1
|
Jia J, Nie H. Integrated microRNA study and pathological analysis provides new insights into the immune response of Ruditapes philippinarum under Vibrio anguillarum challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105270. [PMID: 39306216 DOI: 10.1016/j.dci.2024.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Manila clam (Ruditapes philippenarum) is an important shellfish aquaculture product. The large-scale breeding of clams is often affected by V. anguillarum and causes large-scale death. However, the pathogenesis, immune response and metabolic pathway of V. anguillarum are still unclear. In this study, we found that the bacterial load in the hepatopancreas of R. philippinarum peaked at 48 h after V. anguillarum infection, and then gradually decreased, while the activity of lysozyme reached the peak at 12 h. Tissue section observation reveals that the infected hepatopancreas cells lost normal structure or necrosis. Additionally, six small RNA libraries were constructed using hepatopancreas of clams. A total of 15 differentially expressed (DE) microRNA (miRNA) were identified at 48 h after V. anguillarum infection, including 8 upregulated and 7 downregulated miRNAs. GO and KEGG enrichment results indicated the prediction of 48 known miRNAs and 127 new miRNAs, with functional annotation suggests that endocytosis pathway and bacterial recognition proteins may play key roles in immune response. The sequencing results were basically consistent with the qRT-PCR validation, indicating the accuracy of the data. This study provides a new idea to explore the immune regulation mechanism of shellfish after V. anguillarum infection, which brings important reference significance for modern immunological research.
Collapse
Affiliation(s)
- Jianxin Jia
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Chen Y, Wu X, Lai J, Yan B, Gong Q. Molecular mechanisms of physiological change under acute total dissolved gas supersaturation stress in yellow catfish (Pelteobagrus fulvidraco). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97911-97924. [PMID: 37603244 DOI: 10.1007/s11356-023-29157-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
During the dam discharging period, the strong aeration of high-speed water leads to the supersaturation of total dissolved gas (TDG) in the downstream water, which causes gas bubble disease (GBD) in fish and threatens their survival. TDG supersaturation has now become an ecological and environmental issue of global concern; however, the molecular mechanism underlying the physiological effect of TDG supersaturation on fish is poorly known. Here, we comprehensively investigated the effect of TDG supersaturation on Pelteobagrus fulvidraco at the histopathological, biochemical, transcriptomic, and metabolomic levels. After exposure to 116% TDG, P. fulvidraco exhibited classic GBD symptoms and pathological changes in gills. The level of superoxide dismutase was highly significantly decreased. Transcriptomic results revealed that heat shock proteins (HSPs) and a large number of genes involved in immunity were increased by TDG stress. A key environmental sensor PI3K/Akt/mTOR pathway was significantly stimulated for defence against stress. Integrated transcriptomic and metabolomic analyses revealed that key metabolites and genes were upregulated in the triacylglycerol synthesis pathway and that amino acid levels decreased, which might be associated with TDG supersaturation stress. The present study demonstrated that TDG supersaturation could cause severe physiological damage in fish. HSP genes, immune functions, and energy metabolic pathways were enhanced to counteract the adverse effects.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Boqin Yan
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
| |
Collapse
|
3
|
Jahan K, Nie H, Yan X. Revealing the potential regulatory relationship between HSP70, HSP90 and HSF genes under temperature stress. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108607. [PMID: 36758653 DOI: 10.1016/j.fsi.2023.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Heat Shock Protein (HSPs) gene family members play fundamental roles in different environmental stress tolerances, protect the structure and function of cells, and perform a significant task in cellular homeostasis. In this study, we conducted a genome-wide identification, evolutionary relationship analysis and gene expression analysis of the HSP70, HSP90, and HSF gene families in Ruditapes philippinarum. We identified 83 RpHSP70, 6 RpHSP90, and 3 RpHSF genes in R. philippinarum. The structural characteristics, chromosomal localization, and the gene structure map were constructed to reveal the characteristics of protein structures. Furthermore, the expression profiling of transcriptome data showed the expression pattern of HSP70, HSP90 and HSF genes in Manila clam from different populations, and under high and low temperature stress. In addition, we performed protein-protein interaction network analysis between HSP70, HSP90, and HSF gene family which enabled us to recognize the regulatory relationship between the two HSP gene families and the HSF gene family. Furthermore, the predicted sub-cellular location revealed a diversified subcellular distribution of HSP70, HSP90, and HSF proteins, which may be directly or indirectly associated with functional diversification under heat stress condition.
Collapse
Affiliation(s)
- Kifat Jahan
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023, Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023, Dalian, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023, Dalian, China
| |
Collapse
|
4
|
Yin Z, Nie H, Jiang K, Yan X. Molecular Mechanisms Underlying Vibrio Tolerance in Ruditapes philippinarum Revealed by Comparative Transcriptome Profiling. Front Immunol 2022; 13:879337. [PMID: 35615362 PMCID: PMC9125321 DOI: 10.3389/fimmu.2022.879337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
The clam Ruditapes philippinarum is an important species in the marine aquaculture industry in China. However, in recent years, the aquaculture of R. philippinarum has been negatively impacted by various bacterial pathogens. In this study, the transcriptome libraries of R. philippinarum showing different levels of resistance to challenge with Vibrio anguillarum were constructed and RNA-seq was performed using the Illumina sequencing platform. Host immune factors were identified that responded to V. anguillarum infection, including C-type lectin domain, glutathione S-transferase 9, lysozyme, methyltransferase FkbM domain, heat shock 70 kDa protein, Ras-like GTP-binding protein RHO, C1q, F-box and BTB/POZ domain protein zf-C2H2. Ten genes were selected and verified by RT-qPCR, and nine of the gene expression results were consistent with those of RNA-seq. The lectin gene in the phagosome pathway was expressed at a significantly higher level after V. anguillarum infection, which might indicate the role of lectin in the immune response to V. anguillarum. Comparing the results from R. philippinarum resistant and nonresistant to V. anguillarum increases our understanding of the resistant genes and key pathways related to Vibrio challenge in this species. The results obtained here provide a reference for future immunological research focusing on the response of R. philippinarum to V. anguillarum infection.
