1
|
Cheng J, Wang D, Geng M, Zheng Y, Cao Y, Liu S, Zhang J, Yang J, Wei X. Transcription factor networks drive perforin activity in the anti-bacterial immune response of tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109975. [PMID: 39427837 DOI: 10.1016/j.fsi.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Perforin, produced by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), is one of the effectors of cell-mediated cytotoxicity (CMC) in vertebrates, playing a paramount role in killing target cells. However, whether and how perforin is involved in adaptive immune responses in early vertebrates remains unclear. Using Nile tilapia (Oreochromis niloticus) as a model, we investigated the characteristics of perforin in early vertebrates. Oreochromis niloticus perforin (OnPRF) possesses 2 conserved functional domains, membrane attack complex/perforin (MACPF) and protein kinase C conserved region 2 (C2) domains, although they share low amino acid sequence similarity with other homologs. OnPRF was widely expressed in various immune tissues and could respond to lymphocyte activation and T-cell activation in vitro at both the transcriptional and protein levels, indicating that it may be involved in adaptive immune responses. Furthermore, after infection with Edwardsiella piscicida and Aeromonas hydrophila, the mRNA and protein levels of OnPRF were significantly up-regulated within the adaptive immune response period. Additionally, we revealed that many transcription factors were involved in the transcriptional regulation of OnPRF, including p65, c-Fos, c-Jun, STAT1 and STAT4, and there was a synergy among these transcription factors. Overall, these findings demonstrate the involvement of OnPRF in T-cell activation and adaptive immune response in tilapia, thus providing new evidence for comprehending the evolution of immune response in early vertebrates.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shurong Liu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Xu J, Yang N, Xie T, Yang G, Chang L, Yan D, Li T. Summary and comparison of the perforin in teleosts and mammals: A review. Scand J Immunol 2021; 94:e13047. [PMID: 33914954 DOI: 10.1111/sji.13047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Perforin, a pore-forming glycoprotein, has been demonstrated to play key roles in clearing virus-infected cells and tumour cells due to its ability of forming 'pores' on the cell membranes. Additionally, perforin is also found to be associated with human diseases such as tumours, virus infections, immune rejection and some autoimmune diseases. Until now, plenty of perforin genes have been identified in vertebrates, especially the mammals and teleost fish. Conversely, vertebrate homologue of perforin gene was not identified in the invertebrates. Although recently there have been several reviews focusing on perforin and granzymes in mammals, no one highlighted the current advances of perforin in the other vertebrates. Here, in addition to mammalian perforin, the structure, evolution, tissue distribution and function of perforin in bony fish are summarized, respectively, which will allow us to gain more insights into the perforin in lower animals and the evolution of this important pore-forming protein across vertebrates.
Collapse
Affiliation(s)
- Jiahui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Ning Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Ting Xie
- School of Agriculture, Ludong University, Yantai, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, China
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
3
|
Machat R, Pojezdal L, Piackova V, Faldyna M. Carp edema virus and immune response in carp (Cyprinus carpio): Current knowledge. JOURNAL OF FISH DISEASES 2021; 44:371-378. [PMID: 33460151 DOI: 10.1111/jfd.13335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The importance of world aquaculture production grows annually together with the increasing need to feed the global human population. Common carp (Cyprinus carpio) is one of the most important freshwater fish in global aquaculture. Unfortunately, carp production is affected by numerous diseases of which viral diseases are the most serious. Koi herpesvirus disease (KHVD), spring viraemia of carp (SVC), and during the last decades also koi sleepy disease (KSD) are currently the most harmful viral diseases of common carp. This review summarizes current knowledge about carp edema virus (CEV), aetiological agent causing KSD, and about the disease itself. Furthermore, the article is focused on summarizing the available information about the antiviral immune response of common carp, like production of class I interferons (IFNs), activation of cytotoxic cells, and production of antibodies by B cells focusing on anti-CEV immunity.
