1
|
Han J, Tang X, Wang L, Chen H, Liu R, Zhao M. GlSIRT1 deacetylates and activates pyruvate kinase to improve pyruvate content and enhance heat stress resistance in Ganoderma lucidum. Microbiol Res 2025; 293:128055. [PMID: 39808950 DOI: 10.1016/j.micres.2025.128055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Heat stress is a prevalent environmental stressor. Previous studies have shown that heat stress drives many cellular changes in Ganoderma lucidum. Interestingly, glycolysis is activated during heat stress, which could contribute to increased heat resistance. However, the molecular mechanisms underlying the enhanced heat resistance of G. lucidum following heat exposure are not yet fully understood. In this study, we explored the possibility that acetylation modification plays a significant role in responses to abiotic stress. After heat treatment, an enhanced interaction between the deacetylase GlSIRT1 and pyruvate kinase (PK) was observed, and the acetylation level of PK was decreased. Further studies revealed that GlSIRT1 increases PK activity through deacetylation, thereby increasing pyruvate content. Consistent with these findings, both PK activity and pyruvate content were reduced in GlSIRT1 knockdown strains, which exhibited greater sensitivity to heat stress compared to the wild-type (WT) strain. Collectively, our results reveal a novel molecular mechanism by which heat treatment increases pyruvate content.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Xin Tang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Lingshuai Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Huhui Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
2
|
Guo L, Liu YG, Fu YW, Wang YY, Wang HJ, Zhu SM, He QZ, Zhang DX, Zhu SS, Wang SX, Tong T, Dong XJ, Wang XL, Liu YN, Liu GQ. Multiomics reveals the molecular mechanism of unsaturated fatty acid-induced terpenoid biosynthesis in Sanghuangporus lonicericola. NPJ Sci Food 2025; 9:44. [PMID: 40140657 PMCID: PMC11947136 DOI: 10.1038/s41538-025-00407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Treatment with C18:1 and C18:2, but not C18:0, increased the triterpenoid content of the medicinal fungus Sanghuangporus lonicericola. We identified 413 terpenoids, including 210 volatile terpenoids. Eight upregulated terpenoids, including 3,13,15-trihydroxyoleanane-12-one, dulcioic acid and serrat-14-ene-3,20,24,29-tetrol, were shared between the C18:1 and C18:2 treatments but not the C18:0 treatment. The C18:1 and C18:2 treatments increased the levels of 12 and 7 odour-related terpenoids, respectively, and increased the level of alpha-farnesene (herbal odour). Gene set enrichment analysis revealed that compared with C18:0, C18:1 and C18:2 produced stronger activation of the terpenoid biosynthesis, fatty acid degradation, and MAPK signalling pathways and stronger inhibition of basal transcription factors at both the transcript and protein levels. Finally, two-way orthogonal partial least squares analysis revealed that gene and protein expression in the identified pathways was correlated with levels of unsaturated fatty acid-induced terpenoid metabolites. Together, our integrated multiomics data revealed the key pathways involved in unsaturated fatty acid-induced terpenoid biosynthesis in S. lonicericola.
