1
|
Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, Khalid M, Wang Y. Combined effects of pentachlorophenol and nano-TiO 2 with different sizes on antioxidant, digestive, and immune responses of the swimming crab Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106900. [PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
Collapse
Affiliation(s)
- Xukai Lan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bingyan Sun
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu 20000, Malaysia
| | - Hanting Song
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mansoor Khalid
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
2
|
Zhang X, Shi J, Sun Y, Wang Y, Zhang Z. The potential role of eyestalk in the immunity of Litopenaeus vannamei to Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:62-73. [PMID: 34998096 DOI: 10.1016/j.fsi.2021.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The X-organ-sinus gland complex (XO-SG) in the eyestalk is an important neuroendocrine regulatory organ of crustaceans such as Litopenaeus vannamei, a prominent aquaculture species. The current study found significant changes in the enzyme activities of ALP, ACP, and T-SOD of hepatopancreatic in response to Vibrio parahaemolyticus exposure following eyestalk ablation, indicating that they were all involved in the immunological regulation of shrimps against V. parahaemolyticus infection. A total of 52,656 unigenes were obtained after RNA-Seq, with an average length of 1036 bp and an N50 of 1847 bp. Subsequently, 1899 eyestalk positive regulation genes (EPRGs), 745 eyestalk negative regulation genes (ENRGs), and 2077 non-eyestalk regulatory genes (NEGs) were identified. KEGG analysis of EPRGs revealed that eyestalk ablation might activate the neuroendocrine-immune (NEI) system. The RNA-Seq data were validated using quantitative real-time PCR (qRT-PCR). The findings suggested that eyestalk ablation might affect the expression of genes involved in the prophenoloxidase-activating system, the TLR signaling pathway, and numerous other immune-related genes in L. vannamei. All of these findings revealed that the eyestalk might have a role in the immune response of L. vannamei. The genes and pathways discovered in this study will help to elucidate the molecular mechanisms of hemocytes' immune response to V. parahaemolyticus following eyestalk ablation in shrimp, as well as provide the framework for building crustacean immunity theory.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jialong Shi
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Liu H, Liu Y, Song C, Cui Z. A chymotrypsin-like serine protease from Portunus trituberculatus involved in pathogen recognition and AMP synthesis but not required for prophenoloxidase activation. FISH & SHELLFISH IMMUNOLOGY 2017; 66:307-316. [PMID: 28522421 DOI: 10.1016/j.fsi.2017.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Clip domain serine proteases (clip-SPs) play critical roles in various immune responses in arthropods, such as hemolymph coagulation, antimicrobial peptide (AMP) synthesis, cell adhesion and melanization. In the present study, we report the molecular and functional characterization of a clip domain serine protease (PtcSP2) from the swimming crab Portunus trituberculatus. The N-terminal clip domain and the C-terminal SP-like domain of PtcSP2 were expressed in Escherichia coli system, and assayed for their activities. Sequence similarity and phylogenetic analysis revealed that PtcSP2 may belong to the chymotrypsin family, which was confirmed by protease activity assay of the recombinant SP-like domain. The clip domain of PtcSP2 exhibited strong antibacterial activity and microbial-binding activity, suggesting the potential role in immune defense and recognition. Knockdown of PtcSP2 by RNA interference could significantly reduce PtcSP2 transcript levels, but neither decrease the total phenoloxidase (PO) activity in crab nor significantly alter the expression levels of serine protease inhibitors PtPLC and PtSerpin. These results indicate that PtcSP2 is not involved in the proPO system. However, suppression of PtcSP2 led to a significant change in the expression of AMP genes PtALFs and PtCrustin but not PtALF5. All these findings suggest that PtcSP2 is a multifunctional chymotrypsin-like serine protease and may participate in crab innate immunity by its antibacterial activity, immune recognition or regulation of AMP expression.