Collapse
Affiliation(s)
- Radek Machat
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lubomir Pojezdal
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Veronika Piackova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - Martin Faldyna
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
4
|
Kim JH, Macqueen DJ, Winton JR, Hansen JD, Park H, Devlin RH. Effect of growth rate on transcriptomic responses to immune stimulation in wild-type, domesticated, and GH-transgenic coho salmon. BMC Genomics 2019; 20:1024. [PMID: 31881844 PMCID: PMC6935076 DOI: 10.1186/s12864-019-6408-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcriptomic responses to immune stimulation were investigated in coho salmon (Oncorhynchus kisutch) with distinct growth phenotypes. Wild-type fish were contrasted to strains with accelerated growth arising either from selective breeding (i.e. domestication) or genetic modification. Such distinct routes to accelerated growth may have unique implications for relationships and/or trade-offs between growth and immune function. RESULTS RNA-Seq was performed on liver and head kidney in four 'growth response groups' injected with polyinosinic-polycytidylic acid (Poly I:C; viral mimic), peptidoglycan (PGN; bacterial mimic) or PBS (control). These groups were: 1) 'W': wild-type, 2) 'TF': growth hormone (GH) transgenic salmon with ~ 3-fold higher growth-rate than W, 3) 'TR': GH transgenic fish ration restricted to possess a growth-rate equal to W, and 4) 'D': domesticated non-transgenic fish showing growth-rate intermediate to W and TF. D and TF showed a higher similarity in transcriptomic response compared to W and TR. Several immune genes showed constitutive expression differences among growth response groups, including perforin 1 and C-C motif chemokine 19-like. Among the affected immune pathways, most were up-regulated by Poly I:C and PGN. In response to PGN, the c-type lectin receptor signalling pathway responded uniquely in TF and TR. In response to stimulation with both immune mimics, TR responded more strongly than other groups. Further, group-specific pathway responses to PGN stimulation included NOD-like receptor signalling in W and platelet activation in TR. TF consistently showed the most attenuated immune response relative to W, and more DEGs were apparent in TR than TF and D relative to W, suggesting that a non-satiating ration coupled with elevated circulating GH levels may cause TR to possess enhanced immune capabilities. Alternatively, TF and D salmon are prevented from acquiring the same level of immune response as TR due to direction of energy to high overall somatic growth. Further study of the effects of ration restriction in growth-modified fishes is warranted. CONCLUSIONS These findings improve our understanding of the pleiotropic effects of growth modification on the immunological responses of fish, revealing unique immune pathway responses depending on the mechanism of growth acceleration and nutritional availability.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.,Present Address: Korea Polar Research Institute, Unit of Polar Genomics, 26 Sondomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - James R Winton
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, 98115, USA
| | - John D Hansen
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, 98115, USA
| | - Hyun Park
- Divison of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.
| |
Collapse
|
5
|
Li T, Wang L, Zhang Y, Guo X, Chen X, Zhang F, Yang G, Wen W, Li H. Molecular characterization of three novel perforins in common carp (Cyprinus carpio L.) and their expression patterns during larvae ontogeny and in response to immune challenges. BMC Vet Res 2018; 14:299. [PMID: 30285759 PMCID: PMC6169072 DOI: 10.1186/s12917-018-1613-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Background In the host immune system, perforin is a cytotoxic effector molecule that eliminate virus-infected and malignant cells. Moreover, some recent studies also imply the involvement of perforin in antibacterial immunity. Common carp (Cyprinus carpio L.), one of the most economically important fish species in China, has a high susceptibility to viruses and bacteria. Thus far, in common carp, no data are available regarding the identification and immunologic function of the perforin. Results In the present study, the cDNA and genomic DNA sequences of three perforin isoform genes were cloned and characterized in common carp, named