Collapse
Affiliation(s)
- Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
5
|
Gao Z, Yao L, Pan L. Gene expression and functional analysis of different heat shock protein (HSPs) in Ruditapes philippinarum under BaP stress. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109194. [PMID: 34619354 DOI: 10.1016/j.cbpc.2021.109194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) are a class of highly conserved proteins which can protect cells against various types of stress. However, little information on the mechanism involved in the organic contaminants stress response of HSPs is available, especially in marine invertebrates. The present study was conducted to evaluate the responses of HSPs in clams (Ruditapes philippinarum) under Benzo[a] pyrene (BaP) exposure. The clams were exposed to BaP (concentrations: 0, 0.1, 1, 10 μg/L) for 15 days. 6 HSPs mRNA were classified, and the results of tissue distribution indicated that 4 HSPs gene expressed most in the digestive glands. The transcription level of 6 HSPs (HSP22-1, HSP22-2, HSP40A, HSP60, HSP70, HSP90) genes and the aryl hydrocarbon receptor signaling pathway-related genes, and detoxification system-related enzymes activities were analyzed at 0, 1, 3, 6, 10 and 15 days. The activities of phase II detoxification metabolic enzymes and signaling pathway related genes in clams were severely affected by BaP stress and presented significant difference. Our result suggested that HSPs were produced in the presence of BaP and participated in the process of detoxification metabolism to a certain extent. Additionally, the transcription of HSP40A gene may be used as a potential biomarker of BaP exposure due to its evident concentration- and time-dependent expression pattern. Overall, the study investigated the classification of HSPs in R. philippinarum, provided information about the expression profiles of various HSPs after BaP exposure and broadened the understanding mechanism of HSPs in detoxification defense system under PAHs stress in mollusks.
Collapse
Affiliation(s)
- Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Linlin Yao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
6
|
Wang D, Liu B. Transcriptomic analysis reveals the immune changes associated with reproduction in the clam Meretrix petechialis. FISH & SHELLFISH IMMUNOLOGY 2021; 108:24-31. [PMID: 33253907 DOI: 10.1016/j.fsi.2020.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Substantial mortality and economic losses in marine mollusk culture has drawn considerable attention in recent years. The changes in immune status and environmental stress are thought to be the main causes of shellfish summer mortality. The reproduction and immune defense are both physiologically demanding processes, therefore, the immune status of mollusk is likely to be affected by reproduction during breeding. In present study, we performed transcriptome and gene expression analyses in the clam Meretrix petechialis pre-/post-spawning. DEGs enrichment analysis revealed important immune signaling pathways and key genes changed after spawning. Further analysis showed females up-regulated genes involved in apoptosis, TLR signal pathway and heat shock, whereas males down-regulated complement-related genes after spawning. Additionally, both genders of clams up-regulated its immune response level to against Vibrio infection after spawning revealed by the changes of four immune-related DEGs. The up-regulation of two marker genes at the transcription and protein levels further confirmed that pathogen reinforced the expression differences of immune-related genes between the two groups. Our study provides a new insight into the understanding of molecular mechanisms underlying reproduction influenced immune differences in M. petechialis.
Collapse
Affiliation(s)
- Di Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Zhang C, Lu K, Wang J, Qian Q, Yuan X, Pu C. Molecular cloning, expression HSP70 and its response to bacterial challenge and heat stress in Microptenus salmoides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2389-2402. [PMID: 33029752 DOI: 10.1007/s10695-020-00883-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
The gene encoding HSP70 was isolated from Microptenus salmoides by homologous cloning and rapid amplification of cDNA ends (RACE). The HSP70 transcripts were 2116 bp long and contained 1953 open reading frames encoding proteins of 650 amino acids with a molecular mass of 71.2 kDa and theoretical isoelectric point of 5.22. The qRT-PCR analysis showed that the HSP70 gene was differentially expressed in various tissues under normal conditions, and the highest HSP70 level was observed in the spleen and the lowest levels in the muscle and heart. The clear time-dependent expression level of HSP70 was observed after bacterial challenge and heat stress. A significant increase in HSP70 expression level was detected and reached a maximum at 3 h and 6 h in liver, spleens and gill tissues after Aeromonas hydrophila infection and heat stress, respectively (P < 0.05). As time progressed, the expression of HSP70 transcript was downregulated and mostly dropped back to the original level at 48 h. The concentration of cortisol, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased as the time of stress progressed, with the highest level found on 3 h and later declined rapidly and reached to the control levels at the 48 h. Those results suggested that HSP70 was involved in the immune response to bacterial challenge and heat stress. The cloning and expression analysis of the HSP70 provide theoretical basis to further study the mechanism of anti-adverseness in Microptenus salmoides.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Kangle Lu
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Junhui Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Qi Qian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Xiaoyu Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Changchang Pu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| |
Collapse
|
8
|
López-Carvallo JA, Mazón-Suástegui JM, Hernández-Oñate MÁ, Tovar-Ramírez D, Abasolo-Pacheco F, Morelos-Castro RM, Arcos-Ortega GF. Transcriptome analysis of Catarina scallop (Argopecten ventricosus) juveniles treated with highly-diluted immunomodulatory compounds reveals activation of non-self-recognition system. PLoS One 2020; 15:e0233064. [PMID: 32407349 PMCID: PMC7224555 DOI: 10.1371/journal.pone.0233064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Marine bivalve hatchery productivity is continuously challenged by apparition and propagation of new diseases, mainly those related to vibriosis. Disinfectants and antibiotics are frequently overused to prevent pathogen presence, generating a potential negative impact on the environment. Recently, the use of highly diluted compounds with immunostimulant properties in marine organisms has been trailed successfully to activate the self-protection mechanisms of marine bivalves. Despite their potential as immunostimulants, little is known about their way of action. To understand their effect, a comparative transcriptomic analysis was performed with Argopecten ventricosus juveniles. The experimental design consisted of four treatments formulated from pathogenic Vibrio lysates at two dilutions: [(T1) Vibrio parahaemolyticus and Vibrio alginolyticus 1D; (T2) V. parahaemolyticus and V. alginolyticus 7C]; minerals [(T3) PhA+SiT 7C], scorpion venom [(T4) ViT 31C]; and one control (C1) hydro-alcoholic solution (ethanol 1%). The RNA sequencing (RNAseq) analysis showed a higher modulation of differentially expressed genes (DEG) in mantle tissue compared to gill tissue. The scallops that showed a higher number of DEG related to immune response in mantle tissue corresponded to T1 (V. parahaemolyticus and V. alginolyticus lysate) and T3 (Silicea terra® - Phosphoric acid®). The transcriptome analysis allowed understanding some interactions between A. ventricosus juveniles and highly-diluted treatments.
