1
|
Tsiara I, Hervás Povo B, Alotaibi W, Young Tie Yang P, Rodriguez-Mateos A, Globisch D. Characterizing the Sulfated and Glucuronidated (Poly)phenol Metabolome for Dietary Biomarker Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6702-6710. [PMID: 40025695 PMCID: PMC11926854 DOI: 10.1021/acs.jafc.4c12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
(Poly)phenols, bioactive compounds abundant in plant-based diets, have attracted interest for their potential role in preventing chronic diseases including cardiometabolic and neurodegenerative diseases. This study investigates the global sulfatome and glucuronidated metabolome in urine samples from 100 healthy adults collected pre- and postintervention following a 3-day (poly)phenol-rich intervention consisting of flaxseeds, raspberry powder, and soy milk. Using untargeted mass spectrometric metabolomics combined with selective phase II enzymatic treatment, we detected 156 sulfated and 143 glucuronidated metabolites in urine samples. Significant changes postintervention were observed for 91 sulfates and 94 glucuronides. Receiver operating characteristic curve analysis identified a combination of six polyphenol-derived key metabolites: glucuronidated daidzein and the sulfated compounds of pyrogallol, ferulic acid, 4-methoxyphenol, enterolactone, and resorcinol, which resulted in the best combination with the highest predictive AUC of 0.97. These findings underscore the utility of these metabolites as sensitive and selective biomarkers of (poly)phenol dietary intake.
Collapse
Affiliation(s)
- Ioanna Tsiara
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 576, Uppsala SE-75124, Sweden
| | - Belén Hervás Povo
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 576, Uppsala SE-75124, Sweden
| | - Wafa Alotaibi
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Paul Young Tie Yang
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 576, Uppsala SE-75124, Sweden
| |
Collapse
|
2
|
Gorecka A, Schacht H, Fraser MK, Teriosina A, London JA, Barsukov IL, Powell AK, Cartmell A, Stachulski AV, Yates EA. Synthetic β-d-Glucuronides: Substrates for Exploring Glucuronide Degradation by Human Gut Bacteria. ACS OMEGA 2025; 10:1419-1428. [PMID: 39829562 PMCID: PMC11740244 DOI: 10.1021/acsomega.4c09036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
The human gut microbiota (HGM) is a complex ecosystem subtly dependent on the interplay between hundreds of bacterial species and numerous metabolites. Dietary phenols, whether ingested (e.g., plant-derived guaiacol, mequinol, or resveratrol) or products of bacterial fermentation (e.g., p-cresol), have been attributed with influencing bacterial growth and host health. They are cleared by phase II metabolism, one form utilizing β-d-glucuronidation, but encounter bacterially derived glucuronidases capable of hydrolyzing them to release their phenolic and glucuronic acid moieties with potential effects on host cells or the surrounding bacterial population. Tools to enable the detailed study of their activity are currently lacking. Syntheses of β-d-glucuronides from methyl 1,2,3,4 tetra-acetyl β-d-glucopyranosyluronate by direct glycosylation with 2-, 3-, or 4-methoxy- and 4-fluorophenol acceptors employing trimethylsilyl triflate catalysis are reported. Yields (methoxy series) were modest. An improved route from methyl 1,2,3,4-tetra-acetyl β-d-glucopyranosyluronate via selective anomeric deprotection (N-methyl piperazine) and conversion to an α-trichloroacetimidate glycosyl donor was employed. Coupling with 2- and 3-methoxyphenol acceptors and deprotection provided 2- and 3-methoxyphenyl β-d-glucuronides in 2-fold improved overall yield. These naturally occurring methoxyphenyl glucuronides augment available model substrates of dietary glucuronides, which include 3- and 4'-linked resveratrol. The use of model glucuronides as substrates was illustrated in studies of β-d-glucuronidase activity employing cell lysates of 9 species of HGM (Bacteroidetes), revealing distinct outcomes. Contrasting effects on bacterial growth were also observed between the free phenolic components, their respective glucuronides, and glucuronic acid. The glucuronide of 4-fluorophenol provided sensitive and background-free detection of β-glucuronidase activity using 19F NMR.
