1
|
Schmidt J, Brandenburg V, Elders H, Shahzad S, Schäkermann S, Fiedler R, Knoke L, Pfänder Y, Dietze P, Bille H, Gärtner B, Albin L, Leichert L, Bandow J, Hofmann E, Narberhaus F. Two redox-responsive LysR-type transcription factors control the oxidative stress response of Agrobacterium tumefaciens. Nucleic Acids Res 2025; 53:gkaf267. [PMID: 40193708 PMCID: PMC11975290 DOI: 10.1093/nar/gkaf267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Pathogenic bacteria often encounter fluctuating reactive oxygen species (ROS) levels, particularly during host infection, necessitating robust redox-sensing mechanisms for survival. The LysR-type transcriptional regulator (LTTR) OxyR is a widely conserved bacterial thiol-based redox sensor. However, members of the Rhizobiales also encode LsrB, a second LTTR with potential redox-sensing function. This study explores the roles of OxyR and LsrB in the plant-pathogen Agrobacterium tumefaciens. Through single and combined deletions, we observed increased H2O2 sensitivity, underscoring their function in oxidative defense. Genome-wide transcriptome profiling under H2O2 exposure revealed that OxyR and LsrB co-regulate key antioxidant genes, including katG, encoding a bifunctional catalase/peroxidase. Agrobacterium tumefaciens LsrB possesses four cysteine residues potentially involved in redox sensing. To elucidate the structural basis for redox-sensing, we applied single-particle cryo-EM (cryogenic electron microscopy) to experimentally confirm an AlphaFold model of LsrB, identifying two proximal cysteine pairs. In vitro thiol-trapping coupled with mass spectrometry confirmed reversible thiol modifications of all four residues, suggesting a functional role in redox regulation. Collectively, these findings reveal that A. tumefaciens employs two cysteine-based redox sensing transcription factors, OxyR and LsrB, to withstand oxidative stress encountered in host and soil environments.
Collapse
Affiliation(s)
- Janka J Schmidt
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Hannah Elders
- Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sina Schäkermann
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
- Center for System-based Antibiotic Research, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ronja Fiedler
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lisa R Knoke
- Microbial Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Pascal Dietze
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Hannah Bille
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bela Gärtner
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lennart J Albin
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lars I Leichert
- Microbial Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
- Center for System-based Antibiotic Research, Ruhr University Bochum, 44801 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Seixas AF, Silva AFQ, Sousa JP, Arraiano CM, Andrade JM. The RNA chaperone Hfq is a novel regulator of catalase expression and hydrogen peroxide-induced oxidative stress response in Listeria monocytogenes EGD-e. Free Radic Biol Med 2025; 227:103-116. [PMID: 39608557 DOI: 10.1016/j.freeradbiomed.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The RNA chaperone Hfq plays a pivotal role in many bacteria, acting as a regulator of gene expression and promoting interaction between mRNA-sRNA pairs in Gram-negative bacteria. However, in Gram-positive bacteria this protein is expendable for riboregulation, and the main function of Hfq remains elusive. This work unveils a novel function for Hfq in the oxidative stress response of the human pathogen Listeria monocytogenes, a Gram-positive bacterium responsible for the infectious disease listeriosis. Disruption of hfq gene (Δhfq) results in a hypersensitive phenotype towards hydrogen peroxide (H2O2), in which sub-inhibitory concentrations of this reactive oxygen species (ROS) severely impair growth and viability of L. monocytogenes EGD-e. A Δhfq-complemented strain does not show this phenotype. This Hfq-dependent regulation of oxidative stress seems specific for H2O2, as exposure to superoxides caused no differences. We demonstrate that Hfq has a dual regulatory role in the expression of catalase (kat), the key enzyme involved in H2O2 detoxification. Hfq influences kat transcription under non-stress conditions by modulating the levels of the transcriptional repressor PerR, and also acts post-transcriptionally by stabilizing kat mRNA under H2O2-induced stress. Indeed, enzymatic assays revealed reduced catalase activity in Δhfq cell extracts, a result unrelated to differences in cellular iron content. Bacterial infection triggers immune cells to produce massive amounts of ROS, like H2O2. We show that inactivation of Hfq increases susceptibility to macrophage killing, connecting Hfq with the stress resistance and virulence of L. monocytogenes EGD-e. Overall, these findings advance the understanding of Hfq function within Gram-positive bacteria, revealing for the first time that Hfq is a novel regulator of catalase expression. This paves the way for the study of yet unknown oxidative stress response pathways regulated by Hfq in other pathogens.
