1
|
Shen W, Zhao S, Lyu S, Zhang M, Guo Q, Lou B, Ma W, Zhan J, Liu L, Li L. Integrating transcriptomics and metabolomics revealed pathogenic mechanism of Chinese soft-shell turtle (Trionyx sinensis) infected with Trionyx sinensis hemorrhagic syndrome virus (TSHSV). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105373. [PMID: 40258577 DOI: 10.1016/j.dci.2025.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Trionyx sinensis Hemorrhagic Syndrome Virus(TSHSV)seriously hinders the aquaculture of Chinese soft-shell turtle (Trionyx sinensis) due to its high mortality. However, the pathogenic mechanisms of TSHSV in T. sinensis are still unclear. In present study, transcriptomic and metabolomic analyses were performed on turtle livers following TSHSV infection. 734 up-regulated and 770 down-regulated differentially expressed genes (DEGs) were identified in different TSHSV challenge groups. These DEGs were categorized into 12 pathways related to virus infection and host immunity. Moreover, 27, 2679, and 4341 differentially expressed metabolites (DEMs) were identified in the D1, D3, and D5 groups, respectively. These DEMs were mapped into the pathways of energy metabolism, amino acid metabolism and fatty acid metabolism. Association analysis revealed TSHSV induced inflammatory responses, hepatocyte apoptosis, and ultimately led to liver tissue damage. Taurine supplementation promoted the survival rate of turtle after TSHSV infection and reduced the inflammatory response of liver by regulating the production of interferons, antioxidases, and the pro-inflammatory cytokine TNF-α. Collectively, our results provide comprehensive profiles of the transcriptome and metabolome in Chinese soft-shell turtle liver after TSHSV invasion, shedding light on the underlying pathogenic mechanism. The method of taurine supplementation might be a promising therapeutic strategy for protecting turtles from TSHSV.
Collapse
Affiliation(s)
- Weifeng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shuang Zhao
- Xiamen Meliomics Technology Co. Ltd., Xiamen, Fujian, China
| | - Sunjian Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | | | - Qi Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - WenJun Ma
- Zhejiang aquatic technology extension station, Hangzhou, Zhejiang, China
| | - Jingjing Zhan
- Xiamen Meliomics Technology Co. Ltd., Xiamen, Fujian, China
| | - Li Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Wen Q, Tang S, Mo J, Zhang M, Long M, Lu Y, Gan Z. Different activation of STAT1 and STAT2 phosphorylation by IFNc, IFNd, and IFNh in tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109776. [PMID: 39019128 DOI: 10.1016/j.fsi.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Type I IFNs are a subset of cytokines exerting their antiviral effects mainly through the JAK-STAT signalling. Immunogenetic studies have shown that fish possess key components of IFN-JAK-STAT cascade, but the information about the distinct responses of STAT1 and STAT2 to different IFNs is rather limited in fish. Here, we identified and cloned STAT1 and STAT2 genes (named as On-STAT1 and On-STAT2) from tilapia, Oreochromis niloticus. On-STAT1 and On-STAT2 genes were detected in all orangs/tissues examined, and were rapidly induced in spleen, head kidney, and liver following the stimulation of poly(I:C). In addition, the stimulation of poly(I:C), poly(A:T), and different subgroups of recombinant IFNs could induce the expression of On-STAT1 and On-STAT2 in TA-02 cells with distinct induction levels. Importantly, On-STAT2 was rapidly phosphorylated by all three subgroups of IFNs, but the phosphorylation of On-STAT1 was only observed in IFNc- and IFNh-treated TA-02 cells, reflecting the distinct activation of STAT by different subgroups of fish IFNs. The present results thus contribute to better understanding of the JAK-STAT signalling mediated by different subgroups of IFNs in fish.
