1
|
Abdellaoui N, Kim SY, Kim KH, Kim MS. Effects of Non-Virion Gene Expression Level and Viral
Genome Length on the Replication and Pathogenicity of Viral Hemorrhagic Septicemia Virus. Viruses 2022; 14:v14091886. [PMID: 36146693 PMCID: PMC9505938 DOI: 10.3390/v14091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Fish novirhabdoviruses, including viral hemorrhagic septicemia virus (VHSV), hirame rhabdovirus (HIRRV), and infectious hematopoietic necrosis virus (IHNV), harbor a unique non-virion (NV) gene that is crucial for efficient replication and pathogenicity. The effective levels and the function of the N-terminal region of the NV protein, however, remain poorly understood. In the present study, several recombinant VHSVs, which completely lack (rVHSV-ΔNV) or harbor an additional (rVHSV-dNV) NV gene, were generated using reverse genetics. To confirm the function of the N-terminal region of the NV protein, recombinant VHSVs with the NV gene that gradually mutated from the start codon (ATG) to the stop codon (TGA), expressed as N-terminally truncated NV proteins (rVHSV-NV1, -NV2, and -NV3), were generated. CPE progression and viral growth analyses showed that epithelioma papulosum cyprini (EPC) cells infected with rVHSV-ΔNV or rVHSV-NV3—which did not express NV protein—rarely showed CPE and viral replication as opposed to EPC cells infected with rVHSV-wild. Interestingly, regardless of the presence of two NV genes in the rVHSV-dNV genome, EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP (control) failed to induce CPE and viral replication. In EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP, which harbored a longer VHSV genome than the wild-type, Mx gene expression levels, which were detected by luciferase activity assay, were particularly high; Mx gene expression levels were higher in EPC cells infected with rVHSV-ΔNV, -NV2, or -NV3 than in those infected with rVHSV-wild or rVHSV-NV1. The total amount of NV transcript produced in EPC cells infected with rVHSV-wild was much higher than that in EPC cells infected with rVHSV-dNV. However, the expression levels of the NV gene per viral particle were significantly higher in EPC cells infected with rVHSV-dNV than in cells infected with rVHSV-wild. These results suggest that the NV protein is an essential component in the inhibition of host type-I interferon (IFN) and the induction of viral replication. Most importantly, viral genome length might affect viral replication efficiency to a greater extent than does NV gene expression. In in vivo pathogenicity experiments, the cumulative mortality rates of olive flounder fingerlings infected with rVHSV-dNV or rVHSV-wild were similar (60–70%), while those of fingerlings infected with rVHSV-A-EGFP were lower. Moreover, the virulence of rVHSV-ΔNV and rVHSV, both harboring a truncated NV gene (rVHSV-NV1, -NV2, and -NV3), was completely attenuated in the olive flounder. These results suggest that viral pathogenicity is affected by the viral replication rate and NV gene expression. In conclusion, the genome length and NV gene (particularly the N-terminal region) expression of VHSVs are closely associated with viral replication in host type-I IFN response and the viral pathogenicity.
Collapse
Affiliation(s)
- Najib Abdellaoui
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Seon Young Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
- Correspondence:
| |
Collapse
|
2
|
Jung MH, Jung SJ, Kim T. Saponin and chitosan-based oral vaccine against viral haemorrhagic septicaemia virus (VHSV) provides protective immunity in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 126:336-346. [PMID: 35643353 DOI: 10.1016/j.fsi.2022.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Production losses of olive flounder (Paralichthys olivaceus) have increased owing to viral haemorrhagic septicaemia virus (VHSV) infection. In this study, we determined safe concentrations of orally administered saponin and chitosan by analysing serum enzyme (AST/ALT) levels as biochemical markers of hepatic injury. Furthermore, we demonstrated the efficacy, duration of protection, and safety of saponin and chitosan-based vaccines with inactivated VHSV (IV). Oral administration of saponin, chitosan, and their combination did not induce fish mortality at all tested concentrations (0.29, 1.45, and 2.9 mg/g of fish body weight/day) 10 days after administration. However, AST level was high at a dose >0.29 mg/g of fish body weight/day. Both saponin and chitosan were found to be safe and acceptable for vaccination studies at a dose of 0.29 mg/g of fish body weight/day. Administration of IV alone did not induce protection at 2 and 4 weeks post vaccination (wpv). Olive flounders administered saponin + IV and chitosan + IV