenesis from the oxygen content of the surface ocean and atmosphere. Rather than reflecting the ancestral metabolic state, obligate aerobiosis in eukaryotes is most probably derived, having only become globally widespread over the past 1 billion years as atmospheric oxygen approached modern levels.
Collapse
|
17
|
Environmental hypoxia: A threat to the gonadal development and reproduction in bony fishes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Oborník M. Organellar Evolution: A Path from Benefit to Dependence. Microorganisms 2022; 10:microorganisms10010122. [PMID: 35056571 PMCID: PMC8781833 DOI: 10.3390/microorganisms10010122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic;
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| |
Collapse
|
19
|
Ogawa T, Nakamoto M, Tanaka Y, Sato K, Okazawa A, Kanaya S, Ohta D. Exploration and characterization of chemical stimulators to maximize the wax ester production by Euglena gracilis. J Biosci Bioeng 2021; 133:243-249. [PMID: 34952786 DOI: 10.1016/j.jbiosc.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Euglena gracilis, a phototrophic protist, is a valuable biomass producer that is often employed in sustainable development efforts. E. gracilis accumulates wax esters as byproducts during anaerobic ATP production via the reductive tricarboxylic acid cycle, utilizing the storage carbohydrate β-1,3-glucan paramylon as the carbon source. Here, we report a library screening for chemical stimulators that accelerate both wax ester production and paramylon consumption. Among the 115 compounds tested, we identified nine compounds that increased wax ester production by more than 2.0-fold relative to the solvent control. In the presence of these nine compounds, the paramylon content decreased compared with the control experiment, and the residual paramylon content varied between 7% and 26% of the initial level. The most active compound, 1,4-diaminoanthracene-9,10-dione (OATQ008), stimulated wax ester production up to 2.7-fold within 24 h, and 93% of the cellular paramylon was consumed. In terms of the structural features of the chemical stimulators, we discuss the potential target sites to stimulate wax ester production in mitochondria under anaerobic conditions.
Collapse
Affiliation(s)
- Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yuki Tanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuhiro Sato
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; Center for the 21st Century, Research Institute for Bioeconomy, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan.
| |
Collapse
|
20
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
21
|
First Metabolic Insights into Ex Vivo Cryptosporidium parvum-Infected Bovine Small Intestinal Explants Studied under Physioxic Conditions. BIOLOGY 2021; 10:biology10100963. [PMID: 34681062 PMCID: PMC8533177 DOI: 10.3390/biology10100963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary As the most relevant zoonotic cause of cryptosporidiosis, C. parvum infects cattle worldwide. In vitro studies on C. parvum are absent on the most important animal host under physiological oxygen conditions of the intestine. The aim of this study was to rectify this lack of knowledge, and to deliver a practical model to study C. parvum–host cell–intestinal microbiome interactions in the metabolic context. The present metabolic analyses of C. parvum-infected bovine small intestinal (BSI)-explants revealed a parasite-dependent reduction in important metabolic activities (e.g., glycolysis, glutaminolysis) at 3 hpi (hours post-infection) followed by striking increases in the same metabolic functions at 6 hpi, thus paralleling previously reported metabolic impacts of C. parvum on humans. In addition, PCA analysis confirmed physiological oxygen concentrations as a driving factor of metabolic responses in infected BSI explants. The present model allows the study of C. parvum-triggered metabolic modulation of intestinal cells. Moreover, this realistic platform offers the possibility to address pending questions regarding C. parvum–host cell–intestinal microbiome interactions. Thus, the present approach may deliver important insights into how to promote the innate immune system–intestinal microbiome alliances, which maintain the epithelial integrity of the gut thereby supporting human and animal health. Abstract The apicomplexan Cryptosporidium parvum causes thousands of human deaths yearly. Since bovines represent the most important reservoir of C. parvum, the analysis of infected bovine small intestinal (BSI) explants cultured under physioxia offers a realistic model to study C. parvum–host cell–microbiome interactions. Here, C. parvum-infected BSI explants and primary bovine small intestinal epithelial cells were analysed for parasite development and metabolic reactions. Metabolic conversion rates in supernatants of BSI explants were measured after infection, documenting an immediate parasite-driven metabolic interference. Given that oxygen concentrations affect cellular metabolism, measurements were performed at both 5% O2 (physiological intestinal conditions) and 21% O2 (commonly used, hyperoxic lab conditions). Overall, analyses of C. parvum-infected BSI explants revealed a downregulation of conversion rates of key metabolites—such as glucose, lactate, pyruvate, alanine, and aspartate—at 3 hpi, followed by a rapid increase in the same conversion rates at 6 hpi. Moreover, PCA revealed physioxia as a driving factor of metabolic responses in C. parvum-infected BSI explants. Overall, the ex vivo model described here may allow scientists to address pending questions as to how host cell–microbiome alliances influence intestinal epithelial integrity and support the development of protective intestinal immune reactions against C. parvum infections in a realistic scenario under physioxic conditions.
