1
|
Liu S, Wang W, Jia T, Xin L, Xu TT, Wang C, Xie G, Luo K, Li J, Kong J, Zhang Q. Vibrio parahaemolyticus becomes lethal to post-larvae shrimp via acquiring novel virulence factors. Microbiol Spectr 2023; 11:e0049223. [PMID: 37850796 PMCID: PMC10714935 DOI: 10.1128/spectrum.00492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE As a severe emerging shrimp disease, TPD has heavily impacted the shrimp aquaculture industry and resulted in serious economic losses in China since spring 2020. This study aimed to identify the key virulent factors and related genes of the Vp TPD, for a better understanding of its pathogenicity of the novel highly lethal infectious pathogen, as well as its molecular epidemiological characteristics in China. The present study revealed that a novel protein, Vibrio high virulent protein-2 (MW >100 kDa), is responsible to the lethal virulence of V. parahaemolyticus to shrimp post-larvae. The results are essential for effectively diagnosing and monitoring novel pathogenic bacteria, like Vp TPD, in aquaculture shrimps and would be beneficial to the fisheries department in early warning of Vp TPD emergence and developing prevention strategies to reduce economic losses due to severe outbreaks of TPD. Elucidation of the key virulence genes and genomics of Vp TPD could also provide valuable information on the evolution and ecology of this emerging pathogen in aquaculture environments.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Tianchang Jia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Lusheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Ting-ting Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Chong Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Guosi Xie
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Kun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
| | - Jun Li
- School of Sciences and Medicine, Lake Superior State University, Sault Ste. Marie, Michigan, USA
| | - Jie Kong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Qingli Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Marine Aquaculture Disease Control, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| |
Collapse
|
2
|
Edwardsiella tarda TraT is an anti-complement factor and a cellular infection promoter. Commun Biol 2022; 5:637. [PMID: 35768577 PMCID: PMC9243006 DOI: 10.1038/s42003-022-03587-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Edwardsiella tarda is a well-known bacterial pathogen with a broad range of host, including fish, amphibians, and mammals. One eminent virulence feature of E. tarda is its strong ability to resist the killing of host serum complement, but the involving mechanism is unclear. In this report, we identified E. tarda TraT as a key player in both complement resistance and cellular invasion. TraT, a surface-localized protein, bound and recruited complement factor H onto E. tarda, whereby inhibiting complement activation via the alternative pathway. TraT also interacted with host CD46 in a specific complement control protein domain-dependent manner, whereby facilitating the cellular infection and tissue dissemination of E. tarda. Thus, by acting as an anti-complement factor and a cellular infection promoter, TraT makes an important contribution to the complement evasion and systemic infection of E. tarda. These results add insights into the pathogen-host interaction mechanism during E. tarda infection. Edwardsiella tarda TraT promotes cellular infection and serves as an anti-complement factor, shedding light on the mechanisms of E. tarda’s strong evasion of killing by the host.
Collapse
|
3
|
Liu X, Wang X, Sun B, Sun L. The Involvement of Thiamine Uptake in the Virulence of Edwardsiella piscicida. Pathogens 2022; 11:464. [PMID: 35456139 PMCID: PMC9026889 DOI: 10.3390/pathogens11040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Edwardsiella piscicida is a pathogenic bacterium, which can infect a number of fish species and cause a disease termed edwardsiellosis, threatening global fish farming with high prevalence and mortality. Thiamine (Vitamin B1), functioning in the form of thiamine pyrophosphate (TPP), is essential for almost all organisms. Bacteria acquire TPP by biosynthesis or by transportation of exogenous thiamine. TPP availability has been associated with bacterial pathogenicity, but the underlying mechanisms remain to be discovered. The role of thiamine in the pathogenicity of E. piscicida is unknown. In this study, we characterized a thiamine transporter (TT) operon in E. piscicida. The deletion of the TT operon resulted in an intracellular TPP lacking situation, which led to attenuated overall pathogenicity, impaired abilities associated with motility and host cell adhesion, as well as decreased expression of certain flagellar and adhesion genes. Moreover, TPP starvation led to intracellular c-di-GMP reduction, and introducing into the TPP-suppressed mutant strain an exogenous diguanylate cyclase for c-di-GMP synthesis restored the virulence loss. Taken together, this work reveals the involvement of thiamine uptake in the virulence regulation of E. piscicida, with c-di-GMP implicated in the process. These finding could be employed to explore potential drug targets against E. piscicida.