Collapse
Affiliation(s)
- Hourong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Chengwen Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoxia Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
4
|
Ren X, Yu X, Gao B, Li J, Liu P. The immune responses and antioxidant status of Portunus trituberculatus individuals with different body weights. FISH & SHELLFISH IMMUNOLOGY 2016; 51:337-345. [PMID: 26952172 DOI: 10.1016/j.fsi.2016.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Vibrio alginolyticus is a virulent pathogen that affects crab aquacultures. In the present study, the immune responses and antioxidant status of big and small (based on body weight and size) 80-, 100- and 120-day-old specimens of Portunus trituberculatus, challenged for 72 h with Vibrio alginolyticus, were studied. The total hemocyte count (THC), and phagocytic, prophenoloxidase and phenoloxidase activities, of the big individuals (BIs) were higher than those of the small individuals (SIs) (P < 0.05). The antioxidant status of the organisms showed a similar pattern: superoxide dismutase (SOD) activity and glutathione/oxidized glutathione (GSH/GSSG) in the cell-free hemolymph and hepatopancreases of the BIs were higher than in the SIs (P < 0.05). There were no significant differences in α2-macroglobulin (α2-M), antibacterial and bacteriolytic activities in the cell-free hemolymph, or glutathione peroxidase activity in the cell-free hemolymph or hepatopancreas between the BIs and SIs. The α2-M and crustin gene expression levels in the hemocytes, and SOD expression in the hemocytes and hepatopancreas, were also significantly higher in the BIs. The results suggest that, compared with the SIs, the BIs possessed a higher resistance to V. alginolyticus infection.
Collapse
Affiliation(s)
- Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Xuan Yu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, PR China
| | - Baoquan Gao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
5
|
Liu Y, Liu T, Hou F, Wang X, Liu X. Lvserpin3 is involved in shrimp innate immunity via the inhibition of bacterial proteases and proteases involved in prophenoloxidase system. FISH & SHELLFISH IMMUNOLOGY 2016; 48:128-135. [PMID: 26432049 DOI: 10.1016/j.fsi.2015.09.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Serine protease inhibitor, represented by serpin, plays an important inhibitory role on proteases involved in the immune responses. To clarify the immune characterizations of serpin, a novel serpin (Lvserpin3) encoding for 410 amino acids with a 23-amino acid signal peptide and a serpin domain was identified from the Pacific white shrimp Litopenaeus vannamei. Lvserpin3 expressed strongest in hepatopancreas, and was significantly up-regulated in the early stage upon Vibrio anguillarum, Micrococcus lysodeikticus or White Spot Syndrome Virus (WSSV) infection. Suppression of Lvserpin3 by dsRNA led to a significant increase in the transcripts of LvPPAF, LvproPO and phenoloxidase (PO) activity, and also led to the high cumulative mortality. The recombinant Lvserpin3 protein (rLvserpin3) inhibited the proteases secreted by M. lysodeikticus and Bacillus subtilis, and further exhibited inhibitory role on the growth of B. subtilis and M. lysodeikticu. Moreover, rLvserpin3 was found to be able to block the activation of prophenoloxidase system. Taken together, the results imply that Lvserpin3 may be involved in shrimp innate immunity via the inhibition of bacterial proteases and proteases involved in prophenoloxidase system.
Collapse
Affiliation(s)
- Yongjie Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Fujun Hou
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Xianzong Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, Yangling, 712100, China.
| |
Collapse
|
6
|
Liu Y, Cui Z, Shi G, Luo D, Wang S, Wang C. PtPLC, a pacifastin-related inhibitor involved in antibacterial defense and prophenoloxidase cascade of the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2015; 43:36-42. [PMID: 25542376 DOI: 10.1016/j.fsi.2014.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/05/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Pacifastin-related inhibitor is a new family of serine protease inhibitors that regulate the proteolytic cascade in multiple biological processes. Contrary to the knowledge on the structure and inhibitory mechanism of pacifastin-like members in locust, very little is known about their functions. Here, we report the inhibitory activities in relation to the structural characteristics of pacifastin light chain (PtPLC) gene identified from the swimming crab Portunus trituberculatus. The mature PtPLC and five PLD-related domains with critical residues were expressed in Escherichia coli, and assayed for their activities. The recombinant PtPLC (rPtPLC) displayed inhibitory activities against trypsin and chymotrypsin in a dose dependent manner, with a preference for trypsin. Except for rPtPLC-D4, the other four rPtPLC-related domains could inhibit at least one of serine proteases. The enzyme specificity of PtPLC domains generally corresponded to the nature of the P1 residue at the reactive site. rPtPLC was able to inhibit the growth of Gram-negative bacteria Vibrio alginolyticus and Pseudomonas aeruginosa, but not the Gram-positive bacterium and fungus tested. Further phenoloxidase (PO) assay showed the rPtPLC could depress the crab proPO system activation in vitro, and lead to 72.8% inhibition of PO activity at the concentration of 9.11 μM. It also suppressed proPO activation induced by rPtcSP and rPtSPH1. As the first functional study of the recombinant PLC protein in crustaceans, the present results together indicate that PtPLC functions in the crab immune response possibly via inhibiting bacterial growth and regulating the proPO system.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoxia Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory for Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Guohui Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danli Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangyan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|