1
|
Vetter VM, Demircan K, Homann J, Chillon TS, Mülleder M, Shomroni O, Steinhagen-Thiessen E, Ralser M, Lill CM, Bertram L, Schomburg L, Demuth I. Low blood levels of selenium, selenoprotein P and GPx3 are associated with accelerated biological aging: results from the Berlin Aging Study II (BASE-II). Clin Epigenetics 2025; 17:62. [PMID: 40275394 PMCID: PMC12023433 DOI: 10.1186/s13148-025-01863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Biological age reflects inter-individual differences in biological function and capacity beyond chronological age. DNA methylation age (DNAmA) and its deviation from chronological age, DNAmA acceleration (DNAmAA), which was calculated as residuals of leukocyte cell count adjusted linear regression of DNAmA on chronological age, were used to estimate biological age in this study. Low levels of serum selenium, selenoprotein P (SELENOP), and the selenocysteine-containing glutathione peroxidase 3 (GPx3) are associated with adverse health outcomes and selenium supplementation is discussed as an anti-aging intervention. METHODS In this study, we cross-sectionally analyzed 1568 older participants from the observational Berlin Aging Study II (mean age ± SD: 68.8 ± 3.7 years, 51% women). Serum selenium was measured by total reflection X-ray fluorescence (TXRF) spectroscopy and SELENOP was determined by sandwich ELISA. GPx3 was assessed as part of a proteomics dataset using liquid chromatography-mass spectrometry (LC-MS). The relationship between selenium biomarkers and epigenetic clock measures was analyzed using linear regression analyses. P values and 95% confidence intervals (not adjusted for multiple testing) are stated for each analysis. RESULTS Participants with deficient serum selenium levels (< 90 μg/L) had a higher rate of biological aging (DunedinPACE, β = - 0.02, SE = 0.01, 95% CI - 0.033 to - 0.004, p = 0.010, n = 865). This association remained statistically significant after adjustment for age, sex, BMI, smoking, and first four genetic principal components (β = - 0.02, SE = 0.01, 95% CI - 0.034 to - 0.004, p = 0.012, n = 757). Compared to the highest quartile, participants in the lowest quartile of SELENOP levels showed an accelerated biological aging rate (DunedinPACE, β = - 0.03, SE = 0.01, 95% CI - 0.051 to - 0.008, p = 0.007, n = 740, fully adjusted model). Similarly, after adjustment for confounders, accelerated biological age was found in participants within the lowest GPx3 quartile compared to participants in the fourth quartile (DunedinPACE, β = - 0.04, SE = 0.01, 95% CI - 0.06 to - 0.02, p = 0.001, n = 674 and GrimAge, β = - 0.98, SE = 0.32, 95% CI - 1.6 to - 0.4, p = 0.002, n = 608). Only the association with GPx3 remained statistically significant after multiple testing correction. CONCLUSION Our study suggests that low levels of selenium biomarkers are associated with accelerated biological aging measured through epigenetic clocks. This effect was not substantially changed after adjustment for known confounders.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Kamil Demircan
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Jan Homann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Thilo Samson Chillon
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Orr Shomroni
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Markus Ralser
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christina M Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lutz Schomburg
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
2
|
Shouman WA, Najmeddine S, Sinno L, Dib Nehme R, Ghawi A, Ziade JA, Altara R, Amin G, Booz GW, Zouein FA. Hepatokines and their role in cardiohepatic interactions in heart failure. Eur J Pharmacol 2025; 992:177356. [PMID: 39922419 PMCID: PMC11862882 DOI: 10.1016/j.ejphar.2025.177356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Heart failure is one of the leading causes of death and disease worldwide. It is a condition that affects multiple systems within the body. There is a large body of evidence supporting that the liver is a major organ involved in the pathogenesis of heart failure. Cardiac hepatopathy and cirrhotic cardiomyopathy are two conditions that are associated with poor clinical outcomes in patients with heart failure. Despite the extensive proposed explanations of the mechanisms entailing heart failure, there remains a gap in the role of proteins and metabolic regulators produced by hepatocytes and their effect on the development, progression, and prognosis of heart failure, including adverse cardiac remodeling, fibrosis, cardiac cachexia, and renal dysfunction associated with heart failure. The aim of this review is to identify the major hepatokines being studied (adropin, fetuin-A, fetuin-B, FGF-21, selenoprotein P and α1-microglobulin) as modulators of metabolic homeostasis and cardiac dysfunction in heart failure. Research suggests that these factors play a role in modulating oxidative stress, fibrosis, apoptosis, inflammatory responses, immune cell activation, mitochondrial dysfunction, and cellular migration. The exact role of each of these hepatokines is under on-going research and requires more investigations for future clinical use.