Collapse
|
22
|
Bozdag GO, Libby E, Pineau R, Reinhard CT, Ratcliff WC. Oxygen suppression of macroscopic multicellularity. Nat Commun 2021; 12:2838. [PMID: 33990594 PMCID: PMC8121917 DOI: 10.1038/s41467-021-23104-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Atmospheric oxygen is thought to have played a vital role in the evolution of large, complex multicellular organisms. Challenging the prevailing theory, we show that the transition from an anaerobic to an aerobic world can strongly suppress the evolution of macroscopic multicellularity. Here we select for increased size in multicellular 'snowflake' yeast across a range of metabolically-available O2 levels. While yeast under anaerobic and high-O2 conditions evolved to be considerably larger, intermediate O2 constrained the evolution of large size. Through sequencing and synthetic strain construction, we confirm that this is due to O2-mediated divergent selection acting on organism size. We show via mathematical modeling that our results stem from nearly universal evolutionary and biophysical trade-offs, and thus should apply broadly. These results highlight the fact that oxygen is a double-edged sword: while it provides significant metabolic advantages, selection for efficient use of this resource may paradoxically suppress the evolution of macroscopic multicellular organisms.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Eric Libby
- Integrated Science Lab, Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Santa Fe Institute, Santa Fe, NM, USA
| | - Rozenn Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Georgia, USA
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- NASA Astrobiology Institute, Reliving the Past Team, Atlanta, GA, USA.
| |
Collapse
|
23
|
Xavier JC, Gerhards RE, Wimmer JLE, Brueckner J, Tria FDK, Martin WF. The metabolic network of the last bacterial common ancestor. Commun Biol 2021; 4:413. [PMID: 33772086 PMCID: PMC7997952 DOI: 10.1038/s42003-021-01918-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/26/2021] [Indexed: 02/03/2023] Open
Abstract
Bacteria are the most abundant cells on Earth. They are generally regarded as ancient, but due to striking diversity in their metabolic capacities and widespread lateral gene transfer, the physiology of the first bacteria is unknown. From 1089 reference genomes of bacterial anaerobes, we identified 146 protein families that trace to the last bacterial common ancestor, LBCA, and form the conserved predicted core of its metabolic network, which requires only nine genes to encompass all universal metabolites. Our results indicate that LBCA performed gluconeogenesis towards cell wall synthesis, and had numerous RNA modifications and multifunctional enzymes that permitted life with low gene content. In accordance with recent findings for LUCA and LACA, analyses of thousands of individual gene trees indicate that LBCA was rod-shaped and the first lineage to diverge from the ancestral bacterial stem was most similar to modern Clostridia, followed by other autotrophs that harbor the acetyl-CoA pathway.
Collapse
Affiliation(s)
- Joana C Xavier
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Rebecca E Gerhards
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Julia Brueckner
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
24
|
Pucciariello C, Perata P. The Oxidative Paradox in Low Oxygen Stress in Plants. Antioxidants (Basel) 2021; 10:332. [PMID: 33672303 PMCID: PMC7926446 DOI: 10.3390/antiox10020332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) are part of aerobic environments, and variations in the availability of oxygen (O2) in the environment can lead to altered ROS levels. In plants, the O2 sensing machinery guides the molecular response to low O2, regulating a subset of genes involved in metabolic adaptations to hypoxia, including proteins involved in ROS homeostasis and acclimation. In addition, nitric oxide (NO) participates in signaling events that modulate the low O2 stress response. In this review, we summarize recent findings that highlight the roles of ROS and NO under environmentally or developmentally defined low O2 conditions. We conclude that ROS and NO are emerging regulators during low O2 signalling and key molecules in plant adaptation to flooding conditions.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | | |
Collapse
|
25
|
Lewis WH, Lind AE, Sendra KM, Onsbring H, Williams TA, Esteban GF, Hirt RP, Ettema TJG, Embley TM. Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss. Mol Biol Evol 2020; 37:524-539. [PMID: 31647561 PMCID: PMC6993867 DOI: 10.1093/molbev/msz239] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hydrogenosomes are H2-producing mitochondrial homologs found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition, we generated genomic and transcriptomic data sets from anaerobic ciliates representing three distinct lineages. Our data demonstrate that hydrogenosomes have evolved from ancestral mitochondria in each case and reveal different degrees of independent mitochondrial genome and proteome reductive evolution, including the first example of complete mitochondrial genome loss in ciliates. Intriguingly, the FeFe-hydrogenase used for generating H2 has a unique domain structure among eukaryotes and appears to have been present, potentially through a single lateral gene transfer from an unknown donor, in the common aerobic ancestor of all three lineages. The early acquisition and retention of FeFe-hydrogenase helps to explain the facility whereby mitochondrial function can be so radically modified within this diverse and ecologically important group of microbial eukaryotes.
