1
|
Boutin RCT, Shobeirian F, Adam S, Lehman A, Salvarinova R, Friedman JM. Immune Dysregulation in a Child With SOD1-Related Neurological Disease. Am J Med Genet A 2025; 197:e63949. [PMID: 39629626 DOI: 10.1002/ajmg.a.63949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/15/2024] [Indexed: 03/08/2025]
Abstract
Spastic tetraplegia and axial hypotonia (STAHP) associated with biallelic SOD1 deficiency is a recently described neurological disorder affecting children. Five studies have described a total of nine cases thus far, all characterized by the onset of progressive spastic tetraplegia beginning before 2 years of age. All but two of these cases are associated with homozygosity for the same genetic variant (NM_000454.4:c.335dupG; NP_000445.1:p.Cys112Trpfs*11) that leads to a non-functional enzyme product. More recently, a homozygous 3-base pair in-frame deletion (NM_000454.5: c.357_357+2delGGT) and a truncating frameshift variant (NM_000454.5: c.52_56del5ins154) in SOD1 have been described in similarly affected patients lacking SOD1 activity. Here we expand on the neurological and extra-neuronal phenotypes of STAHP in a patient with a novel homozygous SOD1 variant predicted to result in disrupted calcium- and zinc-binding activity of the encoded enzyme. We describe a 19-year-old male born to consanguineous parents who is homozygous for an NM_000454.4:c.369_371del SOD1 variant. The patient had progressive neuromuscular degeneration with onset before 1 year of age, consistent with a diagnosis of STAHP. Brain MRI at 7 years of age showed cerebellar atrophy, as has previously been described in this condition, as well as small optic nerves and a hypoplastic optic chiasm, which have not been reported previously. Our patient also exhibited clinical features of immune dysregulation with treatment-refractory inflammatory bowel disease, asthma, recurrent infections, and dermatitis. Overall, the early-onset progressive neurological disorder in our patient, found in association with homozygosity for an SOD1 variant that is predicted to result in impaired function of the transcribed protein, is consistent with a diagnosis of STAHP. Our patient also demonstrates optic atrophy and disrupted immune homeostasis, which have not been previously described as part of this condition. Taken together with previous case studies in children carrying loss-of-function variants of SOD1, this case highlights a possible role for antioxidant therapy in slowing disease progression in patients lacking SOD1 activity. These cases also draw attention to the need for careful consideration of possible harmful neuronal and extra-neuronal complications of proposed SOD1 knockdown therapies against ALS.
Collapse
Affiliation(s)
- Rozlyn Claire Thomas Boutin
- Provincial Medical Genetics Program, British Columbia Women's Hospital, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Farzaneh Shobeirian
- Department of Pediatric Radiology, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelin Adam
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ramona Salvarinova
- Division of Biochemical Genetics, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Jan M Friedman
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Hassan FA, Shalaby AG, Elkassas NEM, El-Medany SA, Hamdi Rabie A, Mahrose K, Abd El-Aziz A, Bassiony S. Efficacy of ascorbic acid and different sources of orange peel on growth performance, gene expression, anti-oxidant status and microbial activity of growing rabbits under hot conditions. Anim Biotechnol 2023; 34:2480-2491. [PMID: 35875862 DOI: 10.1080/10495398.2022.2101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Orange peel and its extract are good sources of phenols and vitamin C that can be used as powerful antioxidants and antibacterial. The effects of dietary ascorbic acid (AA), orange peel powder (OPP) and orange peel extract (OPE) supplementations on growth performance, blood biochemicals, gene expression and antioxidant status of growing rabbits under hot conditions were investigated. A total of 80 weaned Giant Flander male rabbits, five weeks old (606.25 ± 10.08 g), were randomly assigned to four groups. The first group received untreated diet (control group). The other groups received diets supplemented with 0.5 g AA/kg diet, 2% OPP and 500 mg OPE/kg diet. The lowest feed conversion ratio (FCR) was recorded by rabbits consumed diet supplemented with AA. Supplementations of OPP and OPE reduced blood plasma total cholesterol, low density lipoprotein and very-low density lipoprotein concentrations. The tested diets reduced triglycerides, total lipids, hydrogen peroxide, malondialdehyde levels, Staphylococcus aureus and Escherichia coli of the rabbits cecum. Supplementation of OPE improved activities of superoxide dismutase gene (6.1475) and insulin-like growth factor-1 (9.2108). Conclusively, dietary supplementation of OPE improved rabbit performance through improving antioxidant enzyme activities as well as upregulation of insulin-like growth gene. Additionally, OPP and OPE (2% and 500 mg/kg diet, respectively) had antibacterial effects for growing rabbits under hot conditions.
