1
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
2
|
Lee H, Bae J, Park KW, Kim M. Ethyl acetate fraction of oregano seed protects non-alcoholic fatty liver in high-fat diet-induced obese mice through modulation of Srebp-1c. Food Sci Nutr 2024; 12:2578-2587. [PMID: 38628197 PMCID: PMC11016382 DOI: 10.1002/fsn3.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 04/19/2024] Open
Abstract
Oregano (Origanum vulgare) seed is used as spices and is known to have anti-inflammatory, antibacterial, and antioxidant effects. The anti-fatty liver effects of oregano seed ethyl acetate (OSEA) were evaluated in high-fat diet (HFD)-induced obese mice. OSEA was orally administered with HFD for 10 weeks. The body weight, aspartate aminotransferase, alanine aminotransferase, cholesterol, triglyceride, and low-density lipoprotein levels in the HFD with 100 mg/kg of OSEA significantly decreased by approximately 1.21-, 1.44-, 2.12-, 1.12-, 1.05, and 1.59 times, respectively, while high-density lipoprotein levels increased by approximately 1.05 times compared to those in the HFD group (p < .05). In addition, the distribution of liver fat in the HFD with 100 mg/kg OSEA (OSEA 100) group decreased significantly (p < .05). Therefore, OSEA supplementation can ameliorate fatty liver disease and reduce the accumulation of triglycerides in adipose tissue. The expression of genes involved in liver fat accumulation, such as sterol regulatory element-binding protein-1c (Srebp-1c), fatty acid synthase (Fas), stearoyl-CoA desaturase-1 (Scd1), and acetyl-CoA carboxylase 1 (Acc1), significantly decreased in OSEA 100 by approximately 2.6-, 1.74-, 1.89-, and 1.56-times, respectively (p < .05). Therefore, OSEA may modify obesity and liver fat accumulation by regulating the expression of genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Hyun‐Jong Lee
- Department of Food and Nutrition, College of Health ScienceKangwon National UniversitySamcheokRepublic of Korea
| | - Ji‐Yun Bae
- Department of Food and Nutrition, College of Health ScienceKangwon National UniversitySamcheokRepublic of Korea
| | - Kye Won Park
- Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonRepublic of Korea
| | - Mi‐Ja Kim
- Department of Food and Nutrition, College of Health ScienceKangwon National UniversitySamcheokRepublic of Korea
| |
Collapse
|
3
|
El-Far AH, Mohamed HH, Elsabagh DA, Mohamed SA, Noreldin AE, Al Jaouni SK, Alsenosy AA. Eugenol and carvacrol attenuate brain D-galactose-induced aging-related oxidative alterations in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47436-47447. [PMID: 35182345 PMCID: PMC9232455 DOI: 10.1007/s11356-022-18984-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Aging represents the accumulation of progressive changes in a human being over time and can cover physical, psychological, and social changes. It is an oxidative stress-associated process that progresses with age. The antioxidant activity of either eugenol (EU) or carvacrol (CAR) for aging in rats induced by D-gal for 42 days was investigated in the current study using 10 and 20 mg of EU/kg/day/orally, while CAR was supplemented by 40 and 80 mg /kg/day/orally. Biochemical, mRNA expression, and histopathological assessments of brain samples evaluated the oxidative alterations induced by D-gal and the protective role of EU and CAR. Results showed that D-gal was causing oxidative alternation of the brain that was recognized via upregulation of p53 and p21 mRNA expression levels, as aging markers and Bax mRNA expression level, as an apoptotic marker. Also, the results observed alterations in the levels of biochemical markers as creatine phosphokinase (CPK) and triacylglycerol (TAG), besides, enhancement of brain antioxidant capacity. Finally, these results compared with the groups treated with EU and CAR to observe that the EU and CAR potentially attenuate these aging-related oxidative alterations in a dose-dependent manner. Finally, we can conclude that EU and CAR supplementations are considered promising natural protective compounds that could delay aging and maintain health.