CcPRF1, CcPRF2 and CcPRF3. Amino acid sequences of the three CcPRFs were quite different, with identities ranged from 37.3 to 39.5%. Phylogenetic analysis showed that three CcPRFs, each in a separate sub-branch, possessed closer evolutionary relationship with other teleost perforins, especially with cyprinid fishes, than higher vertebrates. Expression analysis revealed that each CcPRF gene was differentially expressed in all of the nine tested tissues. During larvae ontogeny, each CcPRF displayed a distinct expression pattern, while with a common expression peak at 22 days post hatching (dph). Moreover, in vivo or in vitro, after stimulation with polyI:C, LPS and Aeromonas hydrophila, each CcPRF was induced significantly, with differential expression dynamics. Conclusions Our findings suggest that perforin might play significant roles in larval immune system and in the immune defense of common carp against viral and bacterial pathogens. Meantime, the differential expression dynamics seem to imply possible different cellular locations or functional differences across various CcPRF isoforms. Electronic supplementary material The online version of this article (10.1186/s12917-018-1613-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yonghuan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xinyi Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xinze Chen
- National Life Science and Technology Training Base, Nanjing Agricultural University, Nanjing, 210000, China
| | - Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wujun Wen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
6
|
Nakanishi T, Shibasaki Y, Matsuura Y. T Cells in Fish. BIOLOGY 2015; 4:640-63. [PMID: 26426066 PMCID: PMC4690012 DOI: 10.3390/biology4040640] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/26/2022]
Abstract
Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4+ and CD8α+ T cells in allograft rejection and graft-versus-host reaction (GVHR) has been demonstrated using monoclonal antibodies. Conservation of CD4+ helper T cell functions among teleost fishes has been suggested in a number studies employing mixed leukocyte culture (MLC) and hapten/carrier effect. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ginbuna and rainbow trout. Furthermore, the important role of cell-mediated immunity rather than humoral immunity has been reported in the protection against intracellular bacterial infection. Recently, the direct antibacterial activity of CD8α+, CD4+ T-cells and sIgM+ cells in fish has been reported. In this review, we summarize the recent progress in T cell research focusing on the tissue distribution and function of fish T cells.
Collapse
Affiliation(s)
- Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Yasuhiro Shibasaki
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Yuta Matsuura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
7
|
Matsuura Y, Yabu T, Shiba H, Moritomo T, Nakanishi T. Identification of a novel fish granzyme involved in cell-mediated immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:499-507. [PMID: 24968079 DOI: 10.1016/j.dci.2014.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
Granzymes (Gzms) are serine proteases released from cytoplasmic granules within cytotoxic T lymphocytes and natural killer (NK) cells. Gzms induce apoptosis within virus-infected and transformed cells. In fish as well as mammals, Gzms appear to play a major role in inducing target cell death. However, information on the function of fish Gzms is limited, although Gzm-like genes have been reported in several species. We identified and characterized a fish Gzm (termed gcGzm) in ginbuna crucian carp, Carassius auratus langsdorfii. The primary structure of gcGzm resembled mammalian GzmB, and gcGzm clustered with mammalian GzmB by phylogenetic tree analysis. gcGzm was secreted from HEK293T cells transfected with gcgzm cDNA and was predominantly expressed in CD8(+) T cells, as in mammals. Expression of gcgzm mRNA was greatly enhanced by allo-sensitization and infection with the intracellular pathogen Edwardsiella tarda, indicating that gcGzm is involved in cell-mediated immunity. However, its enzymatic activity was different from mammalian Gzms because gcGzm did not cleave the known substrates for mammalian Gzms. Thus we conclude that the newly discovered gcGzm is a novel secretory serine protease involved in cell-mediated immunity in fish, with similar structure to human GzmB but different substrate specificity.