Collapse
Affiliation(s)
- Fawzia A Hassan
- Agricultural Research Center, Animal Production Research Institute, Giza, Egypt
| | - Azhar G Shalaby
- Agricultural Research Center, Animal Health Research Institute, Giza, Egypt
| | | | - Shawky A El-Medany
- Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| | - Ahmed Hamdi Rabie
- Agricultural Research Center, Animal Production Research Institute, Giza, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Ayman Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Samar Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Fujii J, Osaki T, Bo T. Ascorbate Is a Primary Antioxidant in Mammals. Molecules 2022; 27:6187. [PMID: 36234722 PMCID: PMC9572970 DOI: 10.3390/molecules27196187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Ascorbate (vitamin C in primates) functions as a cofactor for a number of enzymatic reactions represented by prolyl hydroxylases and as an antioxidant due to its ability to donate electrons, which is mostly accomplished through non-enzymatic reaction in mammals. Ascorbate directly reacts with radical species and is converted to ascorbyl radical followed by dehydroascorbate. Ambiguities in physiological relevance of ascorbate observed during in vivo situations could be attributed in part to presence of other redox systems and the pro-oxidant properties of ascorbate. Most mammals are able to synthesize ascorbate from glucose, which is also considered to be an obstacle to verify its action. In addition to animals with natural deficiency in the ascorbate synthesis, such as guinea pigs and ODS rats, three strains of mice with genetic removal of the responsive genes (GULO, RGN, or AKR1A) for the ascorbate synthesis have been established and are being used to investigate the physiological roles of ascorbate. Studies using these mice, along with ascorbate transporter (SVCT)-deficient mice, largely support its ability in protection against oxidative insults. While combined actions of ascorbate in regulating epigenetics and antioxidation appear to effectively prevent cancer development, pharmacological doses of ascorbate and dehydroascorbate may exert tumoricidal activity through redox-dependent mechanisms.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
5
|
Szarka A, Lőrincz T, Hajdinák P. Friend or Foe: The Relativity of (Anti)oxidative Agents and Pathways. Int J Mol Sci 2022; 23:ijms23095188. [PMID: 35563576 PMCID: PMC9099968 DOI: 10.3390/ijms23095188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
An element, iron, a process, the generation of reactive oxygen species (ROS), and a molecule, ascorbate, were chosen in our study to show their dual functions and their role in cell fate decision. Iron is a critical component of numerous proteins involved in metabolism and detoxification. On the other hand, excessive amounts of free iron in the presence of oxygen can promote the production of potentially toxic ROS. They can result in persistent oxidative stress, which in turn can lead to damage and cell death. At the same time, ROS—at strictly regulated levels—are essential to maintaining the redox homeostasis, and they are engaged in many cellular signaling pathways, so their total elimination is not expedient. Ascorbate establishes a special link between ROS generation/elimination and cell death. At low concentrations, it behaves as an excellent antioxidant and has an important role in ROS elimination. However, at high concentrations, in the presence of transition metals such as iron, it drives the generation of ROS. In the term of the dual function of these molecules and oxidative stress, ascorbate/ROS-driven cell deaths are not necessarily harmful processes—they can be live-savers too.