Collapse
Affiliation(s)
- Lu Guo
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan University of Humanities, Science and Technology, Loudi, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Yuan-Gen Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Ying-Wen Fu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Yu-Yan Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Hao-Jin Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Shu-Mei Zhu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Qi-Zhi He
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
- School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Dong-Xue Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Shan-Shan Zhu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Si-Xian Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Tian Tong
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Xu-Jie Dong
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| |
Collapse
|
3
|
Han X, Wang Z, Shi L, Wei Z, Shangguan J, Shi L, Zhao M. Spermidine enhances the heat tolerance of Ganoderma lucidum by promoting mitochondrial respiration driven by fatty acid β-oxidation. Appl Environ Microbiol 2025; 91:e0097924. [PMID: 39878489 PMCID: PMC11837530 DOI: 10.1128/aem.00979-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response. Our results indicated that mitochondrial respiratory intensity increased by 80% in wild-type (WT) under heat stress, but the activities of key enzymes of the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) were significantly reduced upon the knockdown of the spermidine synthase gene (spdS). Furthermore, the content of mitochondrial pyruvate decreased by 36.1%, whereas the levels of free fatty acid increased by 28.8% under heat stress. Upon spdS knockdown, the content of mitochondrial pyruvate was similar to that in the WT, but the medium-chain fatty acid (C6:0) decreased by 68.6%-84.2%, whereas the long-chain fatty acid (C18:2) marginally increased. Subsequent studies demonstrated that spermidine promoted the translation of long chain acyl-CoA dehydrogenase (LCAD) and mitochondrial trifunctional protein (MTP, also known as HADH), thereby enhancing fatty acid β-oxidation under heat stress. In conclusion, spermidine enhances key TCA cycle and ETC enzyme activities and is involved in heat stress-induced fatty acid β-oxidation by promoting the translation of LCAD and HADH, thereby improving the heat tolerance of Ganoderma lucidum. IMPORTANCE Polyamines are stress-responsive molecules that enhance the tolerance of plants to multiple abiotic stresses by regulating a variety of biological processes. Our previous research indicated that heat stress induces the the biosynthesis of polyamines and promotes the conversion of putrescine to spermidine in G. lucidum, but the physiological role of elevated spermidine levels is yet to be elucidated. In this study, our findings demonstrated that spermidine enhances the heat tolerance in G. lucidum and that mitochondrial respiration is essential for spermidine-enhanced heat tolerance. This study elucidated a preliminary mechanism by which spermidine enhances heat tolerance of G. lucidum and provided a new insight into the understanding of how microorganisms resist heat stress.
Collapse
Affiliation(s)
- Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lingyan Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ziyang Wei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaolei Shangguan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Shangguan J, Wu T, Tian L, Liu Y, Zhu L, Liu R, Zhu J, Shi L, Zhao M, Ren A. Hydrogen sulfide maintains mitochondrial homeostasis and regulates ganoderic acids biosynthesis by SQR under heat stress in Ganoderma lucidum. Redox Biol 2024; 74:103227. [PMID: 38865903 PMCID: PMC11215418 DOI: 10.1016/j.redox.2024.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.
Collapse
Affiliation(s)
- Jiaolei Shangguan
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Tao Wu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Li Tian
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yueqian Liu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lei Zhu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rui Liu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
5
|
Wang Z, Chen J, Ding J, Han J, Shi L. GlMPC activated by GCN4 regulates secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum. mBio 2023; 14:e0135623. [PMID: 37732773 PMCID: PMC10653791 DOI: 10.1128/mbio.01356-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Mitochondrial pyruvate carrier (MPC) is a pyruvate transporter that plays a crucial role in regulating the carbon metabolic flow and is considered an essential mechanism for microorganisms to adapt to environmental changes. However, it remains unclear how MPC responds to environmental stress in organisms. General control non-derepressible 4 (GCN4), a key regulator of nitrogen metabolism, plays a pivotal role in the growth and development of fungi. In this study, we report that GCN4 can directly bind to the promoter region and activate the expression of GlMPC, thereby regulating the tricarboxylic acid cycle and secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum. These findings provide significant insights into the regulation of carbon and nitrogen metabolism in fungi, highlighting the critical role of GCN4 in coordinating metabolic adaptation to environmental stresses.
