1
|
Davies LT, Ganesen R, Toubia J, Hong S, Kumar KC S, Oehler MK, Ricciardelli C, Szili EJ, Robinson N, Pitman MR. Plasma-activated media selectively induces apoptotic death via an orchestrated oxidative stress pathway in high-grade serous ovarian cancer cells. Mol Oncol 2025; 19:1170-1187. [PMID: 39626867 PMCID: PMC11977661 DOI: 10.1002/1878-0261.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 11/07/2024] [Indexed: 04/09/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive type of ovarian cancer. Due to a lack of an early detection test and overt symptoms, many patients are diagnosed at a late stage where metastasis makes treatment very challenging. Furthermore, the current standard treatment for HGSOC patients, consisting of debulking surgery and platinum-taxane chemotherapy, reduces quality of life due to debilitating side-effects. Sadly, 80-90% of patients diagnosed with advanced stage ovarian cancer will die due to treatment resistance. As such, novel therapeutic strategies for HGSOC that are both more effective and less toxic are urgently required. Here we describe the assessment of cold atmospheric pressure (CAP) gas discharge technology as a novel treatment strategy in pre-clinical models of HGSOC. Plasma-activated media (PAM) was generated using cell growth media. HGSOC cell lines, patient ascites cells and primary tissue explants were tested for their response to PAM via analysis of cell viability, cell death and oxidative stress assays. Our data show that PAM treatment can be more effective than standard carboplatin chemotherapy at selectively targeting ovarian cancer cells in primary patient samples. Further, we also observed PAM to induce apoptosis in HGSOC cancer cell lines via induction of oxidative stress and mitochondrial-mediated apoptosis. These findings suggest that PAM is a viable therapeutic strategy to test in in vivo models of ovarian cancer, with a view to develop an intraperitoneal PAM-based therapy for HGSOC patients. Our studies validate the ability of PAM to selectively target tumour tissue and ascites cells. This work supports the development of PAM towards in vivo validation and translation into clinical practice.
Collapse
Affiliation(s)
- Lorena T. Davies
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - Raja Ganesen
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - John Toubia
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
| | - Sung‐Ha Hong
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Sushil Kumar KC
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Martin K. Oehler
- Reproductive Cancer Research Group; Discipline of Obstetrics and Gynaecology, Adelaide Medical SchoolThe University of AdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
- Department of Gynaecological OncologyRoyal Adelaide HospitalAustralia
| | - Carmela Ricciardelli
- Reproductive Cancer Research Group; Discipline of Obstetrics and Gynaecology, Adelaide Medical SchoolThe University of AdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
| | - Endre J. Szili
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Nirmal Robinson
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
- Adelaide Medical SchoolThe University of AdelaideAustralia
| | - Melissa R. Pitman
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
- Robinson Research InstituteAdelaideAustralia
- School of Biological SciencesThe University of AdelaideAustralia
| |
Collapse
|
2
|
Yao H, Toyoda H, Takada N, Oebisu N, Orita K, Ban Y, Saito K, Nakazawa K, Kobayashi Y, Taniwaki H, Ohira C, Oh JS, Shirafuji T, Terai H, Nakamura H. Anti-Tumor Effect of Non-Thermal Atmospheric Pressure Plasma-Activated Medium on Synovial Sarcoma: An In Vitro and In Vivo Study. Biomedicines 2025; 13:534. [PMID: 40149512 PMCID: PMC11940581 DOI: 10.3390/biomedicines13030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objective: Anti-tumor effects of plasma-activated medium (PAM) were demonstrated using various malignant tumors. However, the anti-tumor effect of PAM on synovial sarcoma remains unclear. Therefore, we aimed to investigate the anti-tumor effects of PAM on synovial sarcoma and its underlying mechanisms, focusing on the quantitative analyses of both intracellular reactive oxygen species (ROS) and cell apoptosis. Methods: The human synovial sarcoma cell line HS-SY-II was used to investigate the cell viability after PAM treatment. We investigated the anti-tumor effects and side effects of local PAM injection in a synovial sarcoma xenograft murine model. Moreover, we observed PAM-induced intracellular ROS accumulation and cell apoptosis and assessed the involvement of intracellular ROS in the anti-tumor effects of PAM using an intracellular ROS scavenger. Results: PAM significantly decreased the viability of synovial sarcoma cells compared with untreated Dulbecco's modified Eagle medium. Local PAM injection into a synovial sarcoma xenograft murine model significantly suppressed tumor growth, including tumor volume (p < 0.001) and weight (p = 0.031), without side effects. Regarding anti-tumor mechanisms, PAM induced significant cell apoptosis and intracellular ROS accumulation (p < 0.001). The intracellular ROS scavenger significantly inhibited the anti-tumor effect of PAM (p < 0.001). Conclusions: We confirmed the anti-tumor effects of PAM on synovial sarcoma in vitro and in vivo, as well as the absence of side effects. The underlying mechanism was suggested to involve cell apoptosis induced by intracellular ROS accumulation. Considering the various clinical issues associated with the existing treatments of synovial sarcoma, PAM is a promising new option.