Collapse
Affiliation(s)
- Qingqing Wen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Shaoshuai Tang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meng Long
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
3
|
Periyasamy T, Ming-Wei L, Velusamy S, Ahamed A, Khan JM, Pappuswamy M, Viswakethu V. Functional characterization of Malabar grouper (Epinephelus malabaricus) interferon regulatory factor 9 involved in antiviral response. Int J Biol Macromol 2024; 266:131282. [PMID: 38565369 DOI: 10.1016/j.ijbiomac.2024.131282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
IRF9 is a crucial component in the JAK-STAT pathway. IRF9 interacts with STAT1 and STAT2 to form IFN-I-stimulated gene factor 3 (ISGF3) in response to type I IFN stimulation, which promotes ISG transcription. However, the mechanism by which IFN signaling regulates Malabar grouper (Epinephelus malabaricus) IRF9 is still elusive. Here, we explored the nd tissue-specific mRNA distribution of the MgIRF9 gene, as well as its antiviral function in E. malabaricus. MgIRF9 encodes a protein of 438 amino acids with an open reading frame of 1317 base pairs. MgIRF9 mRNA was detected in all tissues of a healthy M. grouper, with the highest concentrations in the muscle, gills, and brain. It was significantly up-regulated by nervous necrosis virus infection and poly (I:C) stimulation. The gel mobility shift test demonstrated a high-affinity association between MgIRF9 and the promoter of zfIFN in vitro. In GK cells, grouper recombinant IFN-treated samples showed a significant response in ISGs and exhibited antiviral function. Subsequently, overexpression of MgIRF9 resulted in a considerable increase in IFN and ISGs mRNA expression (ADAR1, ADAR1-Like, and ADAR2). Co-immunoprecipitation studies demonstrated that MgIRF9 and STAT2 can interact in vivo. According to the findings, M. grouper IRF9 may play a role in how IFN signaling induces ISG gene expression in grouper species.
Collapse
Affiliation(s)
- Thirunavukkarasu Periyasamy
- Laboratory of Molecular Virology and Immunology, Department of Aquaculture, The College of Life Science, National Taiwan Ocean University, Keelung 202, Taiwan; Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India.
| | - Lu Ming-Wei
- Laboratory of Molecular Virology and Immunology, Department of Aquaculture, The College of Life Science, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Sharmila Velusamy
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka 560029, India
| | - Velavan Viswakethu
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| |
Collapse
|
4
|
Deng Y, Ding C, Yang H, Zhang M, Xiao Y, Wang H, Li J, Xiao T, Lv Z. First in vitro and in vivo evaluation of recombinant IL-1β protein as a potential immunomodulator against viral infection in fish. Int J Biol Macromol 2024; 255:128192. [PMID: 37979760 DOI: 10.1016/j.ijbiomac.2023.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
IL-1β is an important proinflammatory cytokine with multifaceted modulatory roles in immune responses. In fish, recombinant IL-1β has been employed in the control of bacterial diseases, while the antiviral mechanisms of IL-1β remain largely unknown, and the efficacy of recombinant IL-1β as an immunomodulator to prevent viral diseases is still not determined. This study evaluated the immunomodulatory effects of recombinant grass carp IL-1β against grass carp reovirus (GCRV) in vitro and in vivo. Firstly, the mature form (Ser111-Lys270) of grass carp IL-1β was identified, and its recombinant protein (designated as rgcIL-1β) was prepared through prokaryotic expression. Then, an in vitro evaluation model for rgcIL-1β activity was established in the CIK cells, with the appropriate concentration (600 ng/mL) and effect time (1 h). In vitro, rgcIL-1β could not only induce the production of proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α but also a series of antiviral factors including IFN-1, IFN-2, IFN-γ, and ISG15. Mechanistically, transcriptome analysis and western blotting confirmed that rgcIL-1β activated multiple transcriptional factors, including NF-κB, IRF1, IRF3, and IRF8, and the signal pathways associated with inflammatory cytokines and antiviral factors expression. Expectedly, rgcIL-1β treatment significantly inhibited GCRV replication in vitro. In vivo administration of rgcIL-1β via intraperitoneal pre-injection significantly aroused an antiviral response to restrict GCRV replication and intense tissue inflammation in grass carp, demonstrating the immunomodulatory effects of rgcIL-1β. More importantly, rgcIL-1β administrated with 10 ng/g and 1 ng/g could improve the survival rate of grass carp during GCRV infection. This study represents the first time to comprehensively reveal the immunomodulatory and antiviral mechanisms of IL-1β in fish and may also pave the way for further developing recombinant IL-1β as an immunotherapy for the prevention and control of fish viral diseases.