Collapse
Affiliation(s)
- Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juhong Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Ding
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Fan H, Ge F, Wu T, Liu Y, Tian L, Liu Y, Xiang T, Yu H, Shi L, He Q, Ren A, Jiang A. The AMP-Activated Protein Kinase (AMPK) Positively Regulates Lysine Biosynthesis Induced by Citric Acid in Flammulina filiformis. J Fungi (Basel) 2023; 9:340. [PMID: 36983508 PMCID: PMC10057554 DOI: 10.3390/jof9030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Flammulina filiformis, the most produced edible mushroom species in China, is rich in lysine. Further enhancing its lysine biosynthesis is vital for improving its quality in industrialized cultivation. Citric acid induction significantly increases both the biomass and growth rate of F. filiformis hyphae, as well as the lysine content. The genes encoding enzymes in the lysine biosynthesis pathway were detected under the optimal induction, revealing that the expression levels of hcs, hac, and hah were 2.67, 1.97, and 1.90 times greater, respectively, relative to the control, whereas no significant difference was seen for hdh, aat, sr, and shd, and the expression of aar decreased. Furthermore, the transcriptional levels of Ampk, GCN2, GCN4, and TOR were found significantly upregulated, with the most upregulated, Ampk, reaching a level 42.68 times greater than that of the control, while the phosphorylation of AMPK rose by nearly 54%. In AMPK-silencing strains under the optimal induction, however, the phosphorylation increment dropped to about 16% and the lysine content remained at the same level as in the WT. Thus, AMPK is presented as the critical intermediary in citric acid's regulation of lysine biosynthesis in F. filiformis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ailiang Jiang
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Effects of glutamate oxaloacetate transaminase on reactive oxygen species in Ganoderma lucidum. Appl Microbiol Biotechnol 2023; 107:1845-1861. [PMID: 36754884 DOI: 10.1007/s00253-023-12417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Nitrogen metabolism can regulate mycelial growth and secondary metabolism in Ganoderma lucidum. As an important enzyme in intracellular amino acid metabolism, glutamate oxaloacetate transaminase (GOT) has many physiological functions in animals and plants, but its function in fungi has been less studied. In the present study, two GOT isoenzymes were found in G. lucidum; one is located in the mitochondria (GOT1), and the other is located in the cytoplasm (GOT2). The reactive oxygen species (ROS) level was increased in got1 silenced strains and was approximately 1.5-fold higher than that in the wild-type (WT) strain, while silencing got2 did not affect the ROS level. To explore how GOT affects ROS in G. lucidum, experiments related to the generation and elimination of intracellular ROS were conducted. First, compared with that in the WT strain, the glutamate content, one of the substrates of GOT, decreased when got1 or got2 was knocked down, and the glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH) content decreased by approximately 38.6%, 19.3%, and 40.1% in got1 silenced strains, got2 silenced strains, and got1/2 co-silenced strains respectively. Second, GOT also affects glucose metabolism. The pyruvate (PA), acetyl-CoA and α-ketoglutarate (α-KG) contents decreased in got1 and got2 silenced strains, and the transcription levels of most genes involved in the glycolytic pathway and the tricarboxylic acid cycle increased. The NADH content was increased in got1 silenced strains and got2 silenced strains, and the NAD+/NADH ratio was decreased, which might result in mitochondrial ROS production. Compared with the WT strain, the mitochondrial ROS level was approximately 1.5-fold higher in the got1 silenced strains. In addition, silencing of got1 or got2 resulted in a decrease in antioxidant enzymes, including superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase. Finally, ganoderic acid (GA) was increased by approximately 40% in got1 silenced strains compared with the WT strain, while silencing of got2 resulted in a 10% increase in GA biosynthesis. These findings provide new insights into the effect of GOT on ROS and secondary metabolism in fungi. KEY POINTS: • GOT plays important roles in ROS level in Ganoderma lucidum. • Silencing of got1 resulted in decrease in GSH content and antioxidant enzymes activities, but an increase in mitochondrial ROS level in G. lucidum. • Silencing of got1 and got2 resulted in an increase in ganoderic acid biosynthesis in G. lucidum.
Collapse
|
8
|
Mitochondrial pyruvate carrier influences ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2023; 107:1361-1371. [PMID: 36635397 DOI: 10.1007/s00253-022-12357-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Mitochondrial pyruvate carriers (MPCs), located in the inner membrane of mitochondria, are essential carriers for pyruvate to enter mitochondria. MPCs regulate a wide range of intracellular metabolic processes, such as glycolysis, the tricarboxylic acid cycle (TCA cycle), fatty acid metabolism, and amino acid metabolism. However, the metabolic regulation of MPCs in macrofungi is poorly studied. We studied the role of MPCs in Ganoderma lucidum (GlMPC) on ganoderic acid (GA) biosynthesis regulation in G. lucidum. In this study, we found that the mitochondrial/cytoplasmic ratio of pyruvate was downregulated about 75% in GlMPC1- and GlMPC2-silenced transformants compared with wild type (WT). In addition, the GA content was 17.72 mg/g and increased by approximately 50% in GlMPC1- and GlMPC2-silenced transformants compared with WT. By assaying the expression levels of three key enzymes and the enzyme activities of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) of the TCA cycle in GlMPC1- and GlMPC2-silenced transformants, it was found that the decrease in GlMPCs activity did not significantly downregulate the TCA cycle rate, and the enzyme activity of IDH increased by 44% compared with WT. We then verified that fatty acid β-oxidation (FAO) supplements the TCA cycle by detecting the expression levels of key enzymes involved in FAO. The results showed that compared with WT, the GA content was 1.14 mg/g and reduced by approximately 40% in co-silenced transformants. KEY POINTS: • GlMPCs affects the distribution of pyruvate between mitochondria and the cytoplasm. • Acetyl-CoA produced by FAO maintains the TCA cycle. • Acetyl-CoA produced by FAO promotes the accumulation of GA.