vaccines had higher immunity against VHSV with relative percentage survival (RPS) of 12.5-7.5% and 0-20.1%, respectively; however, additional immunisation with combination of saponin + chitosan + IV clearly enhanced the protection with RPS values of 10-15%, 26.7%, 42.9%, and 37.5% at 4, 8, 12, and 20 wpv, respectively. Although the RPS value of oral immunisation was not comparable to that of injectable vaccines, the manufacturing process is simple and oral administration causes less stress to juvenile fish. To investigate the development of a protective immune response, olive flounder were re-challenged with VHSV (107.8 TCID50/fish) at 70 days postinfection; 100% of the previously unexposed fish died, whereas 80-100% of the previously immunised fish survived. Our results showed the possibility of developing preventive measures against VHSV using saponin and chitosan-based oral vaccines with inactivated virus.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Marine Bio and Medical Sciences, Hanseo University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Taeho Kim
- Department of Marine Production Management, Chonnam National University, Republic of Korea
| |
Collapse
|
3
|
Effect of NV gene deletion in the genome of hirame rhabdovirus (HIRRV) on viral replication and the type I interferon response of the host cell. Arch Virol 2021; 167:77-84. [PMID: 34709467 DOI: 10.1007/s00705-021-05286-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Hirame rhabdovirus (HIRRV), a member of the genus Novirhabdovirus, causes morbidity and mortality in farmed olive flounder (Paralichthys olivaceus). As no information is available on the role of the NV gene of HIRRV, we produced a recombinant HIRRV with the NV gene deleted (rHIRRV-ΔNV) using reverse genetic technology and investigated whether the NV gene knockout affected HIRRV replication and the type I interferon response of the host cell. The rescue of rHIRRV-ΔNV was successful only when IRF9-gene-knockout Epithelioma papulosum cyprini (ΔIRF9-EPC) cells were used, suggesting that the NV protein of HIRRV might be involved in inhibition of the type I interferon response of the host cell. This conclusion was also supported by the significantly higher level of Mx gene induction in EPC cells infected with rHIRRV-ΔNV than in cells infected with recombinant HIRRV without the deletion. When cells were coinfected with rHIRRV-ΔNV and either wild-type HIRRV or wild-type viral hemorrhagic septicemia virus (VHSV), there was a decrease in the growth rate of not only wild-type HIRRV but also wild-type VHSV in a concentration-dependent manner. Further studies are required to investigate the role of HIRRV NV in virulence and its possible importance for the development of attenuated vaccines.
Collapse
|
4
|
Bacillus subtilis Inhibits Viral Hemorrhagic Septicemia Virus Infection in Olive Flounder ( Paralichthys olivaceus) Intestinal Epithelial Cells. Viruses 2020; 13:v13010028. [PMID: 33375689 PMCID: PMC7823535 DOI: 10.3390/v13010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that infects a wide range of host fish species causing high economic losses in aquaculture. Epithelial cells in mucosal organs are target sites for VHSV entry into fish. To protect fish against VHSV infection, there is a need to develop antiviral compounds able to prevent establishment of infection at portals of virus entry into fish. Bacillus subtilis is a probiotic with excellent antiviral properties, of which one of its secretions, surfactin, has been shown to inhibit viral infections in mammals. Herein, we demonstrate its ability to prevent VHSV infection in olive flounder (Paralichthys olivaceus) intestinal epithelial cells (IECs) and infection in internal organs. Our findings show inhibition of VHSV infection in IECs by B. subtilis and surfactin. In addition, our findings showed inhibition of VHSV in Epithelioma Papulosum Cyprini (EPC) cells inoculated with intestinal homogenates from the fish pretreated with B. subtilis by oral exposure, while the untreated fish had cytopathic effects (CPE) caused by VHSV infection in the intestines at 48 h after the VHSV challenge. At 96 h post-challenge, samples from the untreated fish had CPE from head kidney and spleen homogenates and no CPE were observed in the intestinal homogenates, while the B. subtilis-pretreated fish had no CPE in all organs. These findings demonstrate that inhibition of VHSV infection at portals of virus entry in the intestines culminated in prevention of infection in internal organs. In summary, our results show that B. subtilis has the potential to prevent VHSV infection in fish and that its use as a probiotic in aquaculture has the potential to serve as an antiviral therapeutic agent against different viral infections.