Collapse
Affiliation(s)
- Xin Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; (X.L.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Barros F, Silva L, Dias J, Abe H, Paixão P, Sousa N, Cordeiro C, Fujimoto R. In vitro selection of autochthonous bacterium with probiotic potential for the neotropical fish piauçu Megaleporinus microcephalus. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The study aimed to isolate, identify, and apply in vitro tests on bacteria with autochthonous probiotic potential isolated from fifteen healthy specimens of Megaleporinus macrocephalus. The strains were selected from the intestinal tract of fish and inoculated in the Petri plate containing Sharp Man Rogosa Agar (MRS) for (48 hours at 35ºC). They were isolated based on a test of catalase, Gram stain, tolerance to different gradients NaCl (1, 2 and 3%), pH (4, 5, 6, 8 and 9) values and bile salts (2.5 and 5%), in addition to the inhibition zone against pathogens. Of the 42 strains isolated, ST1 and ST9 had higher values (p<0.05) for total viable cells (31.80±0.07 and 32.51±0.05 CFU/mL × 108) respectively. In the resistance tests, strains ST1 and ST9 presented the best results, with emphasis on ST9 in the gradients of pH, high values of bile salts and larger inhibition zones against Aeromonas hydrophila and Aeromonas jandaei. The strains with the best results in the tests, ST1 and ST9, were identified by the MALDI-TOF-MS method as Enterococcus faecium. Thus, the isolated E. faecium bacteria, may be recommended as for probiotic use in farming the M. macrocephalus.
Collapse
Affiliation(s)
| | | | | | - H.A. Abe
- Universidade Federal do Pará, Brazil
| | | | | | | | | |
Collapse
|
5
|
Serine Metabolism Tunes Immune Responses To Promote Oreochromis niloticus Survival upon Edwardsiella tarda Infection. mSystems 2021; 6:e0042621. [PMID: 34427522 PMCID: PMC8407201 DOI: 10.1128/msystems.00426-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Overactive immune response is a critical factor triggering host death upon bacterial infection. However, the mechanism behind the regulation of excessive immune responses is still largely unknown, and the corresponding control and preventive measures are still to be explored. In this study, we find that Nile tilapia, Oreochromis niloticus, that died from Edwardsiella tarda infection had higher levels of immune responses than those that survived. Such immune responses are strongly associated with metabolism that was altered at 6 h postinfection. By gas chromatography-mass spectrometry-based metabolome profiling, we identify glycine, serine, and threonine metabolism as the top three of the most impacted pathways, which were not properly activated in the fish that died. Serine is one of the crucial biomarkers. Exogenous serine can promote O. niloticus survival both as a prophylactic and therapeutic upon E. tarda infection. Our further analysis revealed exogenous serine flux into the glycine, serine, and threonine metabolism and, more importantly, the glutathione metabolism via glycine. The increased glutathione synthesis could downregulate reactive oxygen species. Therefore, these data together suggest that metabolic modulation of immune responses is a potential preventive strategy to control overactive immune responses. IMPORTANCE Bacterial virulence factors are not the only factors responsible for host death. Overactive immune responses, such as cytokine storm, contribute to tissue injury that results in organ failure and ultimately the death of the host. Despite the recent development of anti-inflammation strategies, the way to tune immune responses to an appropriate level is still lacking. We propose that metabolic modulation is a promising approach in tuning immune responses. We find that the metabolomic shift at as early as 6 h postinfection can be predictive of the consequences of infection. Serine is a crucial biomarker whose administration can promote host survival upon bacterial infection either in a prophylactic or therapeutic way. Further analysis demonstrated that exogenous serine promotes the synthesis of glutathione, which downregulates reactive oxygen species to dampen immune responses. Our study exemplifies that the metabolite(s) is a potential therapeutic reagent for overactive immune response during bacterial infection.