Collapse
Affiliation(s)
- Aleksandra Gorecka
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Heidi Schacht
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Megan K. Fraser
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Aleksandra Teriosina
- School
of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - James A. London
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Igor L. Barsukov
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Andrew K. Powell
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - Alan Cartmell
- Department
of Biology, University of York, Heslington, York YO10 5DD, U.K.
| | | | - Edwin A. Yates
- Department
of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
3
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of phenolic acids and their phase-2 conjugates derived from dietary (poly)phenols, phenylalanine, tyrosine and catecholamines. Crit Rev Food Sci Nutr 2024:1-60. [PMID: 39383187 DOI: 10.1080/10408398.2024.2410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Free or conjugated aromatic/phenolic acids arise from the diet, endogenous metabolism of catecholamines (adrenaline, noradrenaline, dopamine), protein (phenylalanine, tyrosine), pharmaceuticals (aspirin, metaprolol) plus gut microbiota metabolism of dietary (poly)phenols and undigested protein. Quantitative data obtained with authentic calibrants for 112 aromatic/phenolic acids including phase-2 conjugates in human plasma, urine, ileal fluid, feces and tissues have been collated and mean/median values compared with in vitro bioactivity data in cultured cells. Ca 30% of publications report bioactivity at ≤1 μmol/L. With support from clinical studies, it appears that the greatest benefit might be produced in vascular tissues by C6-C3 metabolites, including some of gut microbiota origin and some phase-2 conjugates, 15 of which are 3',4'-disubstituted with multiple sources including caffeic acid and hesperetin, plus one unsubstituted and two mono-substituted examples which can originate from protein. There is an unexamined potential for synergy. Free-living and washout plasma data are scarce. Some metabolites have been overlooked, notably phenyl-lactic, phenyl-hydracrylic and phenyl-propanoic acids, especially those from amino acids plus glycine, hydroxy-glycine and glutamine conjugates. Phenolic acids and conjugates from multiple sources exhibit biological activities, some of which are likely relevant in vivo and link to biomarkers of health. Further targeted studies are justified.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Victorian Heart Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Victoria Heart Hospital, Clayton, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Victorian Heart Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Victoria Heart Hospital, Clayton, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| |
Collapse
|
4
|
D'Agostino GD, Chaudhari SN, Devlin AS. Host-microbiome orchestration of the sulfated metabolome. Nat Chem Biol 2024; 20:410-421. [PMID: 38347214 PMCID: PMC11095384 DOI: 10.1038/s41589-023-01526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 04/01/2024]
Abstract
Recent studies have demonstrated that metabolites produced by commensal bacteria causally influence health and disease. The sulfated metabolome is one class of molecules that has recently come to the forefront due to efforts to understand the role of these metabolites in host-microbiome interactions. Sulfated compounds have canonically been classified as waste products; however, studies have revealed a variety of physiological roles for these metabolites, including effects on host metabolism, immune response and neurological function. Moreover, recent research has revealed that commensal bacteria either chemically modify or synthesize a variety of sulfated compounds. In this Review, we explore how host-microbiome collaborative metabolism transforms the sulfated metabolome. We describe bacterial and mammalian enzymes that sulfonate and desulfate biologically relevant carbohydrates, amino acid derivatives and cholesterol-derived metabolites. We then discuss outstanding questions and future directions in the field, including potential roles of sulfated metabolites in disease detection, prevention and treatment. We hope that this Review inspires future research into sulfated compounds and their effects on physiology.