Collapse
|
9
|
Wu T, Xia J, Ge F, Qiu H, Tian L, Liu X, Liu R, Jiang A, Zhu J, Shi L, Yu H, Zhao M, Ren A. Target of Rapamycin Mediated Ornithine Decarboxylase Antizyme Modulate Intracellular Putrescine and Ganoderic Acid Content in Ganoderma lucidum. Microbiol Spectr 2022; 10:e0163322. [PMID: 36125287 PMCID: PMC9604110 DOI: 10.1128/spectrum.01633-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022] Open
Abstract
Putrescine (Put) has been shown to play an important regulatory role in cell growth in organisms. As the primary center regulating the homeostasis of polyamine (PA) content, ornithine decarboxylase antizyme (AZ) can regulate PA content through feedback. Nevertheless, the regulatory mechanism of Put is poorly understood in fungi. Here, our analysis showed that GlAZ had a modulate effect on intracellular Put content by interacting with ornithine decarboxylase (ODC) proteins and reducing its intracellular protein levels. In addition, GlAZ upregulated the metabolic pathway of ganoderic acid (GA) biosynthesis in Ganoderma lucidum by modulating the intracellular Put content. However, a target of rapamycin (TOR) was found to promote the accumulation of intracellular Put after the GlTOR inhibitor Rap was added exogenously, and unbiased analyses demonstrated that GlTOR may promote Put production through its inhibitory effect on the level of GlAZ protein in GlTOR-GlAZ-cosilenced strains. The effect of TOR on fungal secondary metabolism was further explored, and the content of GA in the GlTOR-silenced strain after the exogenous addition of the inhibitor Rap was significantly increased compared with that in the untreated wild-type (WT) strain. Silencing of TOR in the GlTOR-silenced strains caused an increase in GA content, which returned to the WT state after replenishing Put. Moreover, the content of GA in GlTOR-GlAZ-cosilenced strains was also not different from that in the WT strain. Consequently, these results strongly indicate that GlTOR affects G. lucidum GA biosynthesis via GlAZ. IMPORTANCE Research on antizyme (AZ) in fungi has focused on the mechanism by which AZ inhibits ornithine decarboxylase (ODC). Moreover, there are existing reports on the regulation of AZ protein translation by TOR. However, little is known about the mechanisms that influence AZ in fungal secondary metabolism. Here, both intracellular Put content and GA biosynthesis in G. lucidum were shown to be regulated through protein interactions between GlAZ and GlODC. Furthermore, exploration of upstream regulators of GlAZ suggested that GlAZ was regulated by the upstream protein GlTOR, which affected intracellular Put levels and ganoderic acid (GA) biosynthesis. The results of our work contribute to the understanding of the upstream regulation of Put and provide new insights into PA regulatory systems and secondary metabolism in fungi.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
- Sanya Institute of Nanjing Agricultural University, Hainan, People’s Republic of China
| | - Jiale Xia
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Feng Ge
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Hao Qiu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Li Tian
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Xiaotian Liu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Rui Liu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Ailiang Jiang
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Jing Zhu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Liang Shi
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Hanshou Yu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Mingwen Zhao
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Ang Ren