Collapse
Affiliation(s)
- Jesús Antonio López-Carvallo
- Laboratorio Experimental de Cultivo de Moluscos, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | - José Manuel Mazón-Suástegui
- Laboratorio Experimental de Cultivo de Moluscos, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | - Miguel Ángel Hernández-Oñate
- CONACyT, Centro de Investigación en Alimentación y Desarrollo A.C, Hermosillo, Sonora, México
- * E-mail: (GFAO); (MAHO)
| | - Dariel Tovar-Ramírez
- Laboratorio de Fisiología Comparada y Genómica Funcional, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | - Fernando Abasolo-Pacheco
- Facultad de Ciencias Agrarias, Universidad Técnica Estatal de Quevedo, Quevedo, Los Ríos, Ecuador
| | - Rosa María Morelos-Castro
- Laboratorio de Imunogenómica Marina, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
| | - Guadalupe Fabiola Arcos-Ortega
- Laboratorio de Imunogenómica Marina, Centro de Investigaciones Biológicas del Noroeste, La Paz, México
- * E-mail: (GFAO); (MAHO)
| |
Collapse
|
9
|
Fang C, Bo J, Zheng R, Hong F, Kuang W, Jiang Y, Chen J, Zhang Y, Segner H. Biomonitoring of aromatic hydrocarbons in clam Meretrix meretrix from an emerging urbanization area, and implications for human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110271. [PMID: 32044605 DOI: 10.1016/j.ecoenv.2020.110271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 05/24/2023]
Abstract
Pollution with total petroleum hydrocarbons (TPHs) is a global concern and particularly in coastal environments. Polycyclic aromatic hydrocarbons (PAHs) are regarded as the most toxic components of TPHs and they can also be derived from other sources. Fangcheng Port is considered as a representative emerging coastal city in China, but the status, sources, and hazards to organisms and humans with respect to contamination with PAHs and TPHs are unknown in the coastal regions of this area. Therefore, in this study, we cloned cytochrome P450 family genes (CYP1A1, CYP3A, and CYP4) and heat shock protein 70 gene (HSP70) in the clam Meretrix meretrix as well as optimizing the method for measuring the 7-ethoxyresorufin O-deethylase activity. These molecular indicators and four specific physiological indexes were found to be appropriate biomarkers for indicating the harmful effects of PAHs and TPHs on clams after exposure to the crude oil water-soluble fraction. In field monitoring surveys, we found that the 2- and 3-ring PAHs were dominant in the clams whereas the 4- to 6-ring PAHs were dominant in the sediments at each site. The PAH levels (3.63-12.77 ng/g wet weight) in wild clams were lower, whereas the TPH levels (13.25-70.50 μg/g wet weight) were higher compared with those determined previous in China and elsewhere. The concentrations of PAHs and TPHs in the sediments (19.20-4215.76 ng/g and 3.65-866.40 μg/g dry weight) were moderate compared with those in other global regions. Diagnostic ratio analysis demonstrated that the PAHs were derived mainly from pyrogenic sources. The TPHs may have come primarily from industrial effluents, land and maritime transportation, or fishing activities. The Integrated Biomarker Response version 2 indexes indicated that the clams collected from site S5 exhibited the most harmful effects due to contamination by PAHs and TPHs. Human health risk assessments demonstrated that the risks due to PAHs and TPHs following the consumption of clams can be considered acceptable. Our results suggest that continuous monitoring of contamination by PAHs and TPHs is recommended in this emerging coastal city as well as assessing their human health risks.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Field Station of Coastal Wetland Ecosystem Research and Observation in Beibu Bay, Ministry of Natural Resources, Beihai, 536015, China
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ronghui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Fukun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Weiming Kuang
- Laboratory of Marine Chemistry and Environmental Monitoring Technology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yulu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Jincan Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yusheng Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Tan K, Zhang B, Ma H, Li S, Zheng H. Oxidative stress responses of golden and brown noble scallops Chlamys nobilis to acute cold stress. FISH & SHELLFISH IMMUNOLOGY 2019; 95:349-356. [PMID: 31678188 DOI: 10.1016/j.fsi.2019.10.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The noble scallop Chlamys nobilis is an important edible marine bivalve that is widely cultivated in the sea of southern China. Unfortunately, the mass mortality of noble scallops frequently occurs during the winter months. The present study investigated the effects of acute cold stress (8 °C) to the physiological responses of polymorphic noble scallops, by assessing the HSP70 gene expression, total carotenoid content (TCC), total antioxidant capacity (TAC), malondialdehyde (MDA) content, catalase (CAT) activity and superoxide dismutase (SOD) enzymatic activity in different tissues of golden and brown scallops. The results of the present study revealed that MDA, TCC and CAT increased drastically in most tissues in the early stage of acute cold stress (0-3 h), but TCC, SOD and CAT generally showed a downward trend. Within 3-6 h of acute cold stress, MDA content decreased in most tissues and the SOD content increased significantly in most tissues, while TCC and CAT remained at peak. After 6 h of acute cold stress, MDA content continued to increase in most tissues, while TCC, CAT, SOD and TAC decreased or remained at a lower level. For HSP70 expression, up-regulation of the HSP70 gene was observed only in mantle of brown scallops and hemolymph of golden scallops at 3 h and 24 h, respectively. The findings of the present study can better understand the physiological response of noble scallops to acute cold stress.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Bo Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
11
|
Cheng D, Liu H, Zhang H, Soon TK, Ye T, Li S, Ma H, Zheng H. Differential expressions of HSP70 gene between golden and brown noble scallops Chlamys nobilis under heat stress and bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 94:924-933. [PMID: 31604148 DOI: 10.1016/j.fsi.2019.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Heat shock proteins (HSPs) are a family of conserved proteins that enhance stress resistance and protect cells from external damage. In the present study, the full-length HSP70 cDNA from the noble scallop Chlamys nobilis (designated CnHSP70) was first cloned and characterized. Then, the expression of CnHSP70 in golden and brown scallops with different carotenoid content was evaluated under heat stress and Vibrio parahaemolyticus challenge. The complete CnHSP70 cDNA is 2621 bp, including a 1971 bp open reading frame (ORF) encoding a polypeptide of 656 amino acids with an estimated molecular weight of 71.55 kDa and an isoelectric point of 5.32. Based on amino acid sequence and phylogenetic analysis, the CnHSP70 gene was identified as a member of the cytoplasmic HSP70 family. The CnHSP70 was ubiquitously expressed in all examined tissues, including intestines, hemocytes, mantle, adductor and gills, with the highest expression in gills. After heat stress and V. parahaemolyticus injection, the expression levels of CnHSP70 in gills and hemocytes of golden and brown scallops were both significantly increased, indicating that the gene was involved in resistance or immune response. Moreover, under both conditions, similar expression profiles of CnHSP70 were observed between gills and hemocytes from the same color scallop, but different expression levels were detected in the same tissue from the different color scallop, which may be related to difference in their carotenoids content.