Collapse
Affiliation(s)
- Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Hadeer H Mohamed
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Doaa A Elsabagh
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Shymaa A Mohamed
- Molecular Biology, Molecular biology unit, Medical Technology Center, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdelwahab A Alsenosy
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
4
|
Preclinical and Clinical Antioxidant Effects of Natural Compounds against Oxidative Stress-Induced Epigenetic Instability in Tumor Cells. Antioxidants (Basel) 2021; 10:antiox10101553. [PMID: 34679688 PMCID: PMC8533336 DOI: 10.3390/antiox10101553] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
ROS (reactive oxygen species) are produced via the noncomplete reduction in molecular oxygen in the mitochondria of higher organisms. The produced ROS are placed in various cell compartments, such as the mitochondria, cytoplasm, and endoplasmic reticulum. In general, there is an equilibrium between the synthesis of ROS and their reduction by the natural antioxidant defense system, called the redox system. Therefore, when this balance is upset, the excess ROS production can affect different macromolecules, such as proteins, lipids, nucleic acids, and sugars, which can lead to an electronic imbalance than oxidation of these macromolecules. Recently, it has also been shown that ROS produced at the cellular level can affect different signaling pathways that participate in the stimulation of transcription factors linked to cell proliferation and, consequently, to the carcinogenesis process. Indeed, ROS can activate the pathway of tyrosine kinase, MAP kinase, IKK, NF-KB, phosphoinositol 3 phosphate, and hypoxia-inducible factor (HIF). The activation of these signaling pathways directly contributes to the accelerated proliferation process and, as a result, the appearance of cancer. In addition, the use of antioxidants, especially natural ones, is now a major issue in the approach to cancer prevention. Some natural molecules, especially phytochemicals isolated from medicinal plants, have now shown interesting preclinical and clinical results.
Collapse
|
5
|
Mandlik DS, Mandlik SK. An Overview of Hepatocellular Carcinoma with Emphasis on Dietary Products and Herbal Remedies. Nutr Cancer 2021; 74:1549-1567. [PMID: 34396860 DOI: 10.1080/01635581.2021.1965630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common principal malignant tumor that accounts for ∼80% of cases of liver cancer across the world is hepatocellular carcinoma (HCC). It is a multifacetedillness that is caused by several risk factors and often progresses in the context of underlying cirrhosis. It is tremendously difficult and essential for the screening of novel therapeutic medications to establish HCC preclinical models that are equivalent to clinical diseases settings, i.e., representing the tumor microenvironment of HCC. In the progress of HCC, numerous molecular cascades have been supposed to play a part. Sorafenib is the only drug permitted by the US Food and Drug Administration for the treatment of HCC. Yet because of the increasing resistance to the drug and its toxicity, clinical treatment methods are not completely adequate. Newer treatment therapy options are essential for the management of HCC in patients. Natural compounds can be afforded by the patients with improved results with less toxicity and fewer side effects, among different methods of liver cancer treatment. The treatment and management of HCC with natural drugs and their phytoconstituents are connected to several paths that can prevent the occurrence and progress of HCC in several ways. The present review summarizes the etiology of HCC, molecular pathways, newer therapeutic approaches, natural dietary products, herbal plants and phytoconstituents for HCC treatment.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| | - Satish K Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| |
Collapse
|
6
|
Khan I, Bhardwaj M, Shukla S, Min SH, Choi DK, Bajpai VK, Huh YS, Kang SC. Carvacrol inhibits cytochrome P450 and protects against binge alcohol-induced liver toxicity. Food Chem Toxicol 2019; 131:110582. [DOI: 10.1016/j.fct.2019.110582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
|
7
|
Carvacrol Downregulates Lysyl Oxidase Expression and Ameliorates Oxidative Stress in the Liver of Rats with Carbon Tetrachloride-Induced Liver Fibrosis. Indian J Clin Biochem 2019; 35:458-464. [PMID: 33013016 DOI: 10.1007/s12291-019-00845-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
In the current study, we aimed to investigate the effect of carvacrol on the suppression of liver fibrosis progression through targeting lysyl oxidase (LOX) expression. The rats received carbon tetrachloride (CCl4) intraperitoneally and carvacrol orally for 10 weeks. Liver damage was evaluated by measuring the serum level of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase and hepatic oxidative stress parameters including total antioxidant capacity, total thiol group and total oxidant status spectrophotometry and malondialdehyde fluorometrically. Extracellular deposition of collagen was detected using Masson's trichrome standing. Furthermore the gene expression of lysyl oxidase homolog 2 (Loxl2) was analyzed using quantitative reverse transcription-polymerase chain reaction. And then the protein level of LOX was detected in liver tissue by western blot method. Carvacrol administration normalized serum biochemical parameters and improved oxidative stress status in liver homogenate of CCl4 treated rats. Collagen fiber bundles in interlobular spaces were decreased remarkably by carvacrol treatment. Also, carvacrol downregulated hepatic gene expression of Loxl2 and protein level of LOX. Our data clearly revealed that carvacrol suppresses progression of liver fibrosis development via attenuating of liver damage and oxidative stress status as well as via downregulation of hepatic gene expression of Loxl2 and protein level of LOX.