Collapse
Affiliation(s)
- Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Lessard-Lord J, Auger S, Demers S, Plante PL, Picard P, Desjardins Y. Automated High-Throughput Quantification of Phenyl-γ-valerolactones and Creatinine in Urine by Laser Diode Thermal Desorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16787-16796. [PMID: 37890868 PMCID: PMC10637324 DOI: 10.1021/acs.jafc.3c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023]
Abstract
Quantification of nutritional biomarkers is crucial to accurately assess the dietary intake of different classes of (poly)phenols in large epidemiological studies. High-throughput analysis is mandatory to apply this methodology in large cohorts. However, the current validated methods to quantify (poly)phenols metabolites in biological fluids use ultra performance liquid chromatography (UPLC), leading to analysis time of several minutes per sample. To significantly reduce the run time, we developed and validated a method to quantify in urine the flavan-3-ols biomarkers, phenyl-γ-valerolactones (PVLs), using laser diode thermal desorption (LDTD). This mass spectrometry source allows direct introduction of sample extracts, resulting in analysis time of less than 10 s per sample. Also, to encompass the problem associated with the cost and availability of sulfated and glucuronide analytical standards, urine samples were subjected to enzymatic hydrolysis. Creatinine was also quantified to normalize the results obtained from the urinary spot. Results obtained with LDTD-MS/MS were cross-validated by UPLC-MS/MS using 155 urine samples. Coefficient of correlation was above 0.975 for PVLs and creatinine. For all analytes, the accuracy was between 90% and 113% by LDTD-MS/MS. Altogether, sample preparation was fully automated to demonstrate the application potential of this method to large cohorts.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Department
of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, 2425 Rue de l’Agriculture, Québec, Québec G1V 0A6 Canada
| | - Serge Auger
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Sarah Demers
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Pier-Luc Plante
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
| | - Pierre Picard
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Yves Desjardins
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Department
of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, 2425 Rue de l’Agriculture, Québec, Québec G1V 0A6 Canada
| |
Collapse
|
6
|
Zheng S, Zhou L, Hoene M, Peter A, Birkenfeld AL, Weigert C, Liu X, Zhao X, Xu G, Lehmann R. A New Biomarker Profiling Strategy for Gut Microbiome Research: Valid Association of Metabolites to Metabolism of Microbiota Detected by Non-Targeted Metabolomics in Human Urine. Metabolites 2023; 13:1061. [PMID: 37887386 PMCID: PMC10608496 DOI: 10.3390/metabo13101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The gut microbiome is of tremendous relevance to human health and disease, so it is a hot topic of omics-driven biomedical research. However, a valid identification of gut microbiota-associated molecules in human blood or urine is difficult to achieve. We hypothesize that bowel evacuation is an easy-to-use approach to reveal such metabolites. A non-targeted and modifying group-assisted metabolomics approach (covering 40 types of modifications) was applied to investigate urine samples collected in two independent experiments at various time points before and after laxative use. Fasting over the same time period served as the control condition. As a result, depletion of the fecal microbiome significantly affected the levels of 331 metabolite ions in urine, including 100 modified metabolites. Dominating modifications were glucuronidations, carboxylations, sulfations, adenine conjugations, butyrylations, malonylations, and acetylations. A total of 32 compounds, including common, but also unexpected fecal microbiota-associated metabolites, were annotated. The applied strategy has potential to generate a microbiome-associated metabolite map (M3) of urine from healthy humans, and presumably also other body fluids. Comparative analyses of M3 vs. disease-related metabolite profiles, or therapy-dependent changes may open promising perspectives for human gut microbiome research and diagnostics beyond analyzing feces.
Collapse
Affiliation(s)
- Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| | - Andreas L. Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
- Internal Medicine 4, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| |
Collapse
|
7
|
Tsiara I, Riemer A, Correia MSP, Rodriguez-Mateos A, Globisch D. Immobilized Enzymes on Magnetic Beads for Separate Mass Spectrometric Investigation of Human Phase II Metabolite Classes. Anal Chem 2023; 95:12565-12571. [PMID: 37552796 PMCID: PMC10456218 DOI: 10.1021/acs.analchem.3c02988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The human body has evolved to remove xenobiotics through a multistep clearance process. Non-endogenous metabolites are converted through a series of phase I and different phase II enzymes into compounds with higher hydrophilicity. These compounds are important for diverse research fields such as toxicology, nutrition, biomarker discovery, doping control, and microbiome metabolism. One of the challenges in these research fields has been the investigation of the two major phase II modifications, sulfation and glucuronidation, and the corresponding unconjugated aglycon independently. We have now developed a new methodology utilizing an immobilized arylsulfatase and an immobilized β-glucuronidase to magnetic beads for treatment of human urine samples. The enzyme activities remained the same compared to the enzyme in solution. The separate mass spectrometric investigation of each metabolite class in a single sample was successfully applied to obtain the dietary glucuronidation and sulfation profile of 116 compounds. Our new chemical biology strategy provides a new tool for the investigation of metabolites in biological samples with the potential for broad-scale application in metabolomics, nutrition, and microbiome studies.