Collapse
Affiliation(s)
- Dewei Cheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongxing Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Tan Kar Soon
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ting Ye
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
12
|
Liang S, Luo X, You W, Ke C. Hybridization improved bacteria resistance in abalone: Evidence from physiological and molecular responses. FISH & SHELLFISH IMMUNOLOGY 2018; 72:679-689. [PMID: 29127030 DOI: 10.1016/j.fsi.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Hybridization is an effective way of improving germplasm in abalone, as it often generates benign traits in the hybrids. The hybrids of Haliotis discus hannai and H. gigantea have shown heterosis in terms of disease resistance than one or both parental species. In the present study, to elucidate the physiological and molecular mechanism of this heterosis, we analyzed the dynamic changes of several immune indexes including survival rate, total circulating haemocyte count (THC), phagocytic activity, reactive oxygen species level (ROS) and phenoloxidase activity (PO) in two parental species, H. discus hannai (DD) and H. gigantea (GG), and their reciprocal hybrids H. discus hannai ♀ × H. gigantea ♂ (DG), H. gigantea ♀ × H. discus hannai ♂ (GD) challenged with a mixture of Vibrio harveyi, V. alginolyticus and V. parahaemolyticus (which have been demonstrated to be pathogenic to abalone). Besides, we cloned and analyzed three important immune genes: heat shock protein 70 (hsp70), ferritin and cold shock domain protein (csdp) in H. discus hannai and H. gigantea, then further investigated their mRNA level changes in the four abalone genotypes after bacterial challenge. Results showed that these physiological and molecular parameters were significantly induced by bacterial exposure, and their changing patterns were obviously different between the four genotypes: (1) Survival rates of the two hybrids were higher than both parental species after bacterial exposure; (2) DG had higher THC than the other three genotypes; (3) Phagocytosis responded slower in the hybrids than in the parental species; (4) DD's ROS level was lower than the other three genotypes at 48 h post infection; (5) Phenoloxidase activity was lower in DD during the infection compared to the other genotypes; (6) mRNA levels of hsp70 and csdp, were always lower in at least one parental species (DD) than in the hybrids after the bacterial exposure. Results from this study indicate that the hybrids are more active or efficient in immune system function, hence they could effectively defense against a bacterial invasion, leading to higher survival rates after challenge. This study provides physiological and molecular evidences for interpreting the disease resistant heterosis in this abalone hybrid system, which could help us in a better understanding and utilization of heterosis in abalone aquaculture.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China; Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China.
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China.
| |
Collapse
|
13
|
Xia X, Xue S, Wang X, Zhang Q, Huang C, Guo L, Yao L. Response a chronic effects of PBDE-47: Up-regulations of HSP60 and HSP70 expression in freshwater bivalve Anodonta woodiana. FISH & SHELLFISH IMMUNOLOGY 2017; 65:213-225. [PMID: 28433717 DOI: 10.1016/j.fsi.2017.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Heat shock proteins (HSPs) play an important role in adaption of environmental stress by protein folding, membrane translocation, degradation of misfolded proteins and other regulatory processes. Our previous study showed oxidative stress generated from polybrominated diphenyl ether-47 (PBDE-47) could cause an acute toxicity on freshwater bivalve Anodonta Woodiana, but the effect of chronic toxicity need to be elucidated. In order to further investigate the chronic effect of PBDE-47, clams A. Woodiana were randomly divided into the PBDE-47 treated group administrated with PBDE-47 at a concentration 3.36 μg/L and control group treated with a similar volume dimethyl sulfoxide. Two complete HSP sequences were isolated from A. Woodianaa and respectively named AwHSP60 and AwHSP70. They were widely distributed in foot, gill, hepatopancreas, adductor muscle, heart, hemocytes and mantle. Administration of PBDE-47 could result in a significant up-regulation of AwHSP60 and AwHSP70 expressions in the hepatopancreas, gill and hemocytes. In the hepatopancreas, compared with that of control group, mRNA level of AwHSP60 increased more than 89.9% (P < 0.05) from day 1-15, AwHSP70 increased more 2.79 times (P < 0.01). In the gill, during experiment observed, expression of AwHSP60 increased more 2.09 times (P < 0.01) in contrasted with that of control group. Significant up-regulation of AwHSP70 expression showed a reversed U shape. In the hemocytes, AwHSP60 and AwHSP70 expressions of PBDE-47 treated group respectively increased more 2.09 times (P < 0.05) and 1.81 times (P < 0.05) compared with that of control group. These results indicated that up-regulations of AwHSP60 and AwHSP70 expression are contribute to enhancing adaption of bivalve A. Woodiana exposed to PBDE-47 treatment.
Collapse
Affiliation(s)
- Xichao Xia
- Medical College of Pingdingshan University, Pingdingshan, 467000, Henan Province, China; State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Basic Medicine, Nanyang Medical College, Nanyang, 473061, Henan Province, China.
| | - Shipeng Xue
- Department of Basic Medicine, Nanyang Medical College, Nanyang, 473061, Henan Province, China
| | - Xiying Wang
- Department of Basic Medicine, Nanyang Medical College, Nanyang, 473061, Henan Province, China
| | - Qingyuan Zhang
- Department of Basic Medicine, Nanyang Medical College, Nanyang, 473061, Henan Province, China
| | - Chuanfeng Huang
- Department of Basic Medicine, Nanyang Medical College, Nanyang, 473061, Henan Province, China
| | - Lianghong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Lunguang Yao
- Department of Basic Medicine, Nanyang Medical College, Nanyang, 473061, Henan Province, China
| |
Collapse
|
14
|
Yan S, Wu H, Qin J, Zha J, Wang Z. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:559-568. [PMID: 28318792 DOI: 10.1016/j.envpol.2017.02.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 05/25/2023]
Abstract
Halogen-free organophosphorus flame retardants are widespread in aquatic environments. Although it has been documented that they affect the behavior and reproduction of aquatic species, researches investigating cellular detoxification and the defense system in bivalves are scarce. In this study, adult Asian clams (C. fluminea) were exposed to tris (2-butoxyethyl) phosphate (TBEP) and tributyl phosphate (TBP) at 20, 200, and 2000 μg/L for 28 d. The results showed no noticeable difference in siphoning behavior. However, the siphoning behavior displayed a trend toward a slight decrease in the treatment groups. GR activity was markedly reduced compared with the control groups, whereas the levels of cyp4 significantly increased following the 2000 μg/L TBP treatments (p < 0.05). Moreover, the levels of gsts1 and gstm1 significantly decreased following all TBEP treatments and were significantly inhibited by 20 μg/L TBP (p < 0.05). The adverse effects on antioxidant enzymes suggested that C. fluminea mainly relies on the antioxidant system to reduce damage without an increase in MDA levels following exposure to a low concentration. Moreover, mRNA expression levels of heat shock proteins (hsp 22, 40, 60, 70, and 90) were significantly down-regulated with TBEP and TBP treatments lower than 200 μg/L (p < 0.05), whereas significant up-regulations were observed for hsp 22 and hsp 70 in response to 2000 μg/L TBP treatment (p < 0.05). Up-regulation of ATP-binding cassette (ABC) transporter genes (abcb1 and abcc1) showed that TBEP and TBP could activate the multixenobiotic resistance (MXR) system to discharge xenobiotics in C. fluminea, which kept its shell closed at high concentrations to prevent xenobiotic entry. Our results provide a new insight into the different mechanisms of cellular detoxification and the MXR system of C. fluminea in response to low and high concentrations of TBEP and TBP.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Wu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zijian Wang
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Li H, Liu M, Ye S, Yang F. De novo assembly, gene annotation, and molecular marker development using Illumina paired-end transcriptome sequencing in the clam Saxidomus purpuratus. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0535-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Jiang F, Yue X, Wang H, Liu B. Transcriptome profiles of the clam Meretrix petechialis hepatopancreas in response to Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2017; 62:175-183. [PMID: 28110034 DOI: 10.1016/j.fsi.2017.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/23/2016] [Accepted: 01/17/2017] [Indexed: 05/27/2023]
Abstract
Microbial diseases have received much attention due to their enormous destruction of aquaculture, and Vibrio parahaemolyticus is one of the main pathogens that cause bacterial disease in the clam Meretrix petechialis. To better understand the molecular mechanisms of the immune response to Vibrio in M. petechialis, RNA-Seq was applied to explore global expression changes of hepatopancreas from this clam after Vibrio challenge. There were 199,318,966 clean reads obtained by Illumina sequencing, which were further assembled into 214,577 transcripts, and then 147,255 unigenes with an N50 of 1393 bp were identified. Gene ontology (GO) analysis revealed 21 biological process subcategories, 15 cellular component subcategories and 12 molecular function subcategories. A total of 8358 unigenes were mapped onto 267 biological signaling pathways by KEGG, among which there were 16 pathways related to the immune system. In total, 206 differentially expressed genes (DEGs) were identified, including 113 up-regulated unigenes and 93 down-regulated unigenes. In these DEGs, 96 DEGs were annotated in at least one database, accounting for 46.60% of all significant DEGs. To validate the transcriptome dataset, 15 DEGs were selected for real-time qPCR confirmation and the results showed that expression patterns of 13 genes (86.7%) agreed well with the RNA-Seq analysis. Fourteen of the 206 DEGs were annotated to be immune-related genes, and we examined the expression patterns of four immune-related DEGs using clams post immersion challenge. This study enriched the M. petechialis transcriptome database and provided insight into the immune response of M. petechialis against Vibrio infection.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hongxia Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000, Qingdao, China.