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
- Sanya Institute of Nanjing Agricultural University, Hainan, People’s Republic of China
- Institute of Biology, Guizhou Academy of Sciences, Guizhou, People’s Republic of China
| |
Collapse
|
10
|
Han X, Wang Z, Shi L, Zhu J, Shi L, Ren A, Zhao M. Phospholipase D and phosphatidic acid mediate regulation in the biosynthesis of spermidine and ganoderic acids by activating
GlMyb
in
Ganoderma lucidum
under heat stress. Environ Microbiol 2022; 24:5345-5361. [DOI: 10.1111/1462-2920.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Lingyan Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| |
Collapse
|
11
|
Homokaryotic High-Quality Genome Assembly of Medicinal Fungi Wolfiporia hoelen Reveals Auto-Regulation and High-Temperature Adaption of Probable Two-Speed Genome. Int J Mol Sci 2022; 23:ijms231810484. [PMID: 36142397 PMCID: PMC9503964 DOI: 10.3390/ijms231810484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Sclerotia of Wolfiporia hoelen are one of the most important traditional Chinese medicines and are commonly used in China, Japan, Korea, and other Asian countries. In the present study, we presented the first high-quality homokaryotic genome of W. hoelen with 14 chromosomes which was evaluated with assembly index, telomere position detection, and whole-genome collinearity. A 64.44 Mb genome was assembled with a Contig N50 length of 3.76 Mb. The imbalanced distribution of transposons and chromosome characters revealed the probable two-speed genome of W. hoelen. High consistency between methylation and transposon conserved the genome stability. The expansion of the gene family about signal transduction and nutritional transport has intimate relationships with sclerotial formation. Up-regulation of expression for distinctive decomposition enzymes, ROS clearance genes, biosynthesis of unsaturated fatty acids, and change of the cell wall components maintained high-speed growth of mycelia that may be the high-temperature adaption strategy of W. hoelen. Further, the analysis of mating-control genes demonstrated that HD3 probably had no function on mating recognition, with the HD protein in a distant genetic with known species. Overall, the high-quality genome of W. hoelen provided crucial information for genome structure and stability, high-temperature adaption, and sexual and asexual process.
Collapse
|
12
|
Salicylic Acid Enhances Heat Stress Resistance of Pleurotus ostreatus (Jacq.) P. Kumm through Metabolic Rearrangement. Antioxidants (Basel) 2022; 11:antiox11050968. [PMID: 35624832 PMCID: PMC9137821 DOI: 10.3390/antiox11050968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pleurotus ostreatus (Jacq.) P. Kumm is cultivated worldwide, and its growth is seriously threatened by heat stress. Here, we performed a comprehensive analysis to investigate the influence of the phytohormone salicylic acid (SA) in P. ostreatus under HS. The results showed that the hyphal growth recovery rate and the antioxidant capacity of P. ostreatus increased with exogenous SA application (0.01 mmol/L and 0.05 mmol/L) after HS treatment. Metabolomic and transcriptomic analyses showed that SA application (0.05 mmol/L) weakened central carbon metabolism to allow cells to survive HS efficiently. In addition, SA shifted glycolysis to one-carbon metabolism to produce ROS scavengers (GSH and NADPH) and reduced ROS production by altering mitochondrial metabolism. SA also maintained nucleotide homeostasis, led to membrane lipid remodeling, activated the MAPK pathway, and promoted the synthesis of cell-wall components. This study provides a reference for further study of SA in microorganisms.