Collapse
Affiliation(s)
- Ioanna Tsiara
- Department
of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Amelie Riemer
- Department
of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Mario S. P. Correia
- Department
of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Ana Rodriguez-Mateos
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, London SE1 9NH, UK
| | - Daniel Globisch
- Department
of Chemistry - BMC, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
8
|
Lin W, Mellinghaus K, Rodriguez-Mateos A, Globisch D. Identification of nutritional biomarkers through highly sensitive and chemoselective metabolomics. Food Chem 2023; 425:136481. [PMID: 37276670 DOI: 10.1016/j.foodchem.2023.136481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
The importance of a healthy diet for humans is known for decades. The elucidation of key molecules responsible for the beneficial and adverse dietary effects is slowly developing as the tools are missing. Carbonyl-containing metabolites are a common bioproducts through conversion of diet by the microbiome. In here, we have utilized our recently developed mass spectrometric methodology based on chemoselective conjugation of carbonyl-metabolites. The method has been applied for urine sample analysis from a dietary (poly)phenol intervention study (N = 78 individuals) for the first time. We have identified a series of carbonyl-metabolites of dietary origin and the chemical structure was validated for 30 metabolites. Our sensitive analysis led to the discovery of four unknown dietary markers with high sensitivity and selectivity (AUC > 0.91). Our chemical metabolomics method has been successfully applied for large-scale analysis and provides the basis for targeted metabolomics to identify unknown nutritional and disease-related biomarkers.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-75124 Uppsala, Sweden
| | - Kiana Mellinghaus
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-75124 Uppsala, Sweden
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 576, SE-75124 Uppsala, Sweden.
| |
Collapse
|
9
|
Granados JC, Ermakov V, Maity K, Vera DR, Chang G, Nigam SK. The kidney drug transporter OAT1 regulates gut microbiome-dependent host metabolism. JCI Insight 2023; 8:e160437. [PMID: 36692015 PMCID: PMC9977316 DOI: 10.1172/jci.insight.160437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multispecific drug transporter in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut microbiome-derived metabolites. We depleted the gut microbiome of Oat1-KO and WT mice and performed metabolomics to analyze the effects of genotype (KO versus WT) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss of Oat1. Chemoinformatic analysis revealed that the altered metabolites (e.g., indoxyl sulfate, p-cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a pathway from gut microbes to liver phase II metabolism, to renal OAT1-mediated transport. The idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro transport and magnetic bead binding assays. We show that gut microbiome-derived metabolites dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP4, ABCG2) play a central role in regulating gut microbe-dependent metabolism, as well as interorganismal communication between the host and microbiome.