Collapse
|
5
|
Tattiyapong P, Dechavichitlead W, Waltzek TB, Surachetpong W. Tilapia develop protective immunity including a humoral response following exposure to tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:666-674. [PMID: 32858185 DOI: 10.1016/j.fsi.2020.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 05/08/2023]
Abstract
Tilapia lake virus (TiLV) is an emerging virus associated with high mortality in cultured tilapia. Since the first report of tilapia lake virus, it has been detected in diseased tilapia in sixteen countries around the world. Thus, there is an urgent need to develop an efficacious vaccine to prevent TiLV disease (TiLVD) and reduce its global economic impact. Understanding the role of the adaptive immune response following exposure of tilapia to TiLV is a critical step in the development of such a vaccine. In this study, we challenged red hybrid tilapia by cohabitation or intraperitoneal injection and demonstrated that surviving fish develop a protective immunity. We also demonstrated that tilapia that survived experimental infections possess significant antibodies against the protein encoded by the TiLV segment 4. We then developed a TiLV indirect ELISA to determine the antibody response in tilapia. The ELISA revealed high antibody levels in survivors of experimental challenges and following outbreaks on farms. The ELISA effectively distinguished TiLV-exposed from unexposed tilapia and was used to monitor anti-TiLV antibody kinetics following infection. During the primary infection, tilapia developed an antibody response as early as 7 days post TiLV challenge (dpc), peaked at 15 dpc, showed a gradual decline up until about 42 dpc, but persisted in some fish up until day 110 dpc. Upon re-infection, an increased antibody response occurred within 7-14 days, demonstrating that tilapia that survive TiLV infections develop humoral memory. In conclusion, our results demonstrated that tilapia mount antibody responses against TiLV that supports protective immunity to subsequent TiLV disease. The persistence of anti-TiLV antibodies in survivors following a single exposure suggests a single vaccination might be adequate to protect tilapia during the entire grow-out period. This study provides important information about the immune response of tilapia following exposure to TiLV as a first step in the development of an efficacious vaccine against this emerging and economically important viral disease.
Collapse
Affiliation(s)
- Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand
| | - Worawan Dechavichitlead
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand.
| |
Collapse
|
6
|
Kwak JS, Kim KH. Enhancing immunogenicity of a reporter protein by fusion to glycoprotein and nucleoprotein of viral hemorrhagic septicemia virus (VHSV) particles. FISH & SHELLFISH IMMUNOLOGY 2020; 105:35-40. [PMID: 32619626 DOI: 10.1016/j.fsi.2020.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The introduction of reverse genetic technology to generate recombinant VHSVs (rVHSVs) has contributed to the uncovering of functional roles of viral genes and to the development of attenuated prophylactic vaccines. In this study, to assess the possible use of rVHSVs as a tool of combined vaccines, we newly rescued rVHSVs that harbor viral envelop-studded eGFP (rVHSV-A-SGT) or nucleoprotein-fused eGFP (rVHSV-A-NLG), and the ability of these rVHSVs to induce adaptive humoral immunity in olive flounder (Paralichthys olivaceus) was compared with that of rVHSV-A-eGFP that expresses eGFP as a soluble form in the cytoplasm of infected cells. The results showed that antibodies against eGFP were efficiently induced by the immunization of olive flounder with rVHSV-A-SGT and rVHSV-A-NLG, while rVHSV-A-eGFP was poor in the ability to induce antibody response against eGFP. These results suggest that the display of heterologous antigens on VHSV envelop is a good way to develop efficient combined vaccines and the fusion of foreign antigen with N protein can also be a way to enhance immunogenicity of a foreign antigen. The present recombinant VHSVs - rVHSV-A-SGT and rVHSV-A-NLG - not only express foreign antigens in host cell cytoplasm but also display antigens in or on the virus particles. Further researches on the availability of recombinant VHSVs as combined vaccines against multiple fish pathogens are needed.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
7
|
Naderi-Samani M, Soltani M, Dadar M, Taheri-Mirghaed A, Zargar A, Ahmadivand S, Hassanzadeh R, Goudarzi LM. Oral immunization of trout fry with recombinant Lactococcus lactis NZ3900 expressing G gene of viral hemorrhagic septicaemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2020; 105:62-70. [PMID: 32645516 DOI: 10.1016/j.fsi.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
This study has investigated the ability of Lactococcus lactic (NZ3900) carried G gene of viral haemorrhagic septicaemia virus (VHSV) under nisin-controlled gene expression (NICE) system in rainbow trout (O.Mykiss). Two groups of trout fry (7 ± 0.65 g) were immunized with 1 × 1010 cfu/g and 1 × 108 cfu/g recombinant L. lactis NZ3900, two groups of fish were fed 1 × 1010 cfu/g and 1 × 108 cfu/g L. lactis vector free, and one group was fed by the basal diet as a control. Oral immunization was done on days 1-7 and boosting was performed on days 15-21. The relative expression of IFN-1 and MX-1 genes significantly increased in head kidney of vaccinated fish depend on vaccine dosage compared to the control group. Fish in vaccinated group also showed elevated VHSV-specific antibody levels compared to the control groups. Relative percent survival (RPS), under virulent isolate VHSV challenge were estimated 62%, 78% for 108 cfu/g 1010 cfu/g feed vaccinated groups 21 days post-vaccination, while groups fed similar doses of L. lactis vector free illustrated 22% and 27% RPSs, respectively. The significant reduction of viral loads (transcript levels of N gene) were detected in the immunized groups. Increased weight gain and decreased feed consumption in vaccinated group attributed to the probiotic effect were also observed. In conclusion, our results demonstrate the ability of recombinant L. lactis as oral vaccine against VHS in rainbow trout, which can be considered as effective method against different fish pathogens.