Collapse
|
13
|
Han X, Shangguan J, Wang Z, Li Y, Fan J, Ren A, Zhao M. Spermidine Regulates Mitochondrial Function by Enhancing eIF5A Hypusination and Contributes to Reactive Oxygen Species Production and Ganoderic Acid Biosynthesis in Ganoderma lucidum. Appl Environ Microbiol 2022; 88:e0203721. [PMID: 35108082 PMCID: PMC8939328 DOI: 10.1128/aem.02037-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Spermidine, a kind of polycation and one important member of the polyamine family, is essential for survival in many kinds of organisms and participates in the regulation of cell growth and metabolism. To explore the mechanism by which spermidine regulates ganoderic acid (GA) biosynthesis in Ganoderma lucidum, the effects of spermidine on GA and reactive oxygen species (ROS) contents were examined. Our data suggested that spermidine promoted the production of mitochondrial ROS and positively regulated GA biosynthesis. Further research revealed that spermidine promoted the translation of mitochondrial complexes I and II and subsequently influenced their activity. With a reduction in eukaryotic translation initiation factor 5A (eIF5A) hypusination by over 50% in spermidine synthase gene (spds) knockdown strains, the activities of mitochondrial complexes I and II were reduced by nearly 60% and 80%, respectively, and the protein contents were reduced by over 50%, suggesting that the effect of spermidine on mitochondrial complexes I and II was mediated through its influence on eIF5A hypusination. Furthermore, after knocking down eIF5A, the deoxyhypusine synthase gene (dhs), and the deoxyhypusine hydroxylase gene (dohh), the mitochondrial ROS level was reduced by nearly 50%, and the GA content was reduced by over 40%, suggesting that eIF5A hypusination contributed to mitochondrial ROS production and GA biosynthesis. In summary, spermidine maintains mitochondrial ROS homeostasis by regulating the translation and subsequent activity of complexes I and II via eIF5A hypusination and promotes GA biosynthesis via mitochondrial ROS signaling. The present findings provide new insight into the spermidine-mediated biosynthesis of secondary metabolites. IMPORTANCE Spermidine is necessary for organism survival and is involved in the regulation of various biological processes. However, the specific mechanisms underlying the various physiological functions of spermidine are poorly understood, especially in microorganisms. In this study, we found that spermidine hypusinates eIF5A to promote the production of mitochondrial ROS and subsequently regulate secondary metabolism in microorganisms. Our study provides a better understanding of the mechanism by which spermidine regulates mitochondrial function and provides new insight into the spermidine-mediated biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaolei Shangguan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junpei Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Chang L, Tang X, Zhang H, Chen YQ, Chen H, Chen W. SNF1β-Modulated Glucose Uptake and the Balance between Polyunsaturated Fatty Acids and Carbohydrates in Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13849-13858. [PMID: 34779198 DOI: 10.1021/acs.jafc.1c05971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sucrose nonfermenting protein kinase 1 (SNF1) complex is an important metabolic regulator in fungi that is critical to cell metabolism and stress response. In this study, the role of an SNF1 β-subunit in the oleaginous fungus Mortierella alpina (MaSip2) was investigated. The MaSip2 contained a glycogen-binding domain and a conserved SNF1-complex interaction region; its transcriptional level during lipogenesis shared high consistency with a previously reported SNF1 γ-subunit (MaSnf4). Overexpression of MaSip2 in M. alpina significantly promoted glucose uptake and resulted in 34.1% increased total biomass, leading to 44.8% increased arachidonic acid yield after 7 day fermentation. MaSip2 also regulated the balance between polyunsaturated fatty acids and carbohydrates in M. alpina. Intracellular metabolite analysis revealed increased carbohydrate-related metabolite accumulation in MaSip2 overexpression strains. On the contrary, knockdown of MaSip2 increased the total fatty acid unsaturation degree, especially under low-temperature conditions. This research improved our knowledge of SNF1 complex in M. alpina and provided a target gene for enhancing glucose utilization and modulating fatty acid composition for better application of oleaginous fungi.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
15
|
Xu W, Fan J, Wang Y, Wang Y, Zhu J, Ren A, Yu H, Shi L, Zhao M. Mitochondrial pyruvate carrier regulates the lignocellulosic decomposition rate through metabolism in Ganoderma lucidum. FEMS Microbiol Lett 2021; 368:6316105. [PMID: 34227669 DOI: 10.1093/femsle/fnab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
The activity of mitochondrial pyruvate carrier (MPC) can be modulated to regulate intracellular metabolism under different culture conditions. In Ganoderma lucidum, the role of MPC in regulating carbon sources remains unknown. By knocking down MPC genes (MPC1 and MPC2), this research found that the loss of MPC increased the growth rate of G. lucidum by ~30% in a medium with wood chips as a carbon source. Then cellulase and laccase activities were tested. Endoglucanase and laccase activity increased by ~50% and ~35%, respectively, in MPC knockdown mutants compared with that in the wild type strain. Finally, the expression levels of genes related to glycolysis were assayed, and the transcription levels of these enzymes were found to be increased by ~250% compared with the wild type strain. In conclusion, the regulation of intracellular metabolism by MPC provides a new way to improve the use of nondominant carbon sources such as lignocellulose.