Collapse
Affiliation(s)
| | | | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - David R. Vera
- Department of Radiology
- In Vivo Cancer and Molecular Imaging Program
| | - Geoffrey Chang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- Department of Pharmacology, School of Medicine
| | - Sanjay K. Nigam
- Department of Pediatrics, and
- Department of Medicine (Nephrology), UCSD, La Jolla, California, USA
| |
Collapse
|
10
|
Clifford MN, King LJ, Kerimi A, Pereira-Caro MG, Williamson G. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 2022; 64:3326-3383. [PMID: 36226718 DOI: 10.1080/10408398.2022.2131730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous β-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are β-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor β-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid β-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of β-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Laurence J King
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Maria Gema Pereira-Caro
- Department of Food Science and Health, Instituto Andaluz de Investigacion y Formacion Agraria Pesquera Alimentaria y de la Produccion Ecologica, Sevilla, Spain
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| |
Collapse
|
11
|
Kim H, Lichtenstein AH, White K, Wong KE, Miller ER, Coresh J, Appel LJ, Rebholz CM. Plasma Metabolites Associated with a Protein-Rich Dietary Pattern: Results from the OmniHeart Trial. Mol Nutr Food Res 2022; 66:e2100890. [PMID: 35081272 PMCID: PMC8930517 DOI: 10.1002/mnfr.202100890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Indexed: 11/26/2022]
Abstract
Scope Lack of biomarkers is a challenge for the accurate assessment of protein intake and interpretation of observational study data. The study aims to identify biomarkers of a protein‐rich dietary pattern. Methods and Results The Optimal Macronutrient Intake Trial to Prevent Heart Disease (OmniHeart) trial is a randomized cross‐over feeding study which tested three dietary patterns with varied macronutrient content (carbohydrate‐rich; protein‐rich with about half from plant sources; and unsaturated fat‐rich). In 156 adults, differences in log‐transformed plasma metabolite levels at the end of the protein‐ and carbohydrate‐rich diet periods using paired t‐tests is examined. Partial least‐squares discriminant analysis is used to identify a set of metabolites which are influential in discriminating between the protein‐rich versus carbohydrate‐rich dietary patterns. Of 839 known metabolites, 102 metabolites differ significantly between the protein‐rich and the carbohydrate‐rich dietary patterns after Bonferroni correction, the majority of which are lipids (n = 35), amino acids (n = 27), and xenobiotics (n = 24). Metabolites which are the most influential in discriminating between the protein‐rich and the carbohydrate‐rich dietary patterns represent plant protein intake, food or beverage intake, and preparation methods. Conclusions The study identifies many plasma metabolites associated with the protein‐rich dietary pattern. If replicated, these metabolites may be used to assess level of adherence to a similar dietary pattern.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Karen White
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kari E Wong
- Metabolon, Research Triangle Park, Morrisville, North Carolina, USA
| | - Edgar R Miller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lawrence J Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, Lee B, Berjanskii M, Mah R, Yamamoto M, Jovel J, Torres-Calzada C, Hiebert-Giesbrecht M, Lui V, Varshavi D, Varshavi D, Allen D, Arndt D, Khetarpal N, Sivakumaran A, Harford K, Sanford S, Yee K, Cao X, Budinski Z, Liigand J, Zhang L, Zheng J, Mandal R, Karu N, Dambrova M, Schiöth H, Greiner R, Gautam V. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res 2022; 50:D622-D631. [PMID: 34986597 PMCID: PMC8728138 DOI: 10.1093/nar/gkab1062] [Citation(s) in RCA: 1056] [Impact Index Per Article: 352.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023] Open
Abstract
The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.
Collapse
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - AnChi Guo
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Eponine Oler
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Fei Wang
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | - Afia Anjum
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | - Harrison Peters
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Raynard Dizon
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zinat Sayeeda
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | - Siyang Tian
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Brian L Lee
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mark Berjanskii
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Robert Mah
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mai Yamamoto
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Juan Jovel
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | - Vicki W Lui
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Dorna Varshavi
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Dorsa Varshavi
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Dana Allen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David Arndt