| |
Collapse
|
17
|
Sathyamoorthy A, Chaurasia MK, Arasu MV, Al-Dhabi NA, Harikrishnan R, Arockiaraj J. Differences in structure and changes in gene regulation of murrel molecular chaperone HSP family during epizootic ulcerative syndrome (EUS) infection. FISH & SHELLFISH IMMUNOLOGY 2017; 60:129-140. [PMID: 27876624 DOI: 10.1016/j.fsi.2016.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Heat shock proteins (HSPs) are immunogenic, ubiquitous class of molecular chaperones, which are induced in response to various environmental and microbial stressful conditions. It plays a vital role in maintaining cellular protein homeostasis in eukaryotic cells. In this study, we described a comprehensive comparative data by bioinformatics approach on three different full length cDNA sequences of HSP family at molecular level. The cDNA sequences of three HSPs were identified from constructed cDNA library of Channa striatus and named as CsCPN60, CsHSP60 and CsHSP70. We have conducted various physicochemical study, which showed that CsHSP70 (666 amino acid) possessed a larger polypeptides followed by CsCPN60 (575) and CsCPN60 (542). Three dimensional structural analysis of these HSPs showed maximum residues in α-helices and least in β-sheets; also CsHSP60 lacks β-sheet and formed helix-turn-helix structure. Further analysis indicated that each HSP carried distinct domains and gene specific signature motif, which showed that each HSP are structurally diverse. Homology and phylogenetic study showed that the sequences taken for analysis shared maximum identity with fish HSP family. Tissue specific mRNA expression analysis revealed that all the HSPs showed maximum expression in one of the major immune organ such as CsCPN60 in kidney, CsHSP60 in spleen and CsHSP70 in head kidney. To understand the function of HSPs in murrel immune system, the elevation in mRNA expression level was analyzed against microbial oxidative stressors such as fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila). It is interesting to note that all the HSP showed a different expression pattern and reached maximum up-regulation at 48 h post-infection (p.i) during fungal stress, whereas in bacterial stress only CsCPN60 showed maximum up-regulation at 48 h p.i, but CsHSP60 and CsHSP70 showed maximum up-regulation at 24 h p.i. The differential expression pattern showed that each HSP is diverse in function. Overall, the elevation in expression levels showed that HSPs might have potential involvement in murrel immune protection thus, protecting the organism against various external stimuli including environmental and microbial stress.
Collapse
Affiliation(s)
- Akila Sathyamoorthy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, SRM Arts & Science College, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
18
|
Han YL, Hou CC, Du C, Zhu JQ. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2017; 60:299-310. [PMID: 27908666 DOI: 10.1016/j.fsi.2016.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Heat shock proteins 70 (HSP70s) are molecular chaperones that aid in protection against environmental stress. In this study, we cloned and characterized five members of the HSP70 family (designated as HSPa1a, HSC70-1, HSC70-2, HSPa4 and HSPa14) from Lateolabrax maculatus using rapid amplification cDNA ends (RACE). Multiple sequence alignment and structural analysis revealed that all members of the HSP70 family had a conserved domain architecture, with some distinguishing features unique to each HSP70. Quantitative real-time (qPCR) analysis revealed that all members of the HSP70 family were ubiquitously and differentially expressed in all major types of tissues, including testicular tissue. This indicated that HSP70s have vital and conserved biological functions, and may also function in the development of germinal cells. The expression of mRNA of the five HSP70 family members mRNA expression was significantly increased in the head kidney, intestine and gill after Vibrio harveyi challenge, suggesting that HSP70s play an important role in the immune response.
Collapse
Affiliation(s)
- Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China.
| |
Collapse
|
19
|
The Role of Heat Shock Proteins in Response to Extracellular Stress in Aquatic Organisms. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Molecular cloning, expression pattern, and chemical analysis of heat shock protein 70 (HSP70) in the mudskipper Boleophthalmus pectinirostris: Evidence for its role in regulating spermatogenesis. Gene 2016; 575:331-8. [DOI: 10.1016/j.gene.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 01/26/2023]
|
21
|
Flores-Nunes F, Mattos JJ, Zacchi FL, Serrano MAS, Piazza CE, Sasaki ST, Taniguchi S, Bicego MC, Melo CMR, Bainy ACD. Effect of linear alkylbenzene mixtures and sanitary sewage in biochemical and molecular responses in pacific oyster Crassostrea gigas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17386-17396. [PMID: 25869438 DOI: 10.1007/s11356-015-4486-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
Urban effluents are rich in nutrients, organic matter, pharmaceuticals and personal care products (PPCPs), pesticides, hydrocarbons, surfactants, and others. Previous studies have shown that oysters Crassostrea gigas accumulate significant levels of linear alkylbenzenes (LABs) in sanitary sewage contaminated sites, but there is little information about its toxicological effects in marine bivalves. The aim of this study was to analyze the transcription of genes in two tissues of C. gigas exposed for 12, 24, and 36 h to LABs or sanitary sewage. Likewise, the activity of antioxidant and biotransformation enzymes was measured in oysters exposed for 36 h in all groups. Oysters exposed to LABs and oysters exposed to sanitary sewage showed different patterns of transcriptional responses. LAB-exposed oysters showed lower level of biological responses than the oysters exposed to sanitary sewage. Despite the ability of the oyster C. gigas to accumulate LABs (28-fold), the data indicate that these contaminants are not the cause for the transcriptional responses observed in oysters exposed to sanitary sewage. Possibly, the biological changes observed in the sanitary sewage-exposed oysters are associated with the presence of other contaminants, which might have caused synergistic, additive, or antagonistic effects. The results show that FABP-like and GST-ω-like messenger RNAs (mRNAs) have a rapid response in tissues of oyster C. gigas exposed to sanitary sewage, suggesting a possible protective response and a role in maintaining homeostasis of these organisms.