Collapse
Affiliation(s)
- Yuta Matsuura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takeshi Yabu
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Hajime Shiba
- Department of Applied Biological Science, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
8
|
Munang’andu HM, Fredriksen BN, Mutoloki S, Dalmo RA, Evensen Ø. The kinetics of CD4+ and CD8+ T-cell gene expression correlate with protection in Atlantic salmon (Salmo salar L) vaccinated against infectious pancreatic necrosis. Vaccine 2013; 31:1956-63. [DOI: 10.1016/j.vaccine.2013.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
|
9
|
Nakanishi T, Toda H, Shibasaki Y, Somamoto T. Cytotoxic T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1317-1323. [PMID: 21530578 DOI: 10.1016/j.dci.2011.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/11/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
The presence of antigen-specific cytotoxic T cells has been suggested in a number of in vivo and in vitro studies in fish. Acute allograft rejection with an accelerated response on second-set grafts and the presence of graft-versus-host reaction (GVHR) has been reported in teleost. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ex vivo studies in ginbuna and rainbow trout. In addition, alloantigen-specific cytotoxic T cell clones have been produced in cultures initiated with peripheral blood leukocytes (PBL) from an alloantigen-immunized channel catfish. Over the last decade several fish genomes have been sequenced and genetic information is rapidly accumulating. Thanks to these genome data bases and EST analysis, mRNA expression of T cell surface marker genes in alloantigen- or virus-specific effector cells has been reported in some fish species, e.g. TCR α or β and CD8α in ginbuna and rainbow trout, and TCR α, β or γ in channel catfish. These findings suggest the presence of CD8(+) cytotoxic T lymphocyte (CTL) in fish similar to those of higher vertebrates. Recently, monoclonal antibodies against CD8α and CD4 antigens have been produced in some fish species. Investigation on the characteristics of CTL and cell-mediated immune mechanisms is now possible at defined T cell subsets, although identification of T cell subset is limited in a few fish species at present. In this review, we describe the recent progress in this field focusing on cells involved in antigen specific cytotoxicity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- Carps/genetics
- Carps/immunology
- Cytotoxicity, Immunologic
- Gene Expression/immunology
- Genomics
- Ictaluridae/genetics
- Ictaluridae/immunology
- Immunity, Cellular
- Isoantigens/genetics
- Isoantigens/immunology
- Oncorhynchus mykiss/genetics
- Oncorhynchus mykiss/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Virus Diseases/immunology
- Virus Diseases/virology
- Viruses/immunology
Collapse
Affiliation(s)
- Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | | | | | | |
Collapse
|
10
|
Haile Y, Simmen KC, Pasichnyk D, Touret N, Simmen T, Lu JQ, Bleackley RC, Giuliani F. Granule-derived granzyme B mediates the vulnerability of human neurons to T cell-induced neurotoxicity. THE JOURNAL OF IMMUNOLOGY 2011; 187:4861-72. [PMID: 21964027 DOI: 10.4049/jimmunol.1100943] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is considered an autoimmune disease of the CNS and is characterized by inflammatory cells infiltrating the CNS and inducing demyelination, axonal loss, and neuronal death. Recent evidence strongly suggests that axonal and neuronal degeneration underlie the progression of permanent disability in MS. In this study, we report that human neurons are selectively susceptible to the serine-protease granzyme B (GrB) isolated from cytotoxic T cell granules. In vitro, purified human GrB induced neuronal death to the same extent as the whole activated T cell population. On the contrary, activated T cells isolated from GrB knockout mice failed to induce neuronal injury. We found that following internalization through various parts of neurons, GrB accumulated in the neuronal soma. Within the cell body, GrB diffused out of endosomes possibly through a perforin-independent mechanism and induced subsequent activation of caspases and cleavage of α-tubulin. Inhibition of caspase-3, a well-known substrate for GrB, significantly reduced GrB-mediated neurotoxicity. We demonstrated that treatment of neurons with mannose-6-phosphate prevented GrB entry and inhibited GrB-mediated neuronal death, suggesting mannose-6-phosphate receptor-dependent endocytosis. Together, our data unveil a novel mechanism by which GrB induces selective neuronal injury and suggest potential new targets for the treatment of inflammatory-mediated neurodegeneration in diseases such as MS.
Collapse
Affiliation(s)
- Yohannes Haile
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ordás MC, Cuesta A, Mercado L, Bols NC, Tafalla C. Viral hemorrhagic septicaemia virus (VHSV) up-regulates the cytotoxic activity and the perforin/granzyme pathway in the rainbow trout RTS11 cell line. FISH & SHELLFISH IMMUNOLOGY 2011; 31:252-259. [PMID: 21642001 DOI: 10.1016/j.fsi.2011.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
A survey of immune-relevant genes that might be up-regulated in response to viral hemorrhagic septicaemia virus (VHSV) in the rainbow trout monocyte-macrophage cell line, RTS11, unexpectedly revealed an increased expression of perforin (PRF) and granzyme (GRZ) genes, which represent components of the major cytotoxic pathway. The natural killer-enhancing factor (NKEF), also known to modulate cytotoxic activity, was up-regulated at the gene but strikingly down-regulated at protein level. The expression of these genes was not affected in head kidney leukocytes (HKLs) infected with VHSV, leading us to evaluate the potential cytotoxic activity of RTS11 and HKLs. For the first time, the cytotoxic activity of RTS11 against xenogeneic targets has been demonstrated, although this was modest relative to HKLs. Yet the activity in RTS11 was significantly increased by VHSV, as in HKLs. This cytotoxic activity elicited by viral infection appeared to require viral gene expression because inactivated VHSV failed to increase RTS11 cytotoxic activity. As for other immune functions, RTS11 cells provide a model for further studying cytotoxic activities of fish monocyte-macrophages.