Collapse
Affiliation(s)
- Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Mengyuan Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Ding G, Yu P, Deng D, Xie M, Luo K, Zhang F, Xu D, Xu Q, Guo H, Zhang S. Functional characterization of group Ⅱ interferon, IFNf in the acipenseriform fish, Chinese sturgeon (Acipenser sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109240. [PMID: 38008344 DOI: 10.1016/j.fsi.2023.109240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Teleost fish possess a diversity of type Ⅰ interferons (IFNs) repertoire, which play a crucial role in antiviral and antimicrobial immune responses. In our previous study, IFNe1-3 and IFNb were identified and cloned from Chinese sturgeon (Acipenser sinensis), an acipenseriform fish. However, the absence of Chinese sturgeon genome data has left the question of whether there are other type Ⅰ IFN members in this species unresolved. In this study, we have identified and characterized a novel IFN, IFNf in Chinese sturgeon (AsIFNf). Bioinformatics analysis revealed that the AsIFNf contains a unique disulfide bond (2 cysteines) located in the second exon and fifth exon region, distinguishing it from other reported teleost type I IFNs. Meanwhile, qPCR results showed that AsIFNf mRNA was detectable in all examined tissues and up-regulated in the spleen or kidney in response to poly I: C, Citrobacter freundii, and Spring Viremia of Carp Virus (SVCV), but not by LPS. Furthermore, compared to recombinant AsIFNe2 protein (rAsIFNe2), rAsIFNf exhibited a stronger protective effect on Chinese sturgeon fin cells against SVCV and also induced higher expression of antiviral genes Mx and viperin. Importantly, AsIFNf displayed characteristics similar to antimicrobial peptides (AMPs) with a positive charge and demonstrated a broad spectrum of antimicrobial activity in vitro. These findings provide a theoretical foundation for understanding the primitive structure and function of interferon, as well as deepening our comprehension of the innate immune system and disease defense in the endangered Chinese sturgeon.
Collapse
Affiliation(s)
- Guangyi Ding
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Peipei Yu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Dan Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Meng Xie
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Kai Luo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Fuxian Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China
| | - Dingda Xu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, China
| | - Qiaoqing Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China.
| | - Huizhi Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland (Yangtze University), Jingzhou, 434024, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
6
|
Yan L, Zhang Y, Wang P, Zhao C, Zhang B, Qiu L. Antiviral functions of IFNd against ISKNV and interaction analysis of IFNd and its receptors in spotted seabass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108935. [PMID: 37454880 DOI: 10.1016/j.fsi.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Type I interferons (IFNs) play a significant role in antiviral innate immunity. But, the antiviral function of IFNd is controversial in teleosts. Here, we identified three IFNd receptors belonging to cytokine receptor family B (LmCRFB1, LmCRFB2, and LmCRFB5) in spotted seabass (Lateolabrax maculatus). LmIFNd and its receptors were highly expressed in gill, spleen and head kidney tissues. Additionally, LmIFNd, its receptors, and their downstream signal genes (LmTYK2, LmJAK1, LmSTAT1, and LmSTAT2) were induced by infectious spleen and kidney necrosis virus (ISKNV) infection. Injection of recombinant protein (LmIFNd-His) in vivo and incubation with the LmIFNd-His in vitro both induced expressions of IFN-stimulated genes (LmISGs). IFNd-His had a dose-dependent protective effect on the activity of brain cells infected by ISKNV and reduced the number of ISNKV copies. LmIFNd-His also bound to extracellular domains of the three receptors in vitro in the pull-down assay. LmIFNd-His preferentially induced ISG expression through receptor complex LmCRFB1 and LmCRFB5, followed by LmCRFB2 and LmCRFB5, to induce the expressions of LmISGs. Our results show that LmIFNd can enhance the antiviral immune response of spotted seabass, and it uses receptor complex LmCRFB1 and LmCRFB5 as well as LmCRFB2 and LmCRFB5 to induce LmISG expression. It is the first study about the antiviral function of LmIFNd and its receptor complex in spotted seabass, and it provides a reference for further studies of the controversial anti-viral function of IFNd in teleosts.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Yaqing Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