Collapse
|
6
|
Li MF, Jia BB, Sun YY, Sun L. The Translocation and Assembly Module (TAM) of Edwardsiella tarda Is Essential for Stress Resistance and Host Infection. Front Microbiol 2020; 11:1743. [PMID: 32793174 PMCID: PMC7393178 DOI: 10.3389/fmicb.2020.01743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022] Open
Abstract
Translocation and assembly module (TAM) is a protein channel known to mediate the secretion of virulence factors during pathogen infection. Edwardsiella tarda is a Gram-negative bacterium that is pathogenic to a wide range of farmed fish and other hosts including humans. In this study, we examined the function of the two components of the TAM, TamA and TamB, of E. tarda (named tamAEt and tamBEt, respectively). TamAEt was found to localize on the surface of E. tarda and be recognizable by TamAEt antibody. Compared to the wild type, the tamA and tamB knockouts, TX01ΔtamA and TX01ΔtamB, respectively, were significantly reduced in motility, flagella formation, invasion into host cells, intracellular replication, dissemination in host tissues, and inducing host mortality. The lost virulence capacities of TX01ΔtamA and TX01ΔtamB were restored by complementation with the tamAEt and tamBEt genes, respectively. Furthermore, TX01ΔtamA and TX01ΔtamB were significantly impaired in the ability to survive under low pH and oxidizing conditions, and were unable to maintain their internal pH balance and cellular structures in acidic environments, which led to increased susceptibility to lysozyme destruction. Taken together, these results indicate that TamAEt and TamBEt are essential for the virulence of E. tarda and required for E. tarda to survive under stress conditions.
Collapse
Affiliation(s)
- Mo-Fei Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei-Bei Jia
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Guan XL, Zhang BC, Sun L. Japanese flounder pol-miR-3p-2 suppresses Edwardsiella tarda infection by regulation of autophagy via p53. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103531. [PMID: 31668931 DOI: 10.1016/j.dci.2019.103531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators that play vital roles in diverse physiological processes including immunity. In this study, we investigated the regulatory mechanism and function of a novel Japanese flounder (Paralichthys olivaceus) miRNA, pol-miR-3p-2. pol-miR-3p-2 was responsive in expression to the infection of the bacterial pathogen Edwardsiella tarda. pol-miR-3p-2 negatively regulated the expression of p53 through interaction with the 3'UTR of p53. Overexpression of pol-miR-3p-2 promoted autophagy, resulting in augmented production of LC3-II, while knockdown of p53 increased the level of beclin, a key factor of autophagy. In vivo and in vitro studies showed that E. tarda infection induced autophagy in flounder, and pol-miR-3p-2 inhibited the infectivity of E. tarda. Together these results indicate that pol-miR-3p-2 regulates autophagy through the target gene p53, thus revealing a regulatory link between p53 and autophagy in teleost, and that pol-miR-3p-2 plays an important role in the immune defense against E. tarda.
Collapse
Affiliation(s)
- Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bao-Cun Zhang
- Department of Biomedicine and Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Buján N, Toranzo AE, Magariños B. Edwardsiella piscicida: a significant bacterial pathogen of cultured fish. DISEASES OF AQUATIC ORGANISMS 2018; 131:59-71. [PMID: 30324915 DOI: 10.3354/dao03281] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Edwardsiella piscicida, a Gram-negative, facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis in fish and a significant problem in global aquaculture. E. piscicida has been reported from a broad geographical range and has been isolated from more than 20 fish host species to date, but this is likely to be an underestimation, because misidentification of E. piscicida as other species within the genus remains to be resolved. Common clinical signs associated with edwardsiellosis include, but are not limited to, exophthalmia, haemorrhages of the skin and in several internal organs, mild to moderate dermal ulcerations, abdominal distension, discoloration in the fish surface, and erratic swimming. Many antibiotics are currently effective against E. piscicida, although legal restrictions and the cost of medicated feeds have encouraged significant research investment in vaccination for the management of edwardsiellosis in commercial aquaculture. Here we summarise the current understanding of E. piscicida and highlight the difficulties with species assignment and the need for further research on epidemiology and strain variability.