Collapse
Affiliation(s)
- M C Ordás
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos 28130, Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Toda H, Araki K, Moritomo T, Nakanishi T. Perforin-dependent cytotoxic mechanism in killing by CD8 positive T cells in ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:88-93. [PMID: 20813128 DOI: 10.1016/j.dci.2010.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 05/08/2023]
Abstract
T cell-mediated cytotoxicity occurs via pathways based on perforin or Fas mechanisms. Perforin is a protein present in the cytoplasmic granules of CD8(+) cytotoxic T lymphocytes and is secreted to form pores on target cell membranes. In fish, although the involvement of perforin in cytotoxicity have been suggested for several species, perforin-mediated cytotoxicity of CD8α(+) lymphocyte in conjunction with expression of the perforin gene has not been reported. In order to investigate the killing mechanism of CD8α(+) lymphocytes by perforin-mediated pathway in fish, we measured apoptosis of target cells triggered by CD8α(+) lymphocytes, performed cytotoxic assays in the presence or absence of perforin inhibitor; concanamycin A and EGTA, and analysed the expression of perforin1, perforin2 and perforin3 isotypic genes in ginbuna crucian carp. In the present study, we found that CTLs attached with target cells. CTL should have direct contact with target cells to kill them. Approximately 50% of target cells were positive for annexin V after co-cultured with CD8α(+) lymphocytes, indicating the induction of apoptotic cell death. Concanamycin A, which induces depolymerization of perforin resulting in lytic function, suppressed the cytotoxicity of CD8α(+) cells in a dose-dependent manner. In addition, cytotoxicity mediated by CD8α(+) lymphocytes were significantly suppressed by the addition of the Ca(2+)-chelating agents EGTA or EGTA-Mg(2+), and the addition of Ca(2+) restored the killing mechanism of target cells. We further found enhanced expression of perforin1 but not perforin2 or perforin3 in CTLs from allo-sensitized fish. The present study has demonstrated that ginbuna CTLs kill target cells through perforin-mediated pathway, suggesting that perforin-mediated pathway is conserved throughout vertebrate.
Collapse
Affiliation(s)
- Hideaki Toda
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | | | | | | |
Collapse
|
13
|
|
14
|
Panagos PG, Dobrinski KP, Chen X, Grant AW, Traver D, Djeu JY, Wei S, Yoder JA. Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenetics 2006; 58:31-40. [PMID: 16467987 DOI: 10.1007/s00251-005-0064-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/25/2005] [Indexed: 12/11/2022]
Abstract
The identification of C-type lectin (Group V) natural killer (NK) cell receptors in bony fish has remained elusive. Analyses of the Fugu rubripes genome database failed to identify Group V C-type lectin domains (Zelensky and Gready, BMC Genomics 5:51, 2004) suggesting that bony fish, in general, may lack such receptors. Numerous Group II C-type lectin receptors, which are structurally similar to Group V (NK) receptors, have been characterized in bony fish. By searching the zebrafish genome database we have identified a multi-gene family of Group II immune-related, lectin-like receptors (illrs) whose members possess inhibiting and/or activating signaling motifs typical of Group V NK receptors. Illr genes are differentially expressed in the myeloid and lymphoid lineages, suggesting that they may play important roles in the immune functions of multiple hematopoietic cell lineages.
Collapse
Affiliation(s)
- Patoula G Panagos
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | | | | | | | | | | | | | | |
Collapse
|