Collapse
Affiliation(s)
- Wael A Shouman
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Sarah Najmeddine
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Lilas Sinno
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Ryan Dib Nehme
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Alaa Ghawi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Joanna A Ziade
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Raffaele Altara
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, 14, Jackson, MS, USA; Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
3
|
De Bartolo A, Angelone T, Rocca C. Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging. Vascul Pharmacol 2025; 158:107462. [PMID: 39805379 DOI: 10.1016/j.vph.2025.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.e., chronic low-grade inflammation-inflammaging), oxidative stress, and mitochondrial dysfunction in aging vascular compartment. We focus on the interplay between these events, which contribute to generating a vicious cycle driving the progressive alterations in vascular structure and function during cardiovascular aging. We also discuss the primary role of senescent endothelial cells and vascular smooth muscle cells, and the potential link between vascular and myeloid cells, in impairing plaque stability and promoting the progression of atherosclerosis. The aim of this summary is to provide potential novel insights into targeting these processes for therapeutic benefit.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
4
|
Jujić A, Molvin J, Nilsson ED, Holm Isholth H, Dieden A, Korduner J, Zaghi A, Nezami Z, Bergmann A, Schomburg L, Magnusson M. Low Levels of Selenoprotein P Are Associated With Cognitive Impairment in Patients Hospitalized for Heart Failure. J Card Fail 2024; 30:1452-1461. [PMID: 38364966 DOI: 10.1016/j.cardfail.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Selenoprotein P (SELENOP) is a transporter for selenium and has been shown to protect selenium-status maintenance in the brain against deficiency and to support neuronal development, neurogenesis and neurocognitive function. Selenium deficiency has previously been associated with cognitive impairment in various populations, but no studies have been carried out in subjects with heart failure (HF). PURPOSE To explore whether SELENOP deficiency in subjects with acute HF is associated with cognitive impairment. METHODS Plasma SELENOP, as measured by an immunoassay analysis, is a well-validated marker of plasma selenium status and has the benefit of providing information on the bioavailable fraction of selenium to preferentially supplied cells equipped with receptors for SELENOP uptake. SELENOP was measured in 320 subjects hospitalized for HF. Of the subjects, 187 also underwent 4 cognitive tests assessing global cognitive function: Montreal Cognitive Assessment (MoCA); information processing (Symbol Digit Modalities Test [SDMT]); visual attention and task switching (Trailmaking Test A [TMT-A]); and executive speed (A Quick Test of Cognitive Speed [AQT] form and color). Appropriate cutoffs were used for each cognitive test to define cognitive impairment. Cross-sectional associations between SELENOP concentrations and cognitive impairment, as defined by each cognitive test, were explored using multivariable logistic models. Further, multivariable logistic models exploring associations between selenium deficiency, defined as the lowest quartile of SELENOP levels, and cognitive impairment, defined by each cognitive test, were carried out. RESULTS The 187 participants had a mean age of 73 (± 11.9) years; 31% were female and had a mean body mass index of 28.1 (± 5.6) kg/m2. Each 1 standard deviation increment in SELENOP concentrations was associated with lower odds of cognitive impairment, defined as a MoCA cut-off score < 23 (odds ratio [OR] 0.60; 95% CI 0.40-0.91; P = 0.017). Further, SELENOP concentrations in the lowest quartile (≤ 2.3 mg/L) were associated with cognitive impairment as measured by MoCA (OR 3.10; 95% CI 1.38-6.97; P = 0.006), SDMT (OR 2.26; 95% CI 1.10-4.67; P = 0.027) and TMT-A (OR 3.40; 95% CI 1.47-7.88; P = 0.004) but not by AQT form and color. CONCLUSIONS In subjects admitted for HF, higher SELENOP concentrations were associated with better performance on the MoCA test, reflecting global cognition, and SELENOP deficiency was associated with cognitive impairment as defined by 3 cognitive tests.