Collapse
Affiliation(s)
- N Buján
- Departamento de Microbioloxía y Parasitoloxía, Facultade de Bioloxía-Edif, CIBUS, and Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | | |
Collapse
|
9
|
Wang C, Peng B, Li H, Peng XX. TolC plays a crucial role in immune protection conferred by Edwardsiella tarda whole-cell vaccines. Sci Rep 2016; 6:29488. [PMID: 27406266 PMCID: PMC4942608 DOI: 10.1038/srep29488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/21/2016] [Indexed: 12/26/2022] Open
Abstract
Although vaccines developed from live organisms have better efficacy than those developed from dead organisms, the mechanisms underlying this differential efficacy remain unexplored. In this study, we combined sub-immunoproteomics with immune challenge to investigate the action of the outer membrane proteome in the immune protection conferred by four Edwardsiella tarda whole-cell vaccines prepared via different treatments and to identify protective immunogens that play a key role in this immune protection. Thirteen spots representing five outer membrane proteins and one cytoplasmic protein were identified, and it was found that their abundance was altered in relation with the immune protective abilities of the four vaccines. Among these proteins, TolC and OmpA were found to be the key immunogens conferring the first and second highest degrees of protection, respectively. TolC was detected in the two effective vaccines (live and inactivated-30-F). The total antiserum and anti-OmpA titers were higher for the two effective vaccines than for the two ineffective vaccines (inactivated-80-F and inactivated-100). Further evidence demonstrated that the live and inactivated-30-F vaccines demonstrated stronger abilities to induce CD8+ and CD4+ T cell differentiation than the other two evaluated vaccines. Our results indicate that the outer membrane proteome changes dramatically following different treatments, which contributes to the effectiveness of whole-cell vaccines.
Collapse
Affiliation(s)
- Chao Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.,Freshwater fisheries Academy of Shandong province, Jinan 250117, People's Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
10
|
Pilatti L, Boldrin de Paiva J, Rojas TCG, Leite JL, Conceição RA, Nakazato G, Dias da Silveira W. The virulence factor ychO has a pleiotropic action in an Avian Pathogenic Escherichia coli (APEC) strain. BMC Microbiol 2016; 16:35. [PMID: 26965678 PMCID: PMC4787180 DOI: 10.1186/s12866-016-0654-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 03/02/2016] [Indexed: 02/04/2023] Open
Abstract
Background Avian pathogenic Escherichia coli strains cause extraintestinal diseases in birds, leading to substantial economic losses to the poultry industry worldwide. Bacteria that invade cells can overcome the host humoral immune response, resulting in a higher pathogenicity potential. Invasins are members of a large family of outer membrane proteins that allow pathogen invasion into host cells by interacting with specific receptors on the cell surface. Results An in silico analysis of the genome of a septicemic APEC strain (SEPT362) demonstrated the presence of a putative invasin homologous to the ychO gene from E. coli str. K-12 substr. MG1655. In vitro and in vivo assays comparing a mutant strain carrying a null mutation of this gene, a complemented strain, and its counterpart wild-type strain showed that ychO plays a role in the pathogenicity of APEC strain SEPT362. In vitro assays demonstrated that the mutant strain exhibited significant decreases in bacterial adhesiveness and invasiveness in chicken cells and biofilm formation. In vivo assay indicated a decrease in pathogenicity of the mutant strain. Moreover, transcriptome analysis demonstrated that the ychO deletion affected the expression of 426 genes. Among the altered genes, 93.66 % were downregulated in the mutant, including membrane proteins and metabolism genes. Conclusion The results led us to propose that gene ychO contributes to the pathogenicity of APEC strain SEPT362 influencing, in a pleiotropic manner, many biological characteristics, such as adhesion and invasion of in vitro cultured cells, biofilm formation and motility, which could be due to the possible membrane location of this protein. All of these results suggest that the absence of gene ychO would influence the virulence of the APEC strain herein studied.