Collapse
|
8
|
Mohseni R, Karimi J, Tavilani H, Khodadadi I, Hashemnia M. Carvacrol ameliorates the progression of liver fibrosis through targeting of Hippo and TGF-β signaling pathways in carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Immunopharmacol Immunotoxicol 2019; 41:163-171. [DOI: 10.1080/08923973.2019.1566926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Roohollah Mohseni
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
- Student research committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Veterinary Medicine Faculty Razi University, Kermanshah, Iran
| |
Collapse
|
9
|
Matloub AA, Salama AH, Aglan HA, AbouSamra MM, ElSouda SSM, Ahmed HH. Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma. Drug Dev Ind Pharm 2017; 44:523-534. [PMID: 29115890 DOI: 10.1080/03639045.2017.1402922] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile salts containing vesicles (bilosomes) represent a portentous vesicular carrier that showed prosperous results in delivering active moieties in the gastrointestinal tract (GIT). In this study, bilosomes were exploited to deliver sulfated polysaccharide-protein complexes of Enteromorpha intestinalis (EHEM) and enhance its activity against hepatocellular carcinoma as well as resist harsh GIT conditions. Bilosomes were prepared using the sodium salt of three different bile acids (cholic, deoxycholic, taurodeoxycholic) and two different nonionic surfactants (Span 40 and 65). The effects of experimental variables were thoroughly studied to obtain an optimum formulation loading EHEM. The selected formulation (EH-Bilo-2) prepared with sodium cholate and Span 65 displayed nano-sized (181.1 ± 16.80 nm) spherical vesicles with reasonable entrapment efficiency (71.60 ± 0.25%) and controlled release properties; and thus was investigated as anti-hepatocarcinogenic candidate for in vivo studies. Treatment of hepatocellular carcinoma (HCC) bearing rats with EH-Bilo-2 experienced significant decrease in serum α-fetoprotein, endoglin, lipocalin-2, and heat shock protein 70 levels vs. the untreated counterparts. Furthermore, the photomicrographs of their liver tissue sections showed focal area of degenerated pleomorphic hepatocytes with fine fibrosis originating from the portal area. Thus, the optimized bilosomal formulation is a promising delegate for tackling hepatocellular carcinoma owing to its powerful anti-cancer and anti-angiogenic activity.
Collapse
Affiliation(s)
| | - Alaa Hamed Salama
- b Department of Pharmaceutical Technology , National Research Centre , Cairo , Egypt
| | | | | | | | | |
Collapse
|
10
|
Horng CT, Huang CW, Yang MY, Chen TH, Chang YC, Wang CJ. Nelumbo nucifera leaf extract treatment attenuated preneoplastic lesions and oxidative stress in the livers of diethylnitrosamine-treated rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:2327-2340. [PMID: 28804948 DOI: 10.1002/tox.22434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Lotus (Nelumbo nucifera Gaertn) possesses antioxidant, hepatoprotective, and anticancer potential. This study determined the protective role of aqueous extract from Nelumbo nucifera leaves (NLE) against N-diethylnitrosamine (DEN)-induced oxidative stress and hepatocellular carcinogenesis in a sample of Sprague-Dawley rats. NLE was fed orally to rats in which hepatic carcinoma was induced with DEN for 12 weeks. Five groups of 12 rats each were used for the study: Group I (control group) rats received distilled water; Group II rats were induced with DEN; Group III rats were induced with DEN and cotreated with 0.5% NLE; Group IV rats were induced with DEN and cotreated with 1.0% NLE; and Group V rats were induced with DEN and cotreated with 2.0% NLE. Clinical chemistry, organ weight, inflammatory marker, protein expression, enzyme, and antioxidant analyses were conducted. NLE administration to rats resulted in significantly decreased levels of serum alanine aminotransferase, aspartate aminotransferase, and albumin, which is indicative of hepatocellular damage, compared with the control group. DEN-induced oxidative stress was inhibited by NLE and this inhibition was paralleled by decreased lipid peroxides and increased glutathione transferase, superoxide dismutase, catalase, and glutathione peroxidase activity in liver tissues. The status of nonenzymatic antioxidants, such as reduced glutathione, was also found to be increased in NLE-administered rats. Furthermore, NLE decreased tumor size, hepatic Rac1, PKCα, and GSTπ expressions compared with the DEN-only group. Thus, supplementation of NLE reduced the adverse changes that occur because of liver cancer. These results prove that NLE protects against liver carcinogenesis induced because of treatment with DEN through blocking lipid peroxidation, hepatic cell damage, and enhancing the antioxidant defense system.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Department of Ophthalmology, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 802, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Chien-Wei Huang