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nitya Khetarpal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Aadhavya Sivakumaran
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Karxena Harford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Selena Sanford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Kristen Yee
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Xuan Cao
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zachary Budinski
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Jaanus Liigand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Naama Karu
- Leiden Academic Centre for Drug Research LACDR/Analytical Biosciences, Leiden University, Leiden, Netherlands
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Helgi B Schiöth
- Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | - Vasuk Gautam
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
13
|
Lessard-Lord J, Plante PL, Desjardins Y. Purified recombinant enzymes efficiently hydrolyze conjugated urinary (poly)phenol metabolites. Food Funct 2022; 13:10895-10911. [PMID: 36239175 DOI: 10.1039/d2fo02229j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Purified recombinant enzymes are efficient at hydrolyzing microbial (poly)phenol metabolite phase II conjugates, and hence, can be used to accurately quantify them using unconjugated analytical standards.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Pier-Luc Plante
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
14
|
Correia MSP, Thapa B, Vujasinovic M, Löhr JM, Globisch D. Investigation of the individual human sulfatome in plasma and urine samples reveals an age-dependency. RSC Adv 2021; 11:34788-34794. [PMID: 35494758 PMCID: PMC9042682 DOI: 10.1039/d1ra05994g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022] Open
Abstract
Metabolic microbiome interaction with the human host has been linked to human physiology and disease development. The elucidation of this interspecies metabolite exchange will lead to identification of beneficial metabolites and disease modulators. Their discovery and quantitative analysis requires the development of specific tools and analysis of specific compound classes. Sulfated metabolites are considered a readout for the co-metabolism of the microbiome and their host. This compound class is part of the human phase II clearance process of xenobiotics and is the main focus in drug or doping metabolism and also includes dietary components and microbiome-derived compounds. Here, we report the targeted analysis of sulfated metabolites in plasma and urine samples in the same individuals to identify the core sulfatome and similarities between these two sample types. This analysis of 27 individuals led to the identification of the core sulfatome of 41 metabolites in plasma and urine samples as well as an age effect for 15 metabolites in both sample types.
Collapse
Affiliation(s)
- Mário S P Correia
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University Box 599 SE-75124 Uppsala Sweden
| | - Bhawana Thapa
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University Box 599 SE-75124 Uppsala Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute Stockholm Sweden
| | - Daniel Globisch
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University Box 599 SE-75124 Uppsala Sweden
| |
Collapse
|
15
|
Zheng S, Zhang X, Li Z, Hoene M, Fritsche L, Zheng F, Li Q, Fritsche A, Peter A, Lehmann R, Zhao X, Xu G. Systematic, Modifying Group-Assisted Strategy Expanding Coverage of Metabolite Annotation in Liquid Chromatography-Mass Spectrometry-Based Nontargeted Metabolomics Studies. Anal Chem 2021; 93:10916-10924. [PMID: 34328315 DOI: 10.1021/acs.analchem.1c01715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From microbes to human beings, nontargeted metabolic profiling by liquid chromatography (LC)-mass spectrometry (MS) has been commonly used to investigate metabolic alterations. Still, a major challenge is the annotation of metabolites from thousands of detected features. The aim of our research was to go beyond coverage of metabolite annotation in common nontargeted metabolomics studies by an integrated multistep strategy applying data-dependent acquisition (DDA)-based ultrahigh-performance liquid chromatography (UHPLC)-high-resolution mass spectrometry (HRMS) analysis followed by comprehensive neutral loss matches for characteristic metabolite modifications and database searches in a successive manner. Using pooled human urine as a model sample for method establishment, we found 22% of the detected compounds having modifying structures. Major types of metabolite modifications in urine were glucuronidation (33%), sulfation (20%), and acetylation (6%). Among the 383 annotated metabolites, 100 were confirmed by standard compounds and 50 modified metabolites not present in common databases such as human metabolite database (HMDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were structurally elucidated. Practicability was tested by the investigation of urines from pregnant women diagnosed with gestational diabetes mellitus vs healthy controls. Overall, 83 differential metabolites were annotated and 67% of them were modified metabolites including five previously unreported compounds. To conclude, the systematic modifying group-assisted strategy can be taken as a useful tool to extend the number of annotated metabolites in biological and biomedical nontargeted studies.