Collapse
Affiliation(s)
- Wenzhao Xu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Junpei Fan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yihong Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Yunxiao Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Jing Zhu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Hanshou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| |
Collapse
|
16
|
Meng L, Liu HL, Lin X, Hu XP, Teng KR, Liu SX. Enhanced multi-stress tolerance and glucose utilization of Saccharomyces cerevisiae by overexpression of the SNF1 gene and varied beta isoform of Snf1 dominates in stresses. Microb Cell Fact 2020; 19:134. [PMID: 32571355 PMCID: PMC7310068 DOI: 10.1186/s12934-020-01391-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/15/2020] [Indexed: 12/03/2022] Open
Abstract
Background The Saccharomyces cerevisiae Snf1 complex is a member of the AMP-activated protein kinase family and plays an important role in response to environmental stress. The α catalytic subunit Snf1 regulates the activity of the protein kinase, while the β regulatory subunits Sip1/Sip2/Gal83 specify substrate preferences and stress response capacities of Snf1. In this study, we aim to investigate the effects of SNF1 overexpression on the cell tolerance and glucose consumption of S. cerevisiae in high glucose, ethanol, and heat stresses and to explore the valid Snf1 form in the light of β subunits in these stresses. Results The results suggest that overexpression of SNF1 is effective to improve cell resistance and glucose consumption of S. cerevisiae in high glucose, ethanol, and heat stresses, which might be related to the changed accumulation of fatty acids and amino acids and altered expression levels of genes involved in glucose transport and glycolysis. However, different form of β regulatory subunits dominated in stresses with regard to cell tolerance and glucose utilization. The Sip1 isoform was more necessary to the growth and glucose consumption in ethanol stress. The glucose uptake largely depended on the Sip2 isoform in high sugar and ethanol stresses. The Gal83 isoform only contributed inferior effect on the growth in ethanol stress. Therefore, redundancy and synergistic effect of β subunits might occur in high glucose, ethanol, and heat stresses, but each subunit showed specificity under various stresses. Conclusions This study enriches the understanding of the function of Snf1 protein kinase and provides an insight to breed multi-stress tolerant yeast strains.
Collapse
Affiliation(s)
- Lu Meng
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Hui-Ling Liu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Xue Lin
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China.
| | - Xiao-Ping Hu
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Kun-Ru Teng
- College of Food Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China
| | - Si-Xin Liu
- College of Science, Hainan University, Haikou, 570228, People's Republic of China
| |
Collapse
|
17
|
Darzian Rostami A, Yazdian F, Mirjani R, Soleimani M. Effects of different graphene-based nanomaterials as elicitors on growth and ganoderic acid production by Ganoderma lucidum. Biotechnol Prog 2020; 36:e3027. [PMID: 32432828 DOI: 10.1002/btpr.3027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Graphene-based nanomaterials (GBNs) have attracted considerable interest nowadays due to their wide range of applications. However, very little attention has been paid to the application of nanomaterials as potential elicitors for production of valuable metabolites. Herein, aiming to earn insight into effects of nanomaterials on secondary metabolite biosynthesis by medicinal fungi, we evaluated the influence of GBNs on growth and production of ganoderic acid (GA) by Ganoderma lucidum in submerged culture. Graphene oxide (GO), reduced graphene oxide (rGO), and rGO/Fe3 O4 nanocomposite were synthesized successfully and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. The prepared nanomaterials were added to the culture of G. lucidum at final concentrations of 50, 100, and 150 mg/L on Day 5. The results showed that the elicitation of G. lucidum with GO and rGO decreased the cell dry weight and GA production slightly, especially in higher concentrations. However, rGO/Fe3 O4 nanocomposite not negatively affected cell growth and improved GA production. G. lucidum growth rate responded to elicitation experiments differently and depended on the type of nanomaterials and their concentrations, but almost all GBNs caused an increase in GA content (mg/100 mg dry weight). Also, field emission scanning electron microscopy morphological study showed that under elicitation, mycelia were more condensed and tightly stacked together. The findings from this study may suggest that GBNs in low concentrations could be applied as elicitors to secondary metabolites production from higher fungus, but further environmental, physiological, and biological studies required.
Collapse
Affiliation(s)
- Arash Darzian Rostami
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.,Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Rohallah Mirjani
- Department of Genetics and Advanced Technologies, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|