Collapse
Affiliation(s)
- Mahsa Naderi-Samani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Australia.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Taheri-Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ashkan Zargar
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sohrab Ahmadivand
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Hassanzadeh
- Iranian Veterinary Organization, Central Veterinary Laboratory, Tehran, Iran
| | | |
Collapse
|
8
|
Kim MS, Kim KH. Genetically engineered viral hemorrhagic septicemia virus (VHSV) vaccines. FISH & SHELLFISH IMMUNOLOGY 2019; 95:11-15. [PMID: 31622675 DOI: 10.1016/j.fsi.2019.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) has been one of the major causes of mortality in a wide range of freshwater and marine fishes worldwide. Although various types of vaccines have been tried to prevent VHSV disease in cultured fishes, there are still no commercial vaccines. Reverse genetics have made it possible to change a certain regions on viral genome in accordance with the requirements of a research. Various types of VHSV mutants have been generated through the reverse genetic method, and most of them were recovered to investigate the virulence mechanisms of VHSV. In the reverse genetically generated VHSV mutants-based vaccines, high protective efficacies of attenuated VHSVs and single-cycle VHSV particles have been reported. Furthermore, the application of VHSV for the delivery tools of heterologous antigens including not only fish pathogens but also mammalian pathogens has been studied. As not much research has been conducted on VHSV mutants-based vaccines, more studies on the enhancement of immunogenicity, vaccine administration routes, safety to environments are needed for the practical use in aquaculture farms.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
9
|
Choi MG, Kim MS, Choi TJ, Kim KH. Effect of CXCL12-expressing viral hemorrhagic septicemia virus replicon particles on leukocytes migration and vaccine efficacy in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2019; 89:378-383. [PMID: 30978448 DOI: 10.1016/j.fsi.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 05/21/2023]
Abstract
Viral replicon particles are single-cycle viruses defective for function(s) needed for viral replication, which allow them to be recognized as a safer form for the vaccination of animals compared to attenuated live viruses. However, deletion of genes that are critical for the induction of protective immunity can diminish the vaccine potential of viral replicon particles. Therefore, the manipulation of viral replicon particles to produce a molecular adjuvant can be a way to increase immunogenicity of vaccines based on viral replicon particles. Chemokines are a class of chemotactic cytokines that control the migration of diverse cells of vertebrates. CXC chemokine ligand 12 (CXCL12) binds to a receptor CXCR4, and CXCL12-CXCR4 signaling plays an important role in the migration of hematopoietic cells during embryogenesis and the attraction of leukocytes. In the present study, to evaluate the possible use of CXCL12 as a molecular adjuvant for an rVHSV-ΔG vaccine and to know differences between CXCL12a and CXCL12b in the adjuvant ability, we rescued VHSV replicon particles that are expressing olive flounder CXCL12a, CXCL12b, or eGFP (rVHSV-ΔG-CXCL12a, rVHSV-ΔG-CXCL12b, or rVHSV-ΔG-eGFP), and compared the ability to attract olive flounder leucocytes and to induce protection against a VHSV challenge. In the leukocytes migration assay, supernatants collected from cells infected with rVHSV-ΔG-CXCL12a and rVHSV-ΔG-CXCL12b showed significantly higher ability to attract olive flounder leukocytes than the supernatant of cells infected with rVHSV-ΔG-eGFP. Moreover, the significantly higher number of leukocytes were attracted to rVHSV-CXCL12a supernatant compared to rVHSV-CXCL12b supernatant, suggesting that CXCL12a would be more appropriate for the induction of immunity than CXCL12b in olive flounder. In the immunization experiment, olive flounder immunized with rVHSV-ΔG-CXCL12a showed significantly higher survival rate than fish immunized with rVHSV-ΔG-CXCL12b or rVHSV-ΔG-eGFP. In addition, fish immunized with rVHSV-ΔG-CXCL12a showed the highest serum neutralization activity. These results suggest the availability of CXCL12a for a molecular adjuvant of vaccines based on VHSV replicon particles.