Collapse
Affiliation(s)
- William H Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Anders E Lind
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kacper M Sendra
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Henning Onsbring
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Genoveva F Esteban
- Department of Life and Environmental Sciences, Bournemouth University, Poole, United Kingdom
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| |
Collapse
|
26
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
27
|
Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME JOURNAL 2020; 14:2580-2594. [PMID: 32641728 PMCID: PMC7490399 DOI: 10.1038/s41396-020-0708-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Foraminifera are single-celled eukaryotes (protists) of large ecological importance, as well as environmental and paleoenvironmental indicators and biostratigraphic tools. In addition, they are capable of surviving in anoxic marine environments where they represent a major component of the benthic community. However, the cellular adaptations of Foraminifera to the anoxic environment remain poorly constrained. We sampled an oxic-anoxic transition zone in marine sediments from the Namibian shelf, where the genera Bolivina and Stainforthia dominated the Foraminifera community, and use metatranscriptomics to characterize Foraminifera metabolism across the different geochemical conditions. Relative Foraminifera gene expression in anoxic sediment increased an order of magnitude, which was confirmed in a 10-day incubation experiment where the development of anoxia coincided with a 20–40-fold increase in the relative abundance of Foraminifera protein encoding transcripts, attributed primarily to those involved in protein synthesis, intracellular protein trafficking, and modification of the cytoskeleton. This indicated that many Foraminifera were not only surviving but thriving, under the anoxic conditions. The anaerobic energy metabolism of these active Foraminifera was characterized by fermentation of sugars and amino acids, fumarate reduction, and potentially dissimilatory nitrate reduction. Moreover, the gene expression data indicate that under anoxia Foraminifera use the phosphogen creatine phosphate as an ATP store, allowing reserves of high-energy phosphate pool to be maintained for sudden demands of increased energy during anaerobic metabolism. This was co-expressed alongside genes involved in phagocytosis and clathrin-mediated endocytosis (CME). Foraminifera may use CME to utilize dissolved organic matter as a carbon and energy source, in addition to ingestion of prey cells via phagocytosis. These anaerobic metabolic mechanisms help to explain the ecological success of Foraminifera documented in the fossil record since the Cambrian period more than 500 million years ago.
Collapse
|
28
|
Ikram M, Ullah R, Khan A, Kim MO. Ongoing Research on the Role of Gintonin in the Management of Neurodegenerative Disorders. Cells 2020; 9:cells9061464. [PMID: 32549286 PMCID: PMC7349707 DOI: 10.3390/cells9061464] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders, namely Parkinson’s disease (PD), Huntington’s disease (HD), Alzheimer’s disease (AD), and multiple sclerosis (MS), are increasingly major health concerns due to the increasingly aged population worldwide. These conditions often share the same underlying pathological mechanisms, including elevated oxidative stress, neuroinflammation, and the aggregation of proteins. Several studies have highlighted the potential to diminish the clinical outcomes of these disorders via the administration of herbal compounds, among which gintonin, a derivative of ginseng, has shown promising results. Gintonin is a noncarbohydrate/saponin that has been characterized as a lysophosphatidic acid receptor (LPA Receptor) ligand. Gintonin may cause a significant elevation in calcium levels [Ca2+]i intracellularly, which promotes calcium-mediated cellular effects via the modulation of ion channels and cell surface receptors, regulating the inflammatory effects. Years of research have suggested that gintonin has antioxidant and anti-inflammatory effects against different models of neurodegeneration, and these effects may be employed to tackle the neurological changes. Therefore, we collected the main scientific findings and comprehensively presented them, covering preparation, absorption, and receptor-mediated functions, including effects against Alzheimer’s disease models, Parkinson’s disease models, anxiety and depression-like models, and other neurological disorders, aiming to provide some insights for the possible usage of gintonin in the management of neurodegenerative conditions.