Collapse
Affiliation(s)
- Hana Yao
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiromitsu Toyoda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Naoki Takada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Naoto Oebisu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Kumi Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Yoshitaka Ban
- Department of Orthopaedic Surgery, Osaka City Juso Hospital, Osaka 532-0034, Japan
| | - Kosuke Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Katsumasa Nakazawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Yuto Kobayashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiroshi Taniwaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Chinatsu Ohira
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Jun-Seok Oh
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan; (J.-S.O.)
| | - Tatsuru Shirafuji
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan; (J.-S.O.)
| | - Hidetomi Terai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| |
Collapse
|
3
|
Pavlović O, Lazarević M, Jakovljević A, Škoro N, Puač N, Mojsilović S, Miletić M. Antitumor Potential of Different Treatment Approaches Using Cold Atmospheric Pressure Plasma on Oral Squamous Cell Carcinoma Models: In Vitro Study. Biomedicines 2025; 13:443. [PMID: 40002856 PMCID: PMC11853493 DOI: 10.3390/biomedicines13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cold atmospheric plasma (CAP) has shown a strong anticancer effect on a variety of tumors, presenting a new approach for the effective treatment of oral squamous cell carcinoma (OSCC), one of the most prevalent malignant neoplasms with a high mortality rate. Here, we aimed to comprehensively investigate the antitumor potential of two approaches of CAP treatment on both two-dimensional and three-dimensional OSCC cell line models, as well as to analyze whether plasma treatment enhances the sensitivity of OSCC to chemotherapy. Methods: An in-house designed plasma needle, with helium as a working gas, was used to treat the SCC-25 cell line directly or indirectly via plasma-treated medium (PTM). The antitumor effect of CAP was assessed by measuring cell viability, apoptosis, adhesion, and migration. In addition, the combined effect of PTM and cisplatin was analyzed in SCC-25 tumor spheroids, as a more complex and reliable in vitro model. Results: Both plasma treatments showed time-dependent antitumor effects affecting their viability, adhesion, and migration. The rate of apoptosis was higher after incubation with PTM and is mediated by the intrinsic pathway. By utilizing the 3D spheroid carcinoma model, we confirmed the antitumor potential of CAP and additionally demonstrated an increased chemosensitivity of PTM-treated carcinoma cells. Conclusions: The results of our study illustrate a promising avenue for the application of CAP as a therapeutic option for OSCC, either as a standalone treatment or in combination with cisplatin.
Collapse
Affiliation(s)
- Ognjan Pavlović
- School of Dental Medicine, University of Belgrade, dr Subotica 6, 11000 Belgrade, Serbia; (M.L.); (A.J.)
| | - Miloš Lazarević
- School of Dental Medicine, University of Belgrade, dr Subotica 6, 11000 Belgrade, Serbia; (M.L.); (A.J.)
| | - Aleksandar Jakovljević
- School of Dental Medicine, University of Belgrade, dr Subotica 6, 11000 Belgrade, Serbia; (M.L.); (A.J.)
| | - Nikola Škoro
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (N.Š.); (N.P.)
| | - Nevena Puač
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (N.Š.); (N.P.)
| | - Slavko Mojsilović
- Institute for Medical Research, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Maja Miletić
- School of Dental Medicine, University of Belgrade, dr Subotica 6, 11000 Belgrade, Serbia; (M.L.); (A.J.)