Collapse
Affiliation(s)
- Amra Jujić
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Lund University, Skane University Hospital, Malmö, Sweden
| | - John Molvin
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Lund University, Skane University Hospital, Malmö, Sweden
| | | | - Hannes Holm Isholth
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Lund University, Skane University Hospital, Malmö, Sweden
| | - Anna Dieden
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Biomedical Science, Malmö University, Malmö, Sweden; Biofilms Research Centre for Biointerfaces, Malmö University, Malmö, Sweden
| | - Johan Korduner
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Amir Zaghi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Zainu Nezami
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Lutz Schomburg
- The Institute for Experimental Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Cardiology, Lund University, Skane University Hospital, Malmö, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Hypertension in Africa Research Team (HART), North West University Potchefstroom, Potchefstroom, South Africa.
| |
Collapse
|
5
|
Herder C, Saito Y, Spagnuolo MC, Maalmi H, Shimizu M, Bönhof GJ, Suzuki K, Rathmann W, Peters A, Roden M, Ziegler D, Thorand B, Takamura T. Differential associations between selenoprotein P and distal sensorimotor polyneuropathy in people with and without diabetes: KORA F4/FF4 study. Free Radic Biol Med 2024; 223:87-95. [PMID: 39059514 DOI: 10.1016/j.freeradbiomed.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Oxidative stress is a risk factor for distal sensorimotor polyneuropathy (DSPN). Selenoprotein P is a protein with antioxidant properties but has not been investigated in the context of DSPN. This study aimed to assess the associations between selenoprotein P and DSPN in people without and with type 2 diabetes (T2D). METHODS Cross-sectional and prospective analyses were based on 1053 (including 217 with T2D) and 513 participants (including 79 with T2D), respectively, aged 61-82 years from the population-based KORA F4 survey. DSPN at baseline (KORA F4) and in the follow-up survey KORA FF4 was defined based on the Michigan Neuropathy Screening Instrument. Serum levels of full-length selenoprotein P were quantified by ELISA. Associations between selenoprotein P and prevalent or incident DSPN were estimated using logistic regression analysis adjusting for multiple confounders. RESULTS Selenoprotein P levels were not associated with prevalent DSPN in the total sample. However, there was a significant interaction by diabetes status. Higher levels of selenoprotein P were associated with lower odds of prevalent DSPN in individuals without T2D (fully adjusted model: OR 0.825 [95 % CI 0.682, 0.998], p = 0.0476), but not in those with T2D (OR [95 % CI] 1.098 [0.829, 1.454], p = 0.5132; pinteraction = 0.0488). Selenoprotein P levels were not associated with incident DSPN over a follow-up of 6.5 years. CONCLUSION In individuals without T2D from the older general population, lower selenoprotein P levels were associated with a higher prevalence of DSPN. Whether the antioxidant properties of selenoprotein P are responsible for the observed associations remains to be elucidated in future research.
Collapse
Affiliation(s)
- Christian Herder
- German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Maria C Spagnuolo
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Misaki Shimizu
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Keita Suzuki
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), Partner Neuherberg, 85764, München, Neuherberg, Germany; Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), Partner Neuherberg, 85764, München, Neuherberg, Germany; Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
6
|
Demircan K, Chillon TS, Bang J, Gladyshev VN, Schomburg L. Selenium, diabetes, and their intricate sex-specific relationship. Trends Endocrinol Metab 2024; 35:781-792. [PMID: 38599899 DOI: 10.1016/j.tem.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Selenium (Se) is an essential trace element, which is inserted as selenocysteine (Sec) into selenoproteins during biosynthesis, orchestrating their expression and activity. Se is associated with both beneficial and detrimental health effects; deficient supply or uncontrolled supplementation raises concerns. In particular, Se was associated with an increased incidence of type 2 diabetes (T2D) in a secondary analysis of a randomized controlled trial (RCT). In this review, we discuss the intricate relationship between Se and diabetes and the limitations of the available clinical and experimental studies. Recent evidence points to sexual dimorphism and an association of Se deficiency with gestational diabetes mellitus (GDM). We highlight the emerging evidence linking high Se status with improved prognosis in patients with T2D and lower risk of macrovascular complications.
Collapse
Affiliation(s)
- Kamil Demircan
- Institute for Experimental Endocrinology, Max Rubner Center, Charité University Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Max Rubner Center, Charité University Berlin, Germany
| | - Jeyoung Bang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Max Rubner Center, Charité University Berlin, Germany.
| |
Collapse
|
7
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|