Collapse
Affiliation(s)
- Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Flávia L Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Miguel A S Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Clei E Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University Santa Catarina, Florianópolis, Brazil
| | - Silvio T Sasaki
- Laboratory of Marine Organic Chemistry-LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry-LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Márcia C Bicego
- Laboratory of Marine Organic Chemistry-LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Cláudio M R Melo
- Laboratory of Marine Mollusks-LMM, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
22
|
Expression analysis of HSP70 in the testis of Octopus tankahkeei under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:150-9. [DOI: 10.1016/j.cbpa.2015.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
|
23
|
Aleng NA, Sung YY, MacRae TH, Abd Wahid ME. Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection. PLoS One 2015; 10:e0135603. [PMID: 26288319 PMCID: PMC4546054 DOI: 10.1371/journal.pone.0135603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022] Open
Abstract
Mild heat stress promotes thermotolerance and protection against several different stresses in aquatic animals, consequences correlated with the accumulation of heat shock protein 70 (Hsp70). The purpose of this study was to determine if non-lethal heat shock (NLHS) of the Asian green mussel, Perna viridis, an aquatic species of commercial value, promoted the production of Hsp70 and enhanced its resistance to stresses. Initially, the LT50 and LHT for P. viridis were determined to be 42°C and 44°C, respectively, with no heat shock induced death of mussels at 40°C or less. Immunoprobing of western blots revealed augmentation of constitutive (PvHsp70-1) and inducible (PvHsp70-2) Hsp70 in tissue from adductor muscle, foot, gill and mantel of P. viridis exposed to 38°C for 30 min followed by 6 h recovery, NLHS conditions for this organism. Characterization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that PvHsp70-1 and PvHsp70-2 respectively corresponded most closely to Hsp70 from P. viridis and Mytilus galloprovincialis. Priming of adult mussels with NLHS promoted thermotolerance and increased resistance to V. alginolyticus. The induction of Hsp70 in parallel with enhanced thermotolerance and improved protection against V. alginolyticus, suggests Hsp70 functions in P. viridis as a molecular chaperone and as a stimulator of the immune system.
Collapse
Affiliation(s)
- Nor Afiqah Aleng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Terengganu, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Terengganu, Malaysia
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu (UMT), 21030, Kuala Terengganu, Malaysia
- * E-mail: (YYS); (MEAW)
| | - Thomas H. MacRae
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Mohd Effendy Abd Wahid
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Terengganu, Malaysia
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu (UMT), 21030, Kuala Terengganu, Malaysia
- * E-mail: (YYS); (MEAW)
| |
Collapse
|
24
|
Das S, Mohapatra A, Sahoo PK. Expression analysis of heat shock protein genes during Aeromonas hydrophila infection in rohu, Labeo rohita, with special reference to molecular characterization of Grp78. Cell Stress Chaperones 2015; 20:73-84. [PMID: 25037476 PMCID: PMC4255248 DOI: 10.1007/s12192-014-0527-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022] Open
Abstract
Heat shock protein (Hsp) genes are stress-related genes that activate the host immune system during infection. Hsp genes expression in fish, studied during bacterial infections, is mostly confined to Hsp70 and Hsp90. The present study is an expression analysis of seven Hsp genes: Apg2, Hsp90, Hsp70, glucose-regulated protein 78 (Grp78), heat shock cognate 70 (Hsc70), Grp75, and Hsp30 during Aeromonas hydrophila infection in rohu, Labeo rohita. Forty-eight rohu juveniles were challenged with 3 × 10(7) cfu bacteria per 20 g of body weight intraperitoneally. The expression of these genes was studied in infected liver, anterior kidney, and spleen tissues of rohu at different time periods: 0, 1, 3, 6, 12, 24, 48, 72 h, 7, and 15 days post-infection by qPCR. The Hsp gene modulation was greater in liver as compared to spleen and kidney tissues. Induced expression of Apg2, Hsp90, Grp78, Grp75, and Hsc70 was noticed during peak periods (3 to 24 h post-challenge) of bacterial infectivity. Hsp70 was found to be down-regulated during the process of infection. In contrast to the other six genes, Hsp30 showed a variable expression pattern in all three tissues. Grp78 was found to be the most highly (1,587-fold) expressed gene in liver at 12 h post-challenge. Further, molecular characterization of Grp78 revealed it to be a highly conserved Hsp gene, essential not only during infection but also during early developmental stages of rohu, and its expression was noticed in all organs studied except in gill tissues, which indicated its potential immune regulatory role during infection process.
Collapse
Affiliation(s)
- Sweta Das
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751 002 India
| | - Amruta Mohapatra
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751 002 India
| | - P. K. Sahoo
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751 002 India
| |
Collapse
|
25
|
Ni M, Wen H, Li J, Chi M, Ren Y, Song Z, Ding H. Two HSPs gene from juvenile Amur sturgeon (Acipenser schrenckii): cloning, characterization and expression pattern to crowding and hypoxia stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1801-1816. [PMID: 25117508 DOI: 10.1007/s10695-014-9969-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
In this study, the cDNA sequences of HSP70 and HSP90 were isolated from the special chondr-ganoid scale, Amur sturgeon, for the first time. Homology analysis indicated that amino acid sequences of HSP70 and HSP90 shared high identity with other species (82.68-99.07 and 90.19-98.07%, respectively). The tissue expression analysis showed that the asHSP70 and asHSP90 mRNA were ubiquitously expressed in all the examined tissues under unstressed condition. The expression pattern of HSP70 and HSP90 under chronic (crowding) and acute (hypoxia) stress was examined by q-PCR in liver, spleen and kidney. Results showed that stocking density could significantly influence the expression of HSP70 at day 20 and/or day 40. In contrast to stocking density, levels of HSP70 transcripts indicated a remarkable increase in all examined tissues after hypoxia stress. HSP90 levels in liver and spleen increased significantly in high stocking density. By comparison, significant increase of asHSP90 in kidney was only found in high stocking density at day 40. Similar to HSP70, the levels of HSP90 transcripts showed significant increases after hypoxia stress except the transcript of liver in H2 group 6 h after hypoxia. The assessment of asHSP70 and asHSP90 mRNA levels under crowding and hypoxia stresses indicated that asHSP70 and asHSP90 gene might be good indicators of stressful situations for Amur sturgeon. Taking serum globulin and electrolytes account, we suggest that crowding and hypoxia stress can result in considerable stress for Amur sturgeon.