Collapse
Affiliation(s)
- Myoung Gwang Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea
| | - Tae-Jin Choi
- Department of Microbiology, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
10
|
Kim MS, Kim KH. Generation of VHSV replicon particles carrying transmembrane and C-terminal cytoplasmic region-deleted G gene (rVHSV-GΔTM) and comparison of vaccine efficacy with G gene-deleted VHSV (rVHSV-ΔG). FISH & SHELLFISH IMMUNOLOGY 2019; 88:231-236. [PMID: 30817994 DOI: 10.1016/j.fsi.2019.02.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Vaccines based on viral replicon particles would be advantageous to induce immune responses compared to inactivated viruses in that they can infect host cells (only once) and can produce viral proteins in the infected cells like live viruses. Furthermore, as viral replicon particles are replication-defective, they are safer than live attenuated viruses. Previously, we had rescued viral hemorrhagic septicemia virus (VHSV) replicon particles lacking full ORF of G gene (rVHSV-ΔG). In the present study, to enhance the immunogenicity of VHSV replicon particles, we newly generated another form of VHSV replicon particles that can produce the transmembrane and C-terminal cytoplasmic region-deleted G protein in host cells (rVHSV-GΔTM), and compared the protective efficacy of rVHSV-GΔTM with that of rVHSV-ΔG through immunization of olive flounder (Paralichthys olivaceus). In addition, we evaluated the safety of rVHSV-GΔTM by the analysis of effects on wild-type VHSV replication. In the vaccine experiment, olive flounder immunized with rVHSV-GΔTM showed significantly higher titers of serum neutralization activity than fish immunized with rVHSV-ΔG suggesting that the G protein that is not only spiked on the viral envelop but also secreted extracellularly can contribute to the enhancement of adaptive humoral immunity. Moreover, fish immunized with rVHSV-GΔTM showed higher survival rates than fish immunized with rVHSV-ΔG, suggesting that the amount of G protein provided to hosts is an important factor for the enhancement of vaccine efficacy against VHSV disease. In a safety aspect, rVHSV-GΔTM could not replicate in infected cells, and significantly inhibited the replication of wild-type VHSV when co-infected, suggesting that rVHSV-GΔTM would not worsen disease progression caused by wild-type VHSV infection.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
11
|
Embregts CWE, Forlenza M. Oral vaccination of fish: Lessons from humans and veterinary species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:118-37. [PMID: 27018298 DOI: 10.1016/j.dci.2016.03.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Kim MS, Choi SH, Kim KH. Effect of G gene-deleted recombinant viral hemorrhagic septicemia virus (rVHSV-ΔG) on the replication of wild type VHSV in a fish cell line and in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2016; 54:598-601. [PMID: 27184110 DOI: 10.1016/j.fsi.2016.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
In an earlier study, we generated a replicon viral hemorrhagic septicemia virus (VHSV) particle that was lacking the G gene in the genome (rVHSV-ΔG), and proved the potential of it as a protective vaccine through the immunization of olive flounder (Paralichthys olivaceus) fingerlings. Safety is the most important preconsideration for the development of recombinant live vaccines, and a major concern of propagation-incompetent viral particles would be the possible harmful effect to hosts through the interaction with wild-type viruses. Thus, in the present study, we analyzed the replication of rVHSV-ΔG in the presence of wild-type VHSV and the effect of rVHSV-ΔG on the replication of wild-type VHSV in Epithelioma papulosum cyprini (EPC) cells and in olive flounder fingerlings. The replication of wild-type VHSV in EPC cells was severely suppressed when the MOI of rVHSV-ΔG was 0.1 or 0.01, on the other hand, the titers of rVHSV-ΔG were not increased and stayed in a relatively constant according to time lapse. Furthermore, the replication of other novirhabdoviruses, IHNV and HIRRV, was also inhibited by co-infection with high titers of rVHSV-ΔG. There were no big differences in mortalities between groups infected with wild-type VHSV plus rVHSV-ΔG and groups infected with wild-type VHSV alone, when the challenged wild-type VHSV was more than 10(2) PFU/fish. However, a group of fish infected with 10 PFU/fish of wild-type VHSV plus rVHSV-ΔG showed significantly lower and slowly progressing cumulative mortality than a group of fish infected with 10 PFU/fish of wild-type VHSV alone. This result suggests that rVHSV-ΔG has an ability to attenuate the disease progression caused by wild-type VHSV when co-infected with relatively low titers of wild-type VHSV. These results indicate that the propagation-incompetent rVHSV-ΔG would not worsen but attenuate the progression of a disease caused by wild-type VHSV infection. Therefore, rVHSV-ΔG-based vaccines can provide a safe and effective way to control VHSV.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, South Korea
| | - Seung Hyuk Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, South Korea.