| |
Collapse
|
4
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
5
|
Chen B, Liu J. Advances in ovarian tumor stem cells and therapy. Cell Biochem Biophys 2024; 82:1871-1892. [PMID: 38955927 DOI: 10.1007/s12013-024-01385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Ovarian cancer is considered the most lethal among all gynecological malignancies due to its early metastatic dissemination, extensive spread, and malignant ascites. The current standard of care for advanced ovarian cancer involves a combination of cytoreductive surgery and chemotherapy utilizing platinum-based and taxane-based agents. Although initial treatment yields clinical remission in 70-80% of patients, the majority eventually develop treatment resistance and tumor recurrence. A growing body of evidence indicates the existence of cancer stem cells within diverse solid tumors, including ovarian cancer, which function as a subpopulation to propel tumor growth and disease advancement by means of drug resistance, recurrence, and metastasis. The presence of ovarian cancer stem cells is widely considered to be a significant contributor to the unfavorable clinical outcomes observed in patients with ovarian cancer, as they play a crucial role in mediating chemotherapy resistance, recurrence, and metastasis. Ovarian cancer stem cells possess the capacity to reassemble within the entirety of the tumor following conventional treatment, thereby instigating the recurrence of ovarian cancer and inducing resistance to treatment. Consequently, the creation of therapeutic approaches aimed at eliminating ovarian cancer stem cells holds great potential for the management of ovarian cancer. These cells are regarded as one of the most auspicious targets and mechanisms for the treatment of ovarian cancer. There is a pressing need for a comprehensive comprehension of the fundamental mechanisms of ovarian cancer's recurrence, metastasis, and drug resistance, alongside the development of effective strategies to overcome chemoresistance, metastasis, and recurrence. The implementation of cancer stem cell therapies may potentially augment the tumor cells' sensitivity to existing chemotherapy protocols, thereby mitigating the risks of tumor metastasis and recurrence, and ultimately improving the survival rates of ovarian cancer patients.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiaqi Liu
- Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
6
|
Tabassum S, Khan MN, Faiz N, Almas, Yaseen B, Ahmad I. Cold atmospheric plasma-activated medium for potential ovarian cancer therapy. Mol Biol Rep 2024; 51:834. [PMID: 39042272 DOI: 10.1007/s11033-024-09795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Cold atmospheric plasma (CAP) has emerged as an innovative tool with broad medical applications, including ovarian cancer (OC) treatment. By bringing CAP in close proximity to liquids such as water or cell culture media, solutions containing reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated, called plasma-activated media (PAM). In this systematic review, we conduct an in-depth analysis of studies focusing on PAM interactions with biological substrates. We elucidate the diverse mechanisms involved in the activation of different media and the complex network of chemical reactions underlying the generation and consumption of the prominent reactive species. Furthermore, we highlight the promises of PAM in advancing biomedical applications, such as its stability for extended periods under appropriate storage conditions. We also examine the application of PAM as an anti-cancer and anti-metastatic treatment for OC, with a particular emphasis on its ability to induce apoptosis via distinct signaling pathways, inhibit cell growth, suppress cell motility, and enhance the therapeutic effects of chemotherapy. Finally, the future outlook of PAM therapy in biomedical applications is speculated, with emphasis on the safety issues relevant to clinical translation.
Collapse
Affiliation(s)
- Shazia Tabassum
- Department of Obstetrics and Gynaecology, Hayatabad Medical Complex, Peshawar, Pakistan
| | | | | | - Almas
- Abdul Wali Khan University, Mardan, Pakistan
| | - Bushra Yaseen
- Department of Gynaecology, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
7
|
Boeckmann L, Berner J, Kordt M, Lenz E, Schäfer M, Semmler ML, Frey A, Sagwal SK, Rebl H, Miebach L, Niessner F, Sawade M, Hein M, Ramer R, Grambow E, Seebauer C, von Woedtke T, Nebe B, Metelmann HR, Langer P, Hinz B, Vollmar B, Emmert S, Bekeschus S. Synergistic effect of cold gas plasma and experimental drug exposure exhibits skin cancer toxicity in vitro and in vivo. J Adv Res 2024; 57:181-196. [PMID: 37391038 PMCID: PMC10918357 DOI: 10.1016/j.jare.2023.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
INTRODUCTION Skin cancer is often fatal, which motivates new therapy avenues. Recent advances in cancer treatment are indicative of the importance of combination treatments in oncology. Previous studies have identified small molecule-based therapies and redox-based technologies, including photodynamic therapy or medical gas plasma, as promising candidates to target skin cancer. OBJECTIVE We aimed to identify effective combinations of experimental small molecules with cold gas plasma for therapy in dermato-oncology. METHODS Promising drug candidates were identified after screening an in-house 155-compound library using 3D skin cancer spheroids and high content imaging. Combination effects of selected drugs and cold gas plasma were investigated with respect to oxidative stress, invasion, and viability. Drugs that had combined well with cold gas plasma were further investigated in vascularized tumor organoids in ovo and a xenograft mouse melanoma model in vivo. RESULTS The two chromone derivatives Sm837 and IS112 enhanced cold gas plasma-induced oxidative stress, including histone 2A.X phosphorylation, and further reduced proliferation and skin cancer cell viability. Combination treatments of tumor organoids grown in ovo confirmed the principal anti-cancer effect of the selected drugs. While one of the two compounds exerted severe toxicity in vivo, the other (Sm837) resulted in a significant synergistic anti-tumor toxicity at good tolerability. Principal component analysis of protein phosphorylation profiles confirmed profound combination treatment effects in contrast to the monotherapies. CONCLUSION We identified a novel compound that, combined with topical cold gas plasma-induced oxidative stress, represents a novel and promising treatment approach to target skin cancer.