Collapse
Affiliation(s)
- Meng Ni
- Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Xiu Y, Feng J, Lu W, Liu D, Wu T, Zhu H, Liu P, Li W, Ren Q, Gu W, Meng Q, Wang W. Identification of a novel cognate cytosolic Hsp70 gene (MnHsc70-2) from oriental river prawn Macrobrachium nipponense and comparison of its expressions with the first cognate Hsc70 (MnHsc70-1) under different stresses. Cell Stress Chaperones 2014; 19:949-61. [PMID: 24859888 PMCID: PMC4389856 DOI: 10.1007/s12192-014-0519-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022] Open
Abstract
The 70-kDa family of heat-shock proteins (Hsp70) plays an important role in the host immunity, which is widely expressed in eukaryotic cells as a major chaperone protein. In the present study, the full-length complementary DNA (cDNA) of a second cognate cytosolic Hsp70 family member (MnHsc70-2) was cloned and characterized from Macrobrachium nipponense, which is an economically and nutritionally important crustacean. The cDNA was 2,717 bp, containing an open reading frame (ORF) of 1,950 bp, which encodes a protein of 649 amino acids with a theoretical molecular weight of 71.1 kDa and an isoelectric point of 5.27. Sequence alignment showed that the MnHsc70-2 shared 75-97 % identity with other heat-shock proteins. Compared to the previously identified cognate Hsp70 (MnHsc70-1) in M. nipponense, MnHsc70-2 showed quite different expression profiles under unstressed conditions in all tested tissues, including the hemocytes, heart, hepatopancreas, gill, intestine, nerve, and muscle. The phylogenetic analysis demonstrated that MnHsc70-2 showed the closest relationship with MnHsc70-1. Heat-inducibility assays showed that two isolated messenger RNAs (mRNAs) displayed different expression profiles in both the hepatopancreas and gill tissues. MnHsc70-1 mRNA expression level decreased at first and then increased to the normal level, whereas MnHsc70-2 mRNA level increased at first and then decreased. The expressions of two MnHsc70s showed substantial obvious heat-inducible regulation in both the hepatopancreas and gill. Under bacterial challenge by Aeromonas hydrophila, both MnHsc70-1 and MnHsc70-2 mRNA level was up-regulated moderately. The results suggested that two cognate Hsc70s may play essential functions in mediating responses to heat-shock and bacterial challenge.
Collapse
Affiliation(s)
- Yunji Xiu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Jia Feng
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Weiqiang Lu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Dandan Liu
- />College of Teacher Education, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, China
| | - Ting Wu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Huanxi Zhu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Peng Liu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Wenjie Li
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Qian Ren
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Wei Gu
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Qingguo Meng
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| | - Wen Wang
- />Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, 210023 Nanjing, People’s Republic of China
| |
Collapse
|
27
|
Molecular cloning and sequence analysis of heat shock proteins 70 (HSP70) and 90 (HSP90) and their expression analysis when exposed to benzo(a)pyrene in the clam Ruditapes philippinarum. Gene 2014; 555:108-18. [PMID: 25445266 DOI: 10.1016/j.gene.2014.10.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/03/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
HSP70 and HSP90 are the most important heat shock proteins (HSPs), which play the key roles in the cell as molecular chaperones and may involve in metabolic detoxification. The present research has obtained full-length cDNAs of genes HSP70 and HSP90 from the clam Ruditapes philippinarum and studied the transcriptional responses of the two genes when exposed to benzo(a)pyrene (BaP). The full-length RpHSP70 cDNA was 2336bp containing a 5' untranslated region (UTR) of 51bp, a 3' UTR of 335bp and an open reading frame (ORF) of 1950bp encoding 650 amino acid residues. The full-length RpHSP90 cDNA was 2839bp containing a 107-bp 5' UTR, a 554-bp 3' UTR and a 2178-bp ORF encoding 726 amino acid residues. The deduced amino acid sequences of RpHSP70 and RpHSP90 shared the highest identity with the sequences of Paphia undulata, and the phylogenetic trees showed that the evolutions of RpHSP70 and RpHSP90 were almost in accord with the evolution of species. The RpHSP70 and RpHSP90 mRNA expressions were detected in all tested tissues in the adult clams (digestive gland, gill, adductor muscle and mantle) and the highest mRNA expression level was observed in the digestive gland compared to other tissues. Quantitative real-time RT-PCR analysis revealed that mRNA expression levels of the clam RpHSP70, RpHSP90 and other xenobiotic metabolizing enzymes (XMEs) (AhR, DD, GST, GPx) in the digestive gland of R. philippinarum were induced by benzo(a)pyrene (BaP) and the absolute expression levels of these genes showed a temporal and dose-dependent response. The results suggested that RpHSP70 and RpHSP90 were involved in the metabolic detoxification of BaP in the clam R. philippinarum.
Collapse
|
28
|
Molecular cloning, characterization, and expression analysis of a heat shock protein (HSP) 70 gene from Paphia undulata. Gene 2014; 543:275-85. [PMID: 24726551 DOI: 10.1016/j.gene.2013.11.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 01/05/2023]
Abstract
In this study, a full-length HSP70 cDNA from Paphia undulata was cloned using reverse transcriptase polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length cDNA is 2,351 bp, consisting of a 5'-untranslated region (UTR) of 83 bp, a 3'-UTR of 315 bp, and an open reading frame (ORF) of 1,953 bp. This cDNA encodes 650 amino acids with an estimated molecular weight of 71.3 kDa and an isoelectric point of 5.51. Based on the amino acid sequence analysis and phylogenetic analysis, this HSP70 gene was identified as a member of the cytoplasmic HSP70 family, being the constitutive expression, and it was designated as PuHSC70. The distribution of PuHSC70 mRNA in the mantle, digestive gland, adductor muscle, gonad, gill, heart, and hemocytes suggested that PuHSC70 is ubiquitously expressed. The mRNA levels of PuHSC70 under high temperature and high salinity stresses were analyzed by real-time PCR. Under high temperature stress of 32°C, PuHSC70 mRNA in the mantle, digestive gland, gill, and heart was significantly up-regulated at 1h and 2h, and it was then progressively down-regulated. In the adductor muscle, the level of PuHSC70 mRNA gradually increased throughout the study period; the mRNA levels in the gonad and hemocytes increased significantly at 4h and 8h (P<0.05) and then decreased at 8h and 14 h, respectively, however they increased again afterwards, reaching the highest levels at 50h. Under high salinity (32 ‰) stress, the mRNA levels of PuHSC70 in the mantle and gonad were increased significantly only at 24h and 48 h (P<0.05), and at the rest of the study period they were slightly elevated. Compared with the pretreatment level, the levels of expression in the digestive gland and gill were unchanged or reduced throughout the study period. The levels of PuHSC70 mRNA in the adductor muscle, hemocytes, and heart were significantly increased, reaching a maximum at 24h, and then they gradually decreased; moreover, in the heart, the mRNA expression recovered to the pretreatment level at 50h; while in the adductor muscle and hemocytes, the expression level remained higher than that of the control. The cloning and expression analyses of PuHSC70 provide theoretical basis to further study the mechanism of physiological response to thermal and high salinity stresses.