- Division of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 802, Taiwan
| | - Mon-Yuan Yang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Tzu-Hsin Chen
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Yun-Ching Chang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402, Taiwan
| |
Collapse
|
11
|
Krishnan GS, Rajagopal V, Antony Joseph SR, Sebastian D, Savarimuthu I, Selvaraj KRN, Thobias AF. In vitro, In silico and In vivo Antitumor Activity of Crude Methanolic Extract of Tetilla dactyloidea (Carter, 1869) on DEN Induced HCC in a Rat Model. Biomed Pharmacother 2017; 95:795-807. [PMID: 28892791 DOI: 10.1016/j.biopha.2017.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
Tetilla dactyloidea (Carter, 1869) is a marine sponge classified under Demospongia and recent studies have demonstrated that active constituents of Demospongia class have exhibited several potential medical applications. However, no preliminary pharmacological studies have been reported so far. The present investigation was carried out to evaluate the zoo-chemical status, antioxidant potential and anticancer activity of Crude Methanolic Extract of Tetilla dactyloidea (CMETD). Hepatocellular Carcinoma (HCC) was induced in the liver of male Sprague Dawley (SD) rats by treating with diethylnitrosamine (DEN). Nodule incidence, body weight, liver marker enzymes, enzymatic and non-enzymatic antioxidant, phase I metabolizing and liver macromolecular damaging enzymes and immuno-histopathological changes were assessed in DEN and DEN+CMETD treated rats. Oral administration of CMETD at a dose of 400mg/kg body weight to DEN treated rats restored the above parameters to near normal levels compared to control. The biochemical results were consistent with histopathological observations suggesting marked hepatoprotective effect of CMETD in a dose dependent manner. The GCMS of CMETD analysis showed the presence of six compounds. In in silico analysis 9-Octadecenoic acid (Z)-, 2-hydroxy-1-(hydroxymethyl) ethyl ester ligand showed an effective binding energy of -7.1kcal/mol against Cox-2 receptor. The compounds showed desirable pharmacokinetic properties and significant molecular interactions with the HCC receptors. To conclude, our results clearly suggested that CMETD treatment prevented liver damage, protected the antioxidant defense system and possessed anti-carcinogenic potential in DEN induced hepatic carcinoma.
Collapse
Affiliation(s)
- Gowri Shankar Krishnan
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai - 600034, Tamil Nadu, India.
| | - Vidhya Rajagopal
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai - 600034, Tamil Nadu, India
| | | | - Divya Sebastian
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai - 600034, Tamil Nadu, India
| | | | - Karthick Raja Namasivayam Selvaraj
- Department of Biotechnology, Sathyabama University, Rajiv Gandhi Road, Jeppiaar Nagar, Solinganallur, Chennai - 600119, Tamil Nadu, India
| | - Albin Fleming Thobias
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai - 600034, Tamil Nadu, India
| |
Collapse
|
12
|
Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G, Heredia JB. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017; 22:E989. [PMID: 28613267 PMCID: PMC6152729 DOI: 10.3390/molecules22060989] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 02/07/2023] Open
Abstract
Essential oils of oregano are widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Nevertheless, recent investigations have demonstrated that these compounds are also potent antioxidant, anti-inflammatory, antidiabetic and cancer suppressor agents. These properties of oregano essential oils are of potential interest to the food, cosmetic and pharmaceutical industries. The aim of this manuscript is to review the latest evidence regarding essential oils of oregano and their beneficial effects on health.
Collapse
Affiliation(s)
- Nayely Leyva-López
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado km 5.5 Col. El Diez C.P., Culiacán, Sinaloa 80129, Mexico.
| | - Erick P Gutiérrez-Grijalva
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado km 5.5 Col. El Diez C.P., Culiacán, Sinaloa 80129, Mexico.
| | - Gabriela Vazquez-Olivo
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado km 5.5 Col. El Diez C.P., Culiacán, Sinaloa 80129, Mexico.
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado km 5.5 Col. El Diez C.P., Culiacán, Sinaloa 80129, Mexico.
| |
Collapse
|