| |
Collapse
|
13
|
Kim MS, Lee JA, Kim KH. Effects of a broad-spectrum caspase inhibitor, Z-VAD(OMe)-FMK, on viral hemorrhagic septicemia virus (VHSV) infection-mediated apoptosis and viral replication. FISH & SHELLFISH IMMUNOLOGY 2016; 51:41-45. [PMID: 26899629 DOI: 10.1016/j.fsi.2016.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/30/2015] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
In the development of inactivated or attenuated viral vaccines for cultured fish, viral titers harvested from the cultured cells would be the most important factor for the determination of vaccine's cost effectiveness. In this study, we hypothesized that the lengthening of cell survival time by the inhibition of apoptosis can lead to an increase of the final titer of viral hemorrhagic septicemia virus (VHSV). To test the hypothesis, we investigated the effects of a broad-spectrum caspase inhibitor, Z-VAD(OMe)-FMK, on VHSV infection-mediated apoptosis in Epithelioma papulosum cyprini (EPC) cells and on the VHSV titers. VHSV infection induced the DNA laddering in EPC cells, and the progression of DNA fragmentation was in proportion to the CPE extension. The progression of DNA fragmentation in EPC cells infected with VHSV was clearly inhibited by exposure to Z-VAD(OMe)-FMK, and the inhibition was intensified according to the increase of the inhibitor concentration. These results confirmed the previous reports that the death of host cells by VHSV infection is through apoptosis. Cells infected with a recombinant VHSV, rVHSV-ΔNV-eGFP, that was generated from our previous study by replacement of the NV gene ORF with the enhanced green fluorescent protein (eGFP) gene ORF, showed earlier and more distinct DNA fragmentations compared to the cells infected with wild-type VHSV, suggesting the inhibitory role of the NV protein in VHSV-mediated apoptosis that was previously reported. The final viral titers in the supernatant isolated from Z-VAD(OMe)-FMK treated cells after showing an extensive CPE were significantly higher than the viral titers from cells infected with virus alone, indicating that the delay of apoptosis by Z-VAD(OMe)-FMK extended the survival time of EPC cells, which lengthen the time for VHSV replication in the cells. In conclusion, Z-VAD(OMe)-FMK-mediated inhibition of apoptosis significantly increased the final titers of both wild-type VHSV and rVHSV-ΔNV-eGFP, indicating that apoptosis inhibition can be a way to get higher titers of VHSV.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Ji Ae Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
14
|
Kim SH, Kim M, Choi GE, Lee JH, Kang JH, Evensen Ø, Lee WJ. Stability and efficacy of the 3'-UTR A4G-G5A variant of viral hemorrhagic septicemia virus (VHSV) as a live attenuated immersion VHSV vaccine in olive flounder (Paralichthys olivaceus). Vaccine 2016; 34:1097-102. [PMID: 26772633 DOI: 10.1016/j.vaccine.2015.12.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is the causative agent of viral hemorrhagic septicemia in fish, a disease that affects a number of teleost fish species including olive flounder (Paralichthys olivaceus). In this study, we assessed the safety and efficacy of two recombinant attenuated VHSV strains, termed A4G-G5A and ΔNV, with the purpose to select the most suitable vaccine strain. The virus strains were passaged in two commercially available cell lines, EPC and RTG-2, and the strains were also tested for residual virulence in zebrafish (Danio rerio). The A4G-G5A strain showed an attenuated growth profile in both the EPC and RTG-2 cell lines compared to wild-type (WT) VHSV (JF-09, genotype IVa), whereas the growth profile of ΔNV was comparable to the WT strains in RTG-2 cells in contrast to EPC cells. Moreover, ΔNV had higher residual virulence compared to A4G-G5A and was highly pathogenic to zebrafish. The A4G-G5A strain was chosen as vaccine candidate and tested for efficacy in in vivo fish studies in the target species, olive flounder, using an immersion vaccine scheme. Groups of fish were immunized with 10(2.5), 10(3.5), 10(4.5), and 10(5.5) TCID50/ml of A4G-G5A giving 5-13.3 cumulative percent mortality (CPM) post immunization. Immunization was followed by a challenge experiment using VHSV-WT. The relative percent survival (RPS) in immunized groups ranged from 81.6% to 100%, correlating with vaccination dose. This study demonstrates that while strain A4G-G5A has retained some residual virulence it confers high level of protection in immunized olive flounder.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Norwegian University of Life Sciences, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Meesun Kim
- BluGen Korea, 106-14, Songjeongjungang-ro 5 beon-gil, Busan, Republic of Korea
| | - Go-Eun Choi
- BluGen Korea, 106-14, Songjeongjungang-ro 5 beon-gil, Busan, Republic of Korea
| | - Jeong Ho Lee
- Fish Breeding Center, NIFS, Busan, Republic of Korea
| | - Jung-Ha Kang
- Biotechnology Research Division, NIFS, Busan, Republic of Korea
| | - Øystein Evensen
- Norwegian University of Life Sciences, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Woo-Jai Lee
- BluGen Korea, 106-14, Songjeongjungang-ro 5 beon-gil, Busan, Republic of Korea.