Collapse
|
29
|
Yue X, Huan P, Xiao G, Liu B. Expression patterns of an i-type lysozyme in the clam Meretrix meretrix along with larval development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:27-32. [PMID: 23583308 DOI: 10.1016/j.dci.2013.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
An i-type lysozyme (MmeLys) has been proved to function in immunity of the clam Meretrix meretrix in our previous studies. In this study, the expression patterns of MmeLys mRNA and protein at four chief developmental stages of M. meretrix were analyzed, which was able to provide information about how ontogeny of immunity and, in particular, antibacterial ability occured in the bivalve. The results of real-time PCR and western blot showed that MmeLys expressions were activated in D-veligers and dramatically increased to the highest level in pediveligers. It is proposed that the expression changes at these two stages might be due to the visceral organs changes, which were related to the archenteron formation in D-veligers and the organ-restructuring in pediveligers during metamorphosis. In addition, new methods of whole mount in situ hybridization and whole mount immunofluorescence were applied to identify the MmeLys expression tissues, and these tissues (i.e. hepatopancreas, gill, mantle, mouth, velum and foot) may be involved in the immune function during development of clams. Our study is valuable to a certain extent for exploring the origin of immune functions in clams and provides new methodology for future studies on the immune ontogeny of bivalves.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
30
|
Molecular Characterization and Expression Analysis of Heat Shock Cognate 70 After Heat Stress and Lipopolysaccharide Challenge in Sea Cucumber (Apostichopus japonicus). Biochem Genet 2013; 51:443-57. [DOI: 10.1007/s10528-013-9576-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
31
|
Yue X, Wang H, Huang X, Wang C, Chai X, Wang C, Liu B. Single nucleotide polymorphisms in i-type lysozyme gene and their correlation with vibrio-resistance and growth of clam Meretrix meretrix based on the selected resistance stocks. FISH & SHELLFISH IMMUNOLOGY 2012; 33:559-568. [PMID: 22728564 DOI: 10.1016/j.fsi.2012.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
I-type lysozyme is considered to play crucial roles in both anti-bacteria and digestion function of the bivalve, which signifies that it is related to both immunity and growth. In this study, based on the principle of case-control association analysis, using the stock materials with different vibrio-resistance profile obtained by selective breeding, single nucleotide polymorphisms (SNPs) in the DNA partial sequence of an i-type lysozyme of Meretrix meretrix (MmeLys) were discovered and examined for their association with vibrio-resistance and growth. Twenty-seven SNPs were detected and fifteen of them were genotyped in clam stocks with different resistance to Vibrio harveyi (09-C and 09-R) and to Vibrio parahaemolyticus (11-S and 11-R). Allele frequency distribution among different stocks was compared. And wet weight of clams with different genotype at each SNP locus was compared. The results indicated that SNP locus 9 was associated with V. harveyi and V. parahaemolyticus resistance and growth of M. meretrix. Loci 12 and 14 were associated with both V. parahaemolyticus-resistance and growth, and also have the potential to be related with V. harveyi-resistance of M. meretrix. Therefore these three SNPs especially locus 9 were the potential markers which may be involved in assisting resistance selective breeding. In addition, this study showed evidence that improvements in clam resistance to vibriosis could be achieved through selective breeding. All results provided encouragement for the continuation of the selective breeding program for vibrio-resistance gain in clam M. meretrix and the application of polymorphisms in MmeLys to the future marker assisted selection.
Collapse
Affiliation(s)
- Xin Yue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
32
|
You Y, Huan P, Liu B. RNAi assay in primary cells: a new method for gene function analysis in marine bivalve. Mol Biol Rep 2012; 39:8209-16. [DOI: 10.1007/s11033-012-1668-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 04/18/2012] [Indexed: 11/28/2022]
|
33
|
Reversing the resistance phenotype of the Biomphalaria glabrata snail host Schistosoma mansoni infection by temperature modulation. PLoS Pathog 2012; 8:e1002677. [PMID: 22577362 PMCID: PMC3343117 DOI: 10.1371/journal.ppat.1002677] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/18/2012] [Indexed: 12/01/2022] Open
Abstract
Biomphalaria glabrata snails that display either resistant or susceptible phenotypes to the parasitic trematode, Schistosoma mansoni provide an invaluable resource towards elucidating the molecular basis of the snail-host/schistosome relationship. Previously, we showed that induction of stress genes either after heat-shock or parasite infection was a major feature distinguishing juvenile susceptible snails from their resistant counterparts. In order to examine this apparent association between heat stress and snail susceptibility, we investigated the effect of temperature modulation in the resistant snail stock, BS-90. Here, we show that, incubated for up to 4 hrs at 32°C prior to infection, these resistant snails became susceptible to infection, i.e. shedding cercariae at 5 weeks post exposure (PE) while unstressed resistant snails, as expected, remained resistant. This suggests that susceptibility to infection by this resistant snail phenotype is temperature-sensitive (ts). Additionally, resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin (GA) after heat stress, were no longer susceptible to infection, retaining their resistant phenotype. Consistently, susceptible snail phenotypes treated with 100 mM GA before parasite exposure also remained uninfected. These results provide direct evidence for the induction of stress genes (heat shock proteins; Hsp 70, Hsp 90 and the reverse transcriptase [RT] domain of the nimbus non-LTR retrotransposon) in B. glabrata susceptibility to S. mansoni infection and characterize the resistant BS-90 snails as a temperature-sensitive phenotype. This study of reversing snail susceptibility phenotypes to S. mansoni provides an opportunity to directly track molecular pathway(s) that underlie the B. glabrata snail's ability to either sustain or destroy the S. mansoni parasite. Biomphalaria glabrata snails that are either resistant or susceptible to the parasite, Schistosoma mansoni, have been an invaluable resource in studies aimed at understanding the molecular basis of the snail/schistosome interaction. Schistosomes cause the chronic debilitating disease schistosomiasis. Thus, it is hoped that dissecting pathways that underlie the snail/schistosome relationship might translate into alternative control strategies that will include blocking transmission of the parasite at the snail-stage of its development. Induction of stress genes is a feature distinguishing early exposed juvenile susceptible NMRI snails from resistant BS-90 snail stocks. To further analyze this apparent involvement of stress induction and snail susceptibility, here we applied heat stress to the resistant BS-90 snail, enhancing induction of stress genes (Hsp 70, Hsp 90 and RT) prior to infection. Results showed these resistant snails became susceptible, indicating resistance as being a temperature sensitive phenotype in these snails. Stressed resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin, prior to exposure, were, however, shown to maintain their refractory phenotype. Interestingly, inhibitor treated susceptible snails also became non-susceptible. Collectively, these data point to stress induction as an important early step in the ability of S. mansoni to infect juvenile B. glabrata snails.
Collapse
|