Collapse
Affiliation(s)
- András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Correspondence:
| | - Tamás Lőrincz
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Péter Hajdinák
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
6
|
Superoxide Radicals in the Execution of Cell Death. Antioxidants (Basel) 2022; 11:antiox11030501. [PMID: 35326151 PMCID: PMC8944419 DOI: 10.3390/antiox11030501] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Superoxide is a primary oxygen radical that is produced when an oxygen molecule receives one electron. Superoxide dismutase (SOD) plays a primary role in the cellular defense against an oxidative insult by ROS. However, the resulting hydrogen peroxide is still reactive and, in the presence of free ferrous iron, may produce hydroxyl radicals and exacerbate diseases. Polyunsaturated fatty acids are the preferred target of hydroxyl radicals. Ferroptosis, a type of necrotic cell death induced by lipid peroxides in the presence of free iron, has attracted considerable interest because of its role in the pathogenesis of many diseases. Radical electrons, namely those released from mitochondrial electron transfer complexes, and those produced by enzymatic reactions, such as lipoxygenases, appear to cause lipid peroxidation. While GPX4 is the most potent anti-ferroptotic enzyme that is known to reduce lipid peroxides to alcohols, other antioxidative enzymes are also indirectly involved in protection against ferroptosis. Moreover, several low molecular weight compounds that include α-tocopherol, ascorbate, and nitric oxide also efficiently neutralize radical electrons, thereby suppressing ferroptosis. The removal of radical electrons in the early stages is of primary importance in protecting against ferroptosis and other diseases that are related to oxidative stress.
Collapse
|
7
|
Fujii J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J Clin Biochem Nutr 2021; 69:1-15. [PMID: 34376908 PMCID: PMC8325764 DOI: 10.3164/jcbn.20-181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Ascorbate (vitamin C) is an essential micronutrient in primates, and exhibits multiple physiological functions. In addition to antioxidative action, ascorbate provides reducing power to α-ketoglutarate-dependent non-heme iron dioxygenases, such as prolyl hydroxylases. Demethylation of histones and DNA with the aid of ascorbate results in the reactivation of epigenetically silenced genes. Ascorbate and its oxidized form, dehydroascorbate, have attracted interest in terms of their roles in cancer therapy. The last step in the biosynthesis of ascorbate is catalyzed by l-gulono-γ-lactone oxidase whose gene Gulo is commonly mutated in all animals that do not synthesize ascorbate. One common explanation for this deficiency is based on the increased availability of ascorbate from foods. In fact, pathways for ascorbate synthesis and the detoxification of xenobiotics by glucuronate conjugation share the metabolic processes up to UDP-glucuronate, which prompts another hypothesis, namely, that ascorbate-incompetent animals might have developed stronger detoxification systems in return for their lack of ability to produce ascorbate, which would allow them to cope with their situation. Here, we overview recent advances in ascorbate research and propose that an enhanced glucuronate conjugation reaction may have applied positive selection pressure on ascorbate-incompetent animals, thus allowing them to dominate the animal kingdom.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
8
|
Fujii J, Homma T, Miyata S, Takahashi M. Pleiotropic Actions of Aldehyde Reductase (AKR1A). Metabolites 2021; 11:343. [PMID: 34073440 PMCID: PMC8227408 DOI: 10.3390/metabo11060343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
We provide an overview of the physiological roles of aldehyde reductase (AKR1A) and also discuss the functions of aldose reductase (AKR1B) and other family members when necessary. Many types of aldehyde compounds are cytotoxic and some are even carcinogenic. Such toxic aldehydes are detoxified via the action of AKR in an NADPH-dependent manner and the resulting products may exert anti-diabetic and anti-tumorigenic activity. AKR1A is capable of reducing 3-deoxyglucosone and methylglyoxal, which are reactive intermediates that are involved in glycation, a non-enzymatic glycosylation reaction. Accordingly, AKR1A is thought to suppress the formation of advanced glycation end products (AGEs) and prevent diabetic complications. AKR1A and, in part, AKR1B are responsible for the conversion of d-glucuronate to l-gulonate which constitutes a process for ascorbate (vitamin C) synthesis in competent animals. AKR1A is also involved in the reduction of S-nitrosylated glutathione and coenzyme A and thereby suppresses the protein S-nitrosylation that occurs under conditions in which the production of nitric oxide is stimulated. As the physiological functions of AKR1A are currently not completely understood, the genetic modification of Akr1a could reveal the latent functions of AKR1A and differentiate it from other family members.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan;
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan;
| | - Satoshi Miyata
- Miyata Diabetes and Metabolism Clinic, 5-17-21 Fukushima, Fukushima-ku, Osaka 553-0003, Japan;
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|