Collapse
Affiliation(s)
- André Filipe Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Alda Filipa Queirós Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - João Pedro Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - José Marques Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal.
| |
Collapse
|
3
|
Xiang Y, Zheng J, Liu Z, Cui X, Zhang Y, Guo M, Li W. Cu2+ mediates the oxidation of the transcription factor MscA to regulate the antioxidant defense of mycobacteria. Nucleic Acids Res 2025; 53:gkae1309. [PMID: 39788544 PMCID: PMC11711680 DOI: 10.1093/nar/gkae1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Copper (Cu), a trace element with redox activity, is both essential and toxic to living organisms. Its redox properties make it a cofactor for a variety of proteins, but it also causes oxidative stress, hence the need to maintain intracellular copper homeostasis. However, the role of copper in the regulation of antioxidant defense in bacteria remains unclear, and the involved transcription factors remain to be explored. In this study, we identified a novel transcription factor, MscA, that responded directly to Cu2+ to regulate the antioxidant defense of mycobacteria. Cu2+ directly bound to MscA to mediate oxidation and inhibit the DNA binding activity of MscA, subsequently downregulating the expression of antioxidant gene cluster to increase the accumulation of reactive oxygen species in mycobacteria, ultimately leading to oxidative damage to mycobacteria. Therefore, we firstly reported that the Cu2+ responsive transcription factor regulated the antioxidant defense in bacteria. This finding firstly and directly links the function of Cu2+ to the antioxidant defense of bacteria, and provides a new insight into bacterial antioxidant defense.
Collapse
Affiliation(s)
- Yuling Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiachen Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhendong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xujie Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yunfan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Minhao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Arvaniti M, Gaballa A, Orsi RH, Skandamis P, Wiedmann M. Deciphering the Molecular Mechanism of Peracetic Acid Response in Listeria monocytogenes. J Food Prot 2025; 88:100401. [PMID: 39515609 DOI: 10.1016/j.jfp.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to a sub-lethal concentration of PAA (2.5 ppm) was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed protein-coding genes, of which nine were upregulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and three were down-regulated (argG, lmo0604 and lmo2156) in PAA-treated samples compared to the control samples. A non-coding small RNA gene (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA, including the expression of the peroxide detoxification system and fine-tuning the levels of redox-active metals in the cell. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as residual PAA can lead to stress tolerance in pathogens.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Ahmed Gaballa
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Wang Y, Dai H, Jin M, Wang J, Song Z, Liu Y, Chai W, Cheng L, Zhao N, Cui D, Zhao M. Light-driven biodegradation of chloramphenicol by photosensitized Shewanella oneidensis MR-1. BIORESOURCE TECHNOLOGY 2024; 413:131508. [PMID: 39307474 DOI: 10.1016/j.biortech.2024.131508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Efficient and sustainable degradation of chloramphenicol has piqued the interest of the scientific community. This study constructed a photosensitized biohybrid system using Shewanella oneidensis MR-1 and cadmium sulfide (CdS). This system could efficiently degrade chloramphenicol with robust stability. Inhibitor experiments and transcriptome analysis revealed that reduced nicotinamide adenine dinucleotide dehydrogenase, iron-sulfur cluster, menaquinone, cytochrome b561, cytochrome c, cytochrome P450, and formate dehydrogenase/hydrogenase are involved in direct electron transfer from S. oneidensis MR-1 to photogenerated holes of CdS. The S. oneidensis MR-1/CdS biohybrid alleviated chloramphenicol-induced physiological impairments, which can be attributed to the decreased levels of extracellular polymeric substances, malondialdehyde, and extracellular membrane permeability and the increased levels of superoxide dismutase and catalase activities. The GCN5-related N-acetyltransferase, alkene reductase, and carboxymuconolactone decarboxylase promoted the inactivation and further degradation of chloramphenicol. In summary, this study demonstrated the potential applications of the S. oneidensis MR-1/CdS biohybrid in the remediation of chloramphenicol contamination.
Collapse
Affiliation(s)
- Yongqi Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Haibing Dai
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Meitong Jin
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jueyu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ziheng Song
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingjie Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenqi Chai
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lu Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Na Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China.