Collapse
Affiliation(s)
- Livia Pilatti
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Jacqueline Boldrin de Paiva
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Thaís Cabrera Galvão Rojas
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Janaína Luisa Leite
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Rogério Arcuri Conceição
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Wanderley Dias da Silveira
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
Leo JC, Oberhettinger P, Schütz M, Linke D. The inverse autotransporter family: intimin, invasin and related proteins. Int J Med Microbiol 2014; 305:276-82. [PMID: 25596886 DOI: 10.1016/j.ijmm.2014.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intimin and invasin are adhesins and central virulence factors of attaching and effacing bacteria, such as enterohaemorrhagic Escherichia coli, and enteropathogenic Yersiniae, respectively. These proteins are prototypes of a large family of adhesins distributed widely in Gram-negative bacteria. It is now evident that this protein family represents a previously unrecognized autotransporter secretion system, termed type Ve secretion. In contrast to classical autotransport, where the transmembrane β-barrel domain or translocation unit is C-terminal to the extracellular region or passenger domain, type Ve-secreted proteins have an inverted topology with the passenger domain C-terminal to the translocation unit; hence the term inverse autotransporter. This minireview covers the recent advances in elucidating the structure and biogenesis of inverse autotransporters.
Collapse
Affiliation(s)
- Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Philipp Oberhettinger
- Interfaculty Institute for Microbiology and Infection Medicine, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Monika Schütz
- Interfaculty Institute for Microbiology and Infection Medicine, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Max Planck Institute for Developmental Biology, Department of Protein Evolution, 72076 Tübingen, Germany.
| |
Collapse
|
12
|
Song M, Xie J, Peng X, Li H. Identification of protective immunogens from extracellular secretome of Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1932-1936. [PMID: 24099803 DOI: 10.1016/j.fsi.2013.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/22/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
Edwardsiella tarda is an opportunistic pathogen that causes a great loss in aquaculture. Identification of immune protective immunogens is a key step for development of subunit vaccines and control of the infectious diseases caused by the bacterium. This study aims to identify the protective antigens from extracellular secretory proteome of E. tarda. Out of 38 extracellular secretory proteins predicted by PSORTb, 20 genes were randomly cloned and their recombinant proteins were expressed in Escherichia coli BL21 and purified by either affinity chromatography or inclusion body washing. The purified recombinant proteins were used for investigation of immune protection in zebrafish model using active immunization approach. Half of them had significant immune protection compared with the control. Out of them, four, EseC, ETAE_2088, FlgD and ETAE_2130, showed approximately 60% relative percent survivals as a result of the highly protective antigens identified. Except for FlgD, the other three were first reported here. Moreover, the present study identified EseC and ETAE_2088 in bacterial extracellular fraction. These results indicate that secretory proteome is an interesting pool used for identification of immune protective antigens, and the four highly protective antigens identified provide useful candidates for development of subunit vaccines.
Collapse
Affiliation(s)
- Ming Song
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, MOE Key Lab Aquat Food Safety, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Wang C, Hu YH, Sun BG, Li J, Sun L. Edwardsiella tarda Ivy, a lysozyme inhibitor that blocks the lytic effect of lysozyme and facilitates host infection in a manner that is dependent on the conserved cysteine residue. Infect Immun 2013; 81:3527-33. [PMID: 23817616 PMCID: PMC3811778 DOI: 10.1128/iai.00503-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/22/2013] [Indexed: 02/04/2023] Open
Abstract
Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad host range that includes fish and humans. In this study, we examined the activity and function of the lysozyme inhibitor Ivy (named IvyEt) identified in the pathogenic E. tarda strain TX01. IvyEt possesses the Ivy signature motif CKPHDC in the form of (82)CQPHNC(87) and contains several highly conserved residues, including a tryptophan (W55). For the purpose of virulence analysis, an isogenic TX01 mutant, TXivy, was created. TXivy bears an in-frame deletion of the ivyEt gene. A live infection study in a turbot (Scophthalmus maximus) model showed that, compared to TX01, TXivy exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, an impaired ability to replicate in host macrophages, and decreased resistance against the bactericidal effect of host serum. To facilitate functional analysis, recombinant IvyEt (rIvy) and three mutant proteins, i.e., rIvyW55A, rIvyC82S, and rIvyH85D, which bear Ala, Ser, and Asp substitutions at W55, C82, and H85, respectively, were prepared. In vitro studies showed that rIvy, rIvyW55A, and rIvyH85D were able to block the lytic effect of lysozyme on a Gram-positive bacterium, whereas rIvyC82S could not do so. Likewise, rIvy, but not rIvyC82S, inhibited the serum-facilitated killing effect of lysozyme on E. tarda. In vivo analysis showed that rIvy, but not rIvyC82S, restored the lost pathogenicity of TXivy and enhanced the infectivity of TX01. Together these results indicate that IvyEt is a lysozyme inhibitor and a virulence factor that depends on the conserved C82 for biological activity.