| |
Collapse
|
15
|
Munang’andu HM, Mutoloki S, Evensen Ø. An Overview of Challenges Limiting the Design of Protective Mucosal Vaccines for Finfish. Front Immunol 2015; 6:542. [PMID: 26557121 PMCID: PMC4617105 DOI: 10.3389/fimmu.2015.00542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023] Open
Abstract
Research in mucosal vaccination in finfish has gained prominence in the last decade in pursuit of mucosal vaccines that would lengthen the duration of protective immunity in vaccinated fish. However, injectable vaccines have continued to dominate in the vaccination of finfish because they are perceived to be more protective than mucosal vaccines. Therefore, it has become important to identify the factors that limit developing protective mucosal vaccines in finfish as an overture to identifying key areas that require optimization in mucosal vaccine design. Some of the factors that limit the success for designing protective mucosal vaccines for finfish identified in this review include the lack optimized protective antigen doses for mucosal vaccines, absence of immunostimulants able to enhance the performance of non-replicative mucosal vaccines, reduction of systemic antibodies due to prolonged exposure to oral vaccination and the lack of predefined correlates of protective immunity for use in the optimization of newly developed mucosal vaccines. This review also points out the need to develop prime-boost vaccination regimes able to induce long-term protective immunity in vaccinated fish. By overcoming some of the obstacles identified herein, it is anticipated that future mucosal vaccines shall be designed to induce long-term protective immunity in finfish.
Collapse
Affiliation(s)
- Hetron Mweemba Munang’andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
16
|
Kim MS, Park JS, Kim KH. Generation of G gene-deleted viral hemorrhagic septicemia virus (VHSV) and evaluation of its vaccine potential in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2015; 45:666-671. [PMID: 26052020 DOI: 10.1016/j.fsi.2015.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Generation of recombinant viruses lacking an essential gene for the production of infective viral particles would be a way to produce safety-enhanced live viral vaccines. The rhabdoviral envelope-spiked glycoprotein (G) plays critical roles in the attachment of viruses on the cell surface receptor and in the transfer of endocytosed viruses to the cytoplasm by fusion to the endosomal membrane. In the present study, we produced a G gene-lacking recombinant viral hemorrhagic septicemia virus (rVHSV-ΔG) that has no ability to form plaques in the cells without a trans-supply of the G protein, which suggests that rVHSV-ΔG is a single cycle virus and progenies of rVHSV-ΔG are not infectious. One of the major advantages of attenuated vaccines is the maintenance of replication ability in the host, which enforces the adaptive immune responses. However, in spite of lacking an ability to produce infective viral particles, immunization with the present rVHSV-ΔG induced significantly higher serum neutralization titers and survival rates against virulent VHSV challenge in olive flounder (Paralichthys olivaceus) fingerlings, indicating that the present rVHSV-ΔG has a high potential as a prophylactic vaccine.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Ji Sun Park
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
17
|
Transcriptome analysis of rainbow trout in response to non-virion (NV) protein of viral haemorrhagic septicaemia virus (VHSV). Appl Microbiol Biotechnol 2015; 99:1827-43. [DOI: 10.1007/s00253-014-6366-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 12/25/2022]
|
18
|
Somamoto T, Koppang EO, Fischer U. Antiviral functions of CD8(+) cytotoxic T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:197-204. [PMID: 23938605 DOI: 10.1016/j.dci.2013.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Cytotoxic T-cells (CTLs) play a pivotal role in eliminating viruses in mammalian adaptive immune system. Many recent studies on T-cell immunity of fish have suggested that teleost CTLs are also important for antiviral immunity. Cellular functional studies using clonal ginbuan crucian carp and rainbow trout have provided in vivo and in vitro evidence that in many respects, virus-specific CTLs of fish have functions similar to those of mammalian CTLs. In addition, mRNA expression profiles of CTL-related molecules, such as CD8, TCR and MHC class I, have shown that in a wide range of fish species, CTLs are involved in antiviral adaptive immunity. These findings are a basis to formulate possible vaccination strategies to trigger effective antiviral CTL responses in teleost fish. This review describes recent advances in our understanding of antiviral CTL functions in teleost fish and discusses vaccination strategies for efficiently inducing CTL activities.