| |
Collapse
|
6
|
Rahmat JN, Tham SM, Ong TL, Lim YK, Patwardhan MV, Nee Mani LR, Kamaraj R, Chan YH, Chong TW, Chiong E, Esuvaranathan K, Mahendran R. Glutathione-S-Transferase Theta 2 (GSTT2) Modulates the Response to Bacillus Calmette-Guérin Immunotherapy in Bladder Cancer Patients. Int J Mol Sci 2024; 25:8947. [PMID: 39201633 PMCID: PMC11354831 DOI: 10.3390/ijms25168947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Glutathione-S-transferases (GST) enzymes detoxify xenobiotics and are implicated in response to anticancer therapy. This study evaluated the association of GST theta 1 (GSTT1), GSTT2, and GSTT2B with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) response in non-muscle-invasive bladder cancer treatment. In vitro assessments of GSTT2 knockout (KO) effects were performed using cell lines and dendritic cells (DCs) from GSTT2KO mice. Deletion of GSTT2B, GSTT1, and single-nucleotide polymorphisms in the promoter region of GSTT2 was analysed in patients (n = 205) and healthy controls (n = 150). Silencing GSTT2 expression in MGH cells (GSTT2BFL/FL) resulted in increased BCG survival (p < 0.05) and decreased cellular reactive oxygen species. In our population, there are 24.2% with GSTT2BDel/Del and 24.5% with GSTT2BFL/FL. With ≤ 8 instillations of BCG therapy (n = 51), 12.5% of GSTT2BDel/Del and 53.8% of GSTT2BFL/FL patients had a recurrence (p = 0.041). With ≥9 instillations (n = 153), the disease recurred in 45.5% of GSTT2BDel/Del and 50% of GSTT2BFL/FL. GSTT2FL/FL patients had an increased likelihood of recurrence post-BCG therapy (HR 5.5 [1.87-16.69] p < 0.002). DCs from GSTT2KO mice produced three-fold more IL6 than wild-type DCs, indicating a robust inflammatory response. To summarise, GSTT2BDel/Del patients respond better to less BCG therapy and could be candidates for a reduced surveillance regimen.
Collapse
Affiliation(s)
- Juwita N. Rahmat
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Sin Mun Tham
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Ting Li Ong
- School of Engineering, Biomedical Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Yew Koon Lim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Mugdha Vijay Patwardhan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Lata Raman Nee Mani
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Revathi Kamaraj
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Tsung Wen Chong
- Department of Urology, Singapore General Hospital, Singapore 169608, Singapore;
- Division of Surgery & Surgical Oncology, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Edmund Chiong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
- Department of Urology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Kesavan Esuvaranathan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
- Department of Urology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.R.); (S.M.T.); (Y.K.L.); (M.V.P.); (L.R.N.M.); (R.K.); (K.E.)
| |
Collapse
|
7
|
Mao Y, Yang Y, Lin F, Chu H, Zhou L, Han J, Zhou J, Su X. Functional Analysis of Stress Resistance of Bacillus cereus SCL10 Strain Based on Whole-Genome Sequencing. Microorganisms 2024; 12:1168. [PMID: 38930550 PMCID: PMC11206075 DOI: 10.3390/microorganisms12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
A Gram-positive, rod-shaped, aerobic, motile, and spore-forming bacterium, designated SCL10, was isolated from Acaudina molpadioides exposure to Co-60 radiation. In this study, whole-genome sequencing was performed to identify the strain as Bacillus cereus and functional characterization, with a focus on stress resistance. The genome of the B. cereus SCL10 strain was sequenced and assembled, revealing a size of 4,979,182 bp and 5167 coding genes. The genes involved in biological functions were annotated by using the GO, COG, KEGG, NR, and Swiss-Prot databases. The results showed that genes related to alkyl hydroperoxide reductase (ahpC, ahpF), DNA-binding proteins from starved cells (dps), spore and biofilm formation (spoVG, spo0A, gerP), cold shock-like protein (cspC, cspE), ATP-dependent chaperone (clpB), and photolyase, small, acid-soluble spore protein (SASP) and DNA repair protein (recA, radD) could explain the stress resistance. These findings suggest that antioxidant activity, sporulation, biofilm formation, and DNA protection may be considered as the main resistance mechanisms under exposure to radiation in the B. cereus SCL10 strain.