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Bo-guang Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Biological Sciences, Lake Superior State University, Sault Ste Marie, Michigan, USA
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
14
|
Wang C, Hu YH, Chi H, Sun L. The major fimbrial subunit protein of Edwardsiella tarda: vaccine potential, adjuvant effect, and involvement in host infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:858-865. [PMID: 23811351 DOI: 10.1016/j.fsi.2013.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Edwardsiella tarda is a Gram-negative bacterium that is reckoned one of the most severe fish pathogens. In this study, we analyzed the biological properties of the E. tarda major fimbrial subunit protein, FimA. We found that mutation of fimA resulted in defective biofilm growth, attenuated infectivity against host cells, and impaired ability to disseminate into and colonize host tissues following experimental infection. When used as a subunit vaccine, recombinant FimA (rFimA) elicited a high level of protection in turbot (Scophthalmus maximus) against lethal E. tarda challenge. Immunological analysis showed that rFimA vaccination induced production of specific serum antibodies that bound to live E. tarda via interaction with the FimA on bacterial cells, and that antibody-E. tarda interaction blocked bacterial infection. Furthermore, passive immunization of turbot with anti-rFimA serum before E. tarda infection reduced bacterial loads in fish tissues to significant extents. To examine the adjuvant potential of FimA, turbot were vaccinated with rVhhP2, a protective Vibrio harveyi antigen, in the presence or absence of rFimA. Subsequent analysis showed that the presence of rFimA significantly augmented the protectivity of rVhhP2. ELISA and quantitative real time RT-PCR showed that rFimA significantly increased rVhhP2-specific serum antibody production and enhanced the expression of immune relevant genes. Taken together, these results indicate that FimA is a virulence-associated protein that possesses vaccine as well as adjuvant potentials, and that the immunoprotectivity of FimA is most likely due to its ability to induce specific immune response that inhibits E. tarda infection.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
15
|
Jin RP, Hu YH, Sun BG, Zhang XH, Sun L. Edwardsiella tarda sialidase: pathogenicity involvement and vaccine potential. FISH & SHELLFISH IMMUNOLOGY 2012; 33:514-521. [PMID: 22705341 DOI: 10.1016/j.fsi.2012.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 06/01/2023]
Abstract
Bacterial sialidases are a group of glycohydrolases that are known to play an important role in invasion of host cells and tissues. In this study, we examined in a model of Japanese flounder (Paralichthys olivaceus) the potential function of NanA, a sialidase from the fish pathogen Edwardsiella tarda. NanA is composed of 670 residues and shares low sequence identities with known bacterial sialidases. In silico analysis indicated that NanA possesses a sialidase domain and an autotransporter domain, the former containing five Asp-boxes, a RIP motif, and the conserved catalytic site of bacterial sialidases. Purified recombinant NanA (rNanA) corresponding to the sialidase domain exhibited glycohydrolase activity against sialic acid substrate in a manner that is pH and temperature dependent. Immunofluorescence microscopy showed binding of anti-rNanA antibodies to E. tarda, suggesting that NanA was localized on cell surface. Mutation of nanA caused drastic attenuation in the ability of E. tarda to disseminate into and colonize fish tissues and to induce mortality in infected fish. Likewise, cellular study showed that the nanA mutant was significantly impaired in the infectivity against cultured flounder cells. Immunoprotective analysis showed that rNanA in the form of a subunit vaccine conferred effective protection upon flounder against lethal E. tarda challenge. rNanA vaccination induced the production of specific serum antibodies, which enhanced complement-mediated bactericidal activity and reduced infection of E. tarda into flounder cells. Together these results indicate that NanA plays an important role in the pathogenesis of E. tarda and may be exploited for the control of E. tarda infection in aquaculture.
Collapse
Affiliation(s)
- Ren-ping Jin
- Department of Marine Biology, Ocean University of China, Qingdao, China
| | | | | | | | | |
Collapse
|