Collapse
|
29
|
Hirakata Y, Hatamoto M, Oshiki M, Watari T, Araki N, Yamaguchi T. Food selectivity of anaerobic protists and direct evidence for methane production using carbon from prey bacteria by endosymbiotic methanogen. ISME JOURNAL 2020; 14:1873-1885. [PMID: 32341474 DOI: 10.1038/s41396-020-0660-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/28/2023]
Abstract
Anaerobic protists are major predators of prokaryotes in anaerobic ecosystems. However, little is known about the predation behavior of anaerobic protists because almost none have been cultured. In particular, these characteristics of anaerobic protists in the phyla Metamonada and Cercozoa have not been reported previously. In this study, we isolated three anaerobic protists, Cyclidium sp., Trichomitus sp., and Paracercomonas sp., from anaerobic granular sludge in an up-flow anaerobic sludge blanket reactor used to treat domestic sewage. Ingestion and digestion of food bacteria by anaerobic protists with or without endosymbiotic methanogens were demonstrated using tracer experiments with green fluorescent protein and a stable carbon isotope. These tracer experiments also demonstrated that Cyclidium sp. supplied CO2 and hydrogen to endosymbiotic methanogens. While Cyclidium sp. and Trichomitus sp. ingested both Gram-negative and -positive bacteria, Paracercomonas sp. could only take up Gram-negative bacteria. Archaeal cells such as Methanobacterium beijingense and Methanospirillum hungatei did not support the growth of these protists. Metabolite patterns of all three protists differed and were influenced by food bacterial species. These reported growth rates, ingestion rates, food selectivity, and metabolite patterns provide important insights into the ecological roles of these protists in anaerobic ecosystems.
Collapse
Affiliation(s)
- Yuga Hirakata
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan.
| | - Mamoru Oshiki
- Department of Civil Engineering, Nagaoka College, National Institute of Technology, Nagaoka, Niigata, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Nobuo Araki
- Department of Civil Engineering, Nagaoka College, National Institute of Technology, Nagaoka, Niigata, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan.,Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
30
|
Speijer D. Debating Eukaryogenesis—Part 2: How Anachronistic Reasoning Can Lure Us into Inventing Intermediates. Bioessays 2020; 42:e1900153. [DOI: 10.1002/bies.201900153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of Amsterdam Meibergdreef 15 Amsterdam AZ 1105 Netherlands
| |
Collapse
|
31
|
Allen JF, Thake B, Martin WF. Nitrogenase Inhibition Limited Oxygenation of Earth's Proterozoic Atmosphere. TRENDS IN PLANT SCIENCE 2019; 24:1022-1031. [PMID: 31447302 DOI: 10.1016/j.tplants.2019.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 05/24/2023]
Abstract
Cyanobacteria produced the oxygen that began to accumulate on Earth 2.5 billion years ago, at the dawn of the Proterozoic Eon. By 2.4 billion years ago, the Great Oxidation Event (GOE) marked the onset of an atmosphere containing oxygen. The oxygen content of the atmosphere then remained low for almost 2 billion years. Why? Nitrogenase, the sole nitrogen-fixing enzyme on Earth, controls the entry of molecular nitrogen into the biosphere. Nitrogenase is inhibited in air containing more than 2% oxygen: the concentration of oxygen in the Proterozoic atmosphere. We propose that oxygen inhibition of nitrogenase limited Proterozoic global primary production. Oxygen levels increased when upright terrestrial plants isolated nitrogen fixation in soil from photosynthetic oxygen production in shoots and leaves.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK.
| | - Brenda Thake
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
32
|
Gould SB, Garg SG, Handrich M, Nelson-Sathi S, Gruenheit N, Tielens AGM, Martin WF. Adaptation to life on land at high O 2 via transition from ferredoxin-to NADH-dependent redox balance. Proc Biol Sci 2019; 286:20191491. [PMID: 31431166 PMCID: PMC6732389 DOI: 10.1098/rspb.2019.1491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pyruvate : ferredoxin oxidoreductase (PFO) and iron only hydrogenase ([Fe]-HYD) are common enzymes among eukaryotic microbes that inhabit anaerobic niches. Their function is to maintain redox balance by donating electrons from food oxidation via ferredoxin (Fd) to protons, generating H2 as a waste product. Operating in series, they constitute a soluble electron transport chain of one-electron transfers between FeS clusters. They fulfil the same function—redox balance—served by two electron-transfers in the NADH- and O2-dependent respiratory chains of mitochondria. Although they possess O2-sensitive FeS clusters, PFO, Fd and [Fe]-HYD are also present among numerous algae that produce O2. The evolutionary persistence of these enzymes among eukaryotic aerobes is traditionally explained as adaptation to facultative anaerobic growth. Here, we show that algae express enzymes of anaerobic energy metabolism at ambient O2 levels (21% v/v), Chlamydomonas reinhardtii expresses them with diurnal regulation. High O2 environments arose on Earth only approximately 450 million years ago. Gene presence/absence and gene expression data indicate that during the transition to high O2 environments and terrestrialization, diverse algal lineages retained enzymes of Fd-dependent one-electron-based redox balance, while the land plant and land animal lineages underwent irreversible specialization to redox balance involving the O2-insensitive two-electron carrier NADH.
Collapse
Affiliation(s)
- S B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - S G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - M Handrich
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - S Nelson-Sathi
- Interdisciplinary Biology, Computational Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - N Gruenheit
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - A G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|