Collapse
Affiliation(s)
- Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, Tuebingen 72076, Germany
| | - Louise Fritsche
- German Center for Diabetes Research (DZD), Tuebingen 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Tuebingen 72076, Germany.,Internal Medicine 4, University Hospital Tuebingen, Otfried-Mueller-Str. 10, Tuebingen 72076, Germany
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), Tuebingen 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Tuebingen 72076, Germany.,Internal Medicine 4, University Hospital Tuebingen, Otfried-Mueller-Str. 10, Tuebingen 72076, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, Tuebingen 72076, Germany.,German Center for Diabetes Research (DZD), Tuebingen 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Tuebingen 72076, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, Tuebingen 72076, Germany.,German Center for Diabetes Research (DZD), Tuebingen 72076, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Tuebingen 72076, Germany
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Jain A, Correia MSP, Meistermann H, Vujasinovic M, Löhr JM, Globisch D. Comparison of two arylsulfatases for targeted mass spectrometric analysis of microbiota-derived metabolites. J Pharm Biomed Anal 2020; 195:113818. [PMID: 33342568 DOI: 10.1016/j.jpba.2020.113818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Sulfation of metabolites is the second highest phase II modification in humans, which plays a critical role in the xenobiotics clearance process and gut microbiota-host co-metabolism. Besides the main function to remove xenobiotics from the body, sulfated metabolites have also been linked to inflammation, bacterial pathogenesis and metabolic disorders. A better understanding of how these metabolites impact the human body has turned into an important research area. Analytical methods for selective identification of this metabolite class are scarce. We have recently developed an assay utilizing the arylsulfatase from Helix pomatia due to a high substrate promiscuity combined with state-of-the-art metabolomics bioinformatic analysis for the selective identification of O-sulfated metabolites in human samples. This enzyme requires a multistep purification process as highest purity is needed for the developed mass spectrometric assay. In this study, we have utilized a new and recombinant overexpressed arylsulfatase (ASPC) for the selective identification of organic sulfate esters in human urine samples. We have compared the substrate conversion in urine samples and substrate specificity of this enzyme with purified arylsulfatase from Helix pomatia. Our analysis of urine samples revealed that both enzymes can be utilized for the selective analysis and discovery of sulfated metabolites with high promiscuity as demonstrated by equal hydrolysis of 108 substrates including sulfated conjugates of 27 metabolites of microbial origin. Importantly, we also identified 21 substrates in human urine samples that are exclusively hydrolyzed by ASPC and application of this enzyme increases the discovery of unknown sulfated metabolites with a higher scaffold diversity.
Collapse
Affiliation(s)
- Abhishek Jain
- Dept. Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| | - Mario S P Correia
- Dept. Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| | - Hannes Meistermann
- Dept. Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Daniel Globisch
- Dept. Chemistry - BMC, Science for Life Laboratory, Uppsala University, Box 599, SE-75124 Uppsala, Sweden.
| |
Collapse
|
17
|
Correia MSP, Lin W, Aria AJ, Jain A, Globisch D. Rapid Preparation of a Large Sulfated Metabolite Library for Structure Validation in Human Samples. Metabolites 2020; 10:metabo10100415. [PMID: 33081284 PMCID: PMC7603051 DOI: 10.3390/metabo10100415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomics analysis of biological samples is widely applied in medical and natural sciences. Assigning the correct chemical structure in the metabolite identification process is required to draw the correct biological conclusions and still remains a major challenge in this research field. Several metabolite tandem mass spectrometry (MS/MS) fragmentation spectra libraries have been developed that are either based on computational methods or authentic libraries. These libraries are limited due to the high number of structurally diverse metabolites, low commercial availability of these compounds, and the increasing number of newly discovered metabolites. Phase II modification of xenobiotics is a compound class that is underrepresented in these databases despite their importance in diet, drug, or microbiome metabolism. The O-sulfated metabolites have been described as a signature for the co-metabolism of bacteria and their human host. Herein, we have developed a straightforward chemical synthesis method for rapid preparation of sulfated metabolite standards to obtain mass spectrometric fragmentation pattern and retention time information. We report the preparation of 38 O-sulfated alcohols and phenols for the determination of their MS/MS fragmentation pattern and chromatographic properties. Many of these metabolites are regioisomers that cannot be distinguished solely by their fragmentation pattern. We demonstrate that the versatility of this method is comparable to standard chemical synthesis. This comprehensive metabolite library can be applied for co-injection experiments to validate metabolites in different human sample types to explore microbiota-host co-metabolism, xenobiotic, and diet metabolism.
Collapse
|