Collapse
Affiliation(s)
- Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Erling Olaf Koppang
- Section of Anatomy and Pathology, Institute of Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Ullevålsveien 72, 0033 Oslo, Norway
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
19
|
Kim MS, Park JS, Kim KH. Optimal place of a foreign gene in the genome of viral haemorrhagic septicaemia virus (VHSV) for development of VHSV-based viral-vectored vaccines. J Appl Microbiol 2013; 114:1866-73. [PMID: 23445363 DOI: 10.1111/jam.12177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 11/30/2022]
Abstract
AIM As the strength and duration of immune responses can be regulated by the antigen dose, higher expression of foreign antigens in the viral-vectored vaccines would be an important factor for inducing effective immune responses. The aim of this study was to determine the optimal insertion place of a foreign antigen gene in the genome of viral haemorrhagic septicaemia virus (VHSV) for development of VHSV-based viral-vectored vaccines. METHODS AND RESULTS Recombinant VHSVs (rVHSVs) harbouring the red fluorescent protein (RFP) gene between N and P (rVHSV-A-RFP), P and M (rVHSV-B-RFP), or M and G genes (rVHSV-C-RFP) in the genome were rescued by reverse genetics. Their replication ability and expression level of RFP were compared according to the inserted locations. The viral titres of each rVHSV were not significantly different. However, Epithelioma papulosum cyprini (EPC) cells infected with rVHSV-A-RFP or rVHSV-B-RFP showed clearly higher fluorescence than cells infected with rVHSV-C-RFP. There was no significant difference in RFP expression between cells infected with rVHSV-A-RFP and rVHSV-B-RFP. CONCLUSIONS The present results indicate that insertion of a foreign gene between N and P, or P and M genes of VHSV genome would be advantageous for development of VHSV-based viral-vectored vaccines. SIGNIFICANCE AND IMPACT OF THE STUDY The present work is the first report on the optimal location of a foreign gene in VHSV genome for high expression, and the locations identified in this study would be suitable for the development of VHSV-based viral-vectored vaccines.
Collapse
Affiliation(s)
- M S Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | | | | |
Collapse
|
20
|
Avunje S, Kim WS, Oh MJ, Choi I, Jung SJ. Temperature-dependent viral replication and antiviral apoptotic response in viral haemorrhagic septicaemia virus (VHSV)-infected olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2012; 32:1162-1170. [PMID: 22484363 DOI: 10.1016/j.fsi.2012.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/10/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
The olive flounder (Paralichthys olivaceus) shows a high rate of mortality to viral haemorrhagic septicaemia virus (VHSV) in the winter and spring but has zero mortality over 20 °C. In this experiment, we studied the effect of rearing temperature on viral replication, viral transcription and antiviral apoptotic immune response in VHSV-infected olive flounder by real-time polymerase chain reaction. Olive flounder were given intra-peritoneal injections of VHSV (10(7.8) TCID(50)/ml) and were reared at 15 °C or 20 °C. Five fish were randomly sampled for head kidney at 3, 6 and 12 h post-infection (hpi) and 1, 2, 4 and 7 days post-infection (dpi). Total RNA extracted from the tissue was reverse transcribed and used as template for real-time PCR. In the 15 °C group, the number of viral gRNA copies peaked after 2 dpi and remained high through 7 dpi, while in the 20 °C group, the copy number was at the highest at 1 dpi but drastically declined at later stages. Viral mRNA levels in the 15 °C group gradually increased starting at 3 hpi to reach their maximum value at 12 hpi and remained high until 2 dpi, whereas the other group showed much lower copy numbers that were undetectably low at 4 and 7 dpi. Type II IFN expression increased as the viral copies increased and the 20 °C group showed quicker and stronger expression than the 15 °C group. The MHC class I and CD8 expression was high in both the groups at early stage of infection (3-6 hpi) but at later stages (2-7 dpi) in 15 °C group expression reduced below control levels, while they expressed higher to control in 20 °C group. The expression of granzyme in 15 °C fish showed a single peak at 2 dpi, but was consistently expressing in 20 °C fish. Individuals expressed very high levels of perforin expressed very high levels of caspase 3. In 15 °C fish, TNFα, FasL and p53 expressed significantly higher than 20 °C only at initial stages of infection (3-6 hpi). Caspase 3 expression found to be low in 15 °C fish whereas it was significantly elevated in 20 °C group. Interestingly individual fish with high caspase 3 expression contained very low viral RNA. Thus, from our experiment, we can conclude that an effective apoptotic immune response in VHSV-infected olive flounder plays a crucial role in the survival of the host at higher temperatures.
Collapse
Affiliation(s)
- Satheesha Avunje
- Department of Aqualife Medicine, Chonnam National University, Chonnam, Republic of Korea
| | | | | | | | | |
Collapse
|