Collapse
Affiliation(s)
- Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Julia Berner
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Marcel Kordt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Elea Lenz
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marie-Luise Semmler
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anna Frey
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Felix Niessner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Marie Sawade
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Martin Hein
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Robert Ramer
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Eberhard Grambow
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Christian Seebauer
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Hans-Robert Metelmann
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Peter Langer
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Sander Bekeschus
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany.
| |
Collapse
|
8
|
Ghadirian F, Abbasi H, Bavi O, Naeimabadi A. How living cells are affected during the cold atmospheric pressure plasma treatment. Free Radic Biol Med 2023; 205:141-150. [PMID: 37295538 DOI: 10.1016/j.freeradbiomed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
When the electric discharge process is limited by high voltage electrodes shielding, the ionization measure would be controlled to less than one percent and the temperature to less than 37 °C even at atmospheric pressure, so-called cold atmospheric pressure plasma (CAP). CAP has been found to have profound medical applications in association with its reactive oxygen and nitrogen species (ROS/RNS). In this way that during plasma exposure, the subjected medium (e.g. cell cytoplasmic membrane in plasma therapy) interacts with ROS/RNS. Accordingly, a precise study of the mentioned interactions and their consequences on the cells' behavior changes, is necessary. The results lead to the reduction of possible risks and provide the opportunity of optimizing the efficacy of CAP before the development of CAP applications in the field of plasma medicine. In this report molecular dynamic (MD) simulation is used to investigate the mentioned interactions and a proper and compatible comparison with the experimental results is presented. Based on this, the effects of H2O2, NO and O2 on the living cell's membrane are investigated in biological conditions. Our results show that: i) The hydration of phospholipid polar heads would be enhanced associated with the H2O2 presence. ii) A new definition of the surface area assigned to each phospholipid (APL), more reliable and compatible with the physical expectations, is introduced. iii) The long-term behavior of NO and O2 is their penetration into the lipid bilayer and sometimes passing through the membrane into the cell. The latter would be an indication of internal cells' pathways activation leading to modification of cells' function.
Collapse
Affiliation(s)
- Fatemeh Ghadirian
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran
| | - Hossein Abbasi
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran.