Collapse
Affiliation(s)
- Yanzhen Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ye Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Fu Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Hanyu Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Lijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| |
Collapse
|
8
|
Ferrero-Bordera B, Bartel J, van Dijl JM, Becher D, Maaß S. From the outer space to the inner cell: deconvoluting the complexity of Bacillus subtilis disulfide stress responses by redox state and absolute abundance quantification of extracellular, membrane, and cytosolic proteins. Microbiol Spectr 2024; 12:e0261623. [PMID: 38358275 PMCID: PMC10986503 DOI: 10.1128/spectrum.02616-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding cellular mechanisms of stress management relies on omics data as a valuable resource. However, the lack of absolute quantitative data on protein abundances remains a significant limitation, particularly when comparing protein abundances across different cell compartments. In this study, we aimed to gain deeper insights into the proteomic responses of the Gram-positive model bacterium Bacillus subtilis to disulfide stress. We determined proteome-wide absolute abundances, focusing on different sub-cellular locations (cytosol and membrane) as well as the extracellular medium, and combined these data with redox state determination. To quantify secreted proteins in the culture medium, we developed a simple and straightforward protocol for the absolute quantification of extracellular proteins in bacteria. We concentrated extracellular proteins, which are highly diluted in the medium, using StrataClean beads along with a set of standard proteins to determine the extent of the concentration step. The resulting data set provides new insights into protein abundances in different sub-cellular compartments and the extracellular medium, along with a comprehensive proteome-wide redox state determination. Our study offers a quantitative understanding of disulfide stress management, protein production, and secretion in B. subtilis. IMPORTANCE Stress responses play a crucial role in bacterial survival and adaptation. The ability to quantitatively measure protein abundances and redox states in different cellular compartments and the extracellular environment is essential for understanding stress management mechanisms. In this study, we addressed the knowledge gap regarding absolute quantification of extracellular proteins and compared protein concentrations in various sub-cellular locations and in the extracellular medium under disulfide stress conditions. Our findings provide valuable insights into the protein production and secretion dynamics of B. subtilis, shedding light on its stress response strategies. Furthermore, the developed protocol for absolute quantification of extracellular proteins in bacteria presents a practical and efficient approach for future studies in the field. Overall, this research contributes to the quantitative understanding of stress management mechanisms and protein dynamics in B. subtilis, which can be used to enhance bacterial stress tolerance and protein-based biotechnological applications.
Collapse
Affiliation(s)
- Borja Ferrero-Bordera
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| |
Collapse
|
9
|
Wang K, Lu H, Zou M, Wang G, Zhao J, Huang X, Ren F, Hu H, Huang J, Min X. DegS protease regulates antioxidant capacity and adaptability to oxidative stress environment in Vibrio cholerae. Front Cell Infect Microbiol 2023; 13:1290508. [PMID: 38053530 PMCID: PMC10694293 DOI: 10.3389/fcimb.2023.1290508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Adaptation to oxidative stress is critical for survival of Vibrio cholerae in aquatic ecosystems and hosts. DegS activates the σE envelope stress response. We have previously revealed that DegS may be involved in regulating the oxidative stress response. In this study, we demonstrated that deletion of the degS gene attenuates the antioxidant capacity of V. cholerae. In addition, our results further revealed that the regulation of antioxidant capacity by DegS in V. cholerae could involve the cAMP-CRP complex, which regulates rpoS. XthA is an exonuclease that repairs oxidatively damaged cells and affects the bacterial antioxidant capacity. qRT-PCR showed that DegS, σE, cAMP, CRP, and RpoS positively regulate xthA gene transcription. XthA overexpression partially compensates for antioxidant deficiency in the degS mutant. These results suggest that DegS affects the antioxidant capacity of V.cholerae by regulating xthA expression via the cAMP-CRP-RpoS pathway. In a mouse intestinal colonization experiment, our data showed that V.cholerae degS, rpoE, and rpoS gene deletions were associated with significantly reduced resistance to oxidative stress and the ability to colonize the mouse intestine. In conclusion, these findings provide new insights into the regulation of antioxidant activity by V.cholerae DegS.
Collapse
Affiliation(s)
- Kaiying Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huifang Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mei Zou
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiajun Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoyu Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fangyu Ren
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huaqin Hu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
10
|
The Catalase KatA Contributes to Microaerophilic H2O2 Priming to Acquire an Improved Oxidative Stress Resistance in Staphylococcus aureus. Antioxidants (Basel) 2022; 11:antiox11091793. [PMID: 36139867 PMCID: PMC9495333 DOI: 10.3390/antiox11091793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus has to cope with oxidative stress during infections. In this study, S. aureus was found to be resistant to 100 mM H2O2 during aerobic growth. While KatA was essential for this high aerobic H2O2 resistance, the peroxiredoxin AhpC contributed to detoxification of 0.4 mM H2O2 in the absence of KatA. In addition, the peroxiredoxins AhpC, Tpx and Bcp were found to be required for detoxification of cumene hydroperoxide (CHP). The high H2O2 tolerance of aerobic S. aureus cells was associated with priming by endogenous H2O2 levels, which was supported by an oxidative shift of the bacillithiol redox potential to −291 mV compared to −310 mV in microaerophilic cells. In contrast, S. aureus could be primed by sub-lethal doses of 100 µM H2O2 during microaerophilic growth to acquire an improved resistance towards the otherwise lethal triggering stimulus of 10 mM H2O2. This microaerophilic priming was dependent on increased KatA activity, whereas aerobic cells showed constitutive high KatA activity. Thus, KatA contributes to the high H2O2 resistance of aerobic cells and to microaerophilic H2O2 priming in order to survive the subsequent lethal triggering doses of H2O2, allowing the adaptation of S. aureus under infections to different oxygen environments.
Collapse
|