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Aboutorab Naeimabadi
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran
| |
Collapse
|
9
|
Yoshikawa N, Nakamura K, Kajiyama H. Current understanding of Plasma-activated solutions for potential cancer therapy. Free Radic Res 2023:1-12. [PMID: 36944223 DOI: 10.1080/10715762.2023.2193308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Cancer therapy consists of multidisciplinary treatment combining surgery, chemotherapy, radiotherapy, and immunotherapy. Despite the elucidation of cancer mechanisms by comprehensive genomic and epigenomic analyses and the development of molecular therapy, drug resistance and severe side effects have presented challenges to the long-awaited development of new therapies. With the rapid technological advances in the last decade, there are now reports concerning potential applications of non-equilibrium atmospheric pressure plasma (NEAPP) in cancer therapy. Two approaches have been tried: direct irradiation with NEAPP (direct plasma) and the administration of a liquid (e.g., culture medium, saline, Ringer's lactate) activated by NEAPP (plasma-activated solutions: PAS). Direct plasma is a unique treatment method in which various active species, charged ions, and photons are delivered to the affected area, but the direct plasma approach has physical limitations related to the device used, such as a limited depth of reach and limited irradiation area. PAS is a liquid that contains reactive oxygen species generated by PAS, and it has been confirmed to have antitumor activity that functions in the same manner as direct plasma. This review introduces recent studies of PAS and informs researchers about the potential of PAS for cancer therapy.Key Policy HighlightsPotential applications of plasma-activated solutions (PAS) in cancer therapy are described.Plasma-activated species generated in PAS, its effect on tumor cells, contribution to non-malignant immune cells, selectivity and safety are presented.The proposed anti-tumor mechanisms of PAS to date are described.Efficacy and safety evaluations of PAS have been studied in experimental animal models, but no human studies have been conducted.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| | - Kae Nakamura
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Nagoya
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| |
Collapse
|
10
|
Pavlik T, Gudkova V, Razvolyaeva D, Pavlova M, Kostukova N, Miloykovich L, Kolik L, Konchekov E, Shimanovskii N. The Role of Autophagy and Apoptosis in the Combined Action of Plasma-Treated Saline, Doxorubicin, and Medroxyprogesterone Acetate on K562 Myeloid Leukaemia Cells. Int J Mol Sci 2023; 24:ijms24065100. [PMID: 36982174 PMCID: PMC10049101 DOI: 10.3390/ijms24065100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
The anti-cancer properties of plasma-treated solutions (PTS) and their interaction with drugs are one of the most popular topics in modern plasma medicine. Our research involved comparing the effects of four physiological saline solutions (0.9% NaCl, Ringer’s solution, Hank’s Balanced Salt Solution, Hank’s Balanced Salt Solution with amino acids added in concentrations observed in the human blood) treated with cold atmospheric plasma and studying the combined cytotoxic effect of PTS with doxorubicin and medroxyprogesterone acetate (MPA). Analysis of the effect of the studied agents on the formation of radicals in the incubation medium, the vitality of K562 myeloid leukaemia cells, and the processes of autophagy and apoptosis in them revealed two key findings. The first is that when using PTS and doxorubicin-containing PTS, autophagy is the predominant process in cancer cells. The second is that combining PTS with MPA enhances apoptotic processes. It was hypothesised that while autophagy is stimulated by the accumulation of reactive oxygen species in the cell, apoptosis is stimulated through specific cell progesterone receptors.
Collapse
Affiliation(s)
- Tatyana Pavlik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Correspondence:
| | - Victoria Gudkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Science, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Darya Razvolyaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Science, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Marina Pavlova
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Nadejda Kostukova
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Lilia Miloykovich
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Leonid Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Evgeny Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolay Shimanovskii
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
11
|
Exploring the Use of Cold Atmospheric Plasma to Overcome Drug Resistance in Cancer. Biomedicines 2023; 11:biomedicines11010208. [PMID: 36672716 PMCID: PMC9855365 DOI: 10.3390/biomedicines11010208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is a major problem in cancer treatment, as it limits the effectiveness of pharmacological agents and can lead to disease progression. Cold atmospheric plasma (CAP) is a technology that uses ionized gas (plasma) to generate reactive oxygen and nitrogen species (RONS) that can kill cancer cells. CAP is a novel approach for overcoming drug resistance in cancer. In recent years, there has been a growing interest in using CAP to enhance the effectiveness of chemotherapy drugs. In this review, we discuss the mechanisms behind this phenomenon and explore its potential applications in cancer treatment. Going through the existing literature on CAP and drug resistance in cancer, we highlight the challenges and opportunities for further research in this field. Our review suggests that CAP could be a promising option for overcoming drug resistance in cancer and warrants further investigation.
Collapse
|
12
|
Dai X, Shen L, Zhang J. Cold atmospheric plasma: redox homeostasis to treat cancers? Trends Biotechnol 2023; 41:15-18. [PMID: 35985891 DOI: 10.1016/j.tibtech.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022]
Abstract
Cold atmospheric plasma (CAP) is a promising therapeutic for highly aggressive malignancies given its unique safety and selectivity against redox imbalance and is characterized as a tumor microenvironment (TME) sensitizer, immunogenic cell death (ICD) inducer, and cancer stem cell (CSC) killer that functions through the regulation of cell redox homeostasis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Li Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jianying Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
13
|
Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int J Mol Sci 2022; 23:ijms23169288. [PMID: 36012552 PMCID: PMC9409438 DOI: 10.3390/ijms23169288] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.
Collapse
|