7
|
Chen YY, Wu CL, Hsu CW, Wang CH, Su CR, Huang CJ, Chen HR, Chau LK, Wang SC. Trace Determination of Grouper Nervous Necrosis Virus in Contaminated Larvae and Pond Water Samples Using Label-Free Fiber Optic Nanoplasmonic Biosensor. BIOSENSORS 2022; 12:907. [PMID: 36291043 PMCID: PMC9599950 DOI: 10.3390/bios12100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
We developed a fast (<20 min), label-free fiber optic particle plasmon resonance (FOPPR) immunosensing method to detect nervous necrosis virus (NNV), which often infects high-value economic aquatic species, such as grouper. Using spiked NNV particles in a phosphate buffer as samples, the standard calibration curve obtained was linear (R2 = 0.99) and the limit of detection (LOD) achieved was 2.75 × 104 TCID50/mL, which is superior to that obtained using enzyme-linked immunosorbent assay (ELISA). By using an enhancement method called fiber optic nanogold-linked immunosorbent assay (FONLISA), the LOD can be further improved to <1 TCID50/mL, which is comparable to that found by the conventional qPCR method. Employing the larvae homogenate samples of NNV-infected grouper, the results obtained by the FOPPR biosensor agree with those obtained by the quantitative polymerase chain reaction (qPCR) method. We also examined pond water samples from an infected container in an indoor aquaculture facility. The lowest detectable level of NNV coat protein was found to be 0.17 μg/mL, which is one order lower than the LOD reported by ELISA. Therefore, we demonstrated the potential of the FOPPR biosensor as an outbreak surveillance tool, which is able to give warning indication even when the trend of larvae death toll increment is still not clear.
Collapse
Affiliation(s)
- Yuan-Yu Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chih-Lu Wu
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chia-Wei Hsu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chih-Hui Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chung-Rui Su
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, NCU-Covestro Research Center, National Central University, Taoyuan 32001, Taiwan
| | - Hau-Ren Chen
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| |
Collapse
|
8
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Type I interferons in ray-finned fish (Actinopterygii). FISH & SHELLFISH IMMUNOLOGY 2021; 110:35-43. [PMID: 33387659 DOI: 10.1016/j.fsi.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Interferons (IFNs) are proteins of vital importance in the body's immune response. They are formed in different types of cells and have been found in fish, amphibians, reptiles and mammals. Two types of IFN have been found in ray-finned fish (Superclass: Osteichthyes, Class: Actinopterygii) so far, i.e. IFN type I (IFN I) and IFN type II (IFN II), while the presence of IFN type III (IFN III), which is found in phylogenetically older cartilaginous fishes, was not confirmed in this taxonomic group of vertebrates. Currently, type I IFN in Actinopterygii is divided into three groups, I, II and III, within which there are subgroups. These cytokines in these animals show primarily antiviral activity through the use of a signalling pathway JAK-STAT (Janus kinases - Signal transducer and activator of transcription) and the ability to induce ISG (IFN-stimulated genes) expression, which contain ISRE complexes (IFN-stimulated response elements). On the other hand, in Perciformes and Cyprinidae, it was found that type I/I interferons also participate in the antimicrobial response, inter alia, by inducing the expression of the inducible nitric oxide synthase (iNOS) and influencing the production of reactive oxygen species (ROS) in cells carrying out the phagocytosis process.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra, Poland.
| | | | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
9
|
Screening for the Proteins That Can Interact with Grouper Nervous Necrosis Virus Capsid Protein. Viruses 2020; 12:v12090985. [PMID: 32899810 PMCID: PMC7552068 DOI: 10.3390/v12090985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Nervous necrosis virus (NNV) can infect many species of fish and has an 80-100% mortality rate. NNV capsid protein (NNVCP) is the only structural protein of NNV, but there are few studies on the protein-protein interaction between NNVCP and the host cell. To investigate NNV morphogenesis, native NNV capsid protein (NNVCP) was used to screen for protein-protein interactions in this study. The results identified that 49 grouper optic nerve proteins can interact with NNVCP and may function as putative receptor or co-receptor, cytoskeleton, glucose metabolism and ATP generation, immunity, mitochondrial ion regulation, and ribosomal proteins. Creatine kinase B-type (CKB) is one of those 49 optic nerve proteins. CKB, a kind of enzyme of ATP generation, was confirmed to interact with NNVCP by far-Western blot and showed to colocalize with NNVCP in GF-1 cells. Compared to the control, the expression of CKB was significantly induced in the brain and eyes infected with NNV. Moreover, the amount of replication of NNV is relatively high in cells expressing CKB. In addition to providing the database of proteins that can interact with NNVCP for subsequent analysis, the results of this research also verified that CKB plays an important role in the morphogenesis of NNV.
Collapse
|
10
|
Lin HJ, Xiao Joe JT, Lu WJ, Huang MY, Sun TH, Lin SP, Li YC, Tsui YC, Lu MW, Victor Lin HT. Secretory Production of Functional Grouper Type I Interferon from Epinephelus septemfasciatus in Escherichia coli and Bacillus subtilis. Int J Mol Sci 2020; 21:E1465. [PMID: 32098104 PMCID: PMC7073146 DOI: 10.3390/ijms21041465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022] Open
Abstract
Nervous necrosis virus (NNV) results in high mortality rates of infected marine fish worldwide. Interferons (IFNs) are cytokines in vertebrates that suppress viral replication and regulate immune responses. Heterologous overexpression of fish IFN in bacteria could be problematic because of protein solubility and loss of function due to protein misfolding. In this study, a protein model of the IFN-α of Epinephelus septemfasciatus was built based on comparative modeling. In addition, PelB and SacB signal peptides were fused to the N-terminus of E. septemfasciatus IFN-α for overexpression of soluble, secreted IFN in Escherichia coli (E-IFN) and Bacillus subtilis (B-IFN). Cytotoxicity tests indicated that neither recombinant grouper IFN-α were cytotoxic to a grouper head kidney cell line (GK). The GK cells stimulated with E-IFN and B-IFN exhibited elevated expression of antiviral Mx genes when compared with the control group. The NNV challenge experiments demonstrated that GK cells pretreated or co-treated with E-IFN and B-IFN individually had three times the cell survival rates of untreated cells, indicating the cytoprotective ability of our recombinant IFNs. These data provide a protocol for the production of soluble, secreted, and functional grouper IFN of high purity, which may be applied to aquaculture fisheries for antiviral infection.
Collapse
Affiliation(s)
- Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-J.L.); (W.-J.L.); (T.-H.S.); (S.-P.L.); (Y.-C.L.); (Y.-C.T.)
| | - Joan Tang Xiao Joe
- Doctoral Degree Program in Marine Biotechnology, The College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-J.L.); (W.-J.L.); (T.-H.S.); (S.-P.L.); (Y.-C.L.); (Y.-C.T.)
| | - Mei-Ying Huang
- Division of Aquaculture, Fisheries Research Institute, Council of Agriculture, No. 199, Hou-Ih Road, Keelung 20246, Taiwan;
| | - Ting-Hsuan Sun
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-J.L.); (W.-J.L.); (T.-H.S.); (S.-P.L.); (Y.-C.L.); (Y.-C.T.)
| | - Sheng-Pao Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-J.L.); (W.-J.L.); (T.-H.S.); (S.-P.L.); (Y.-C.L.); (Y.-C.T.)
| | - Yi-Chuan Li
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-J.L.); (W.-J.L.); (T.-H.S.); (S.-P.L.); (Y.-C.L.); (Y.-C.T.)
| | - Ya-Chin Tsui
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-J.L.); (W.-J.L.); (T.-H.S.); (S.-P.L.); (Y.-C.L.); (Y.-C.T.)
| | - Ming-Wei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (H.-J.L.); (W.-J.L.); (T.-H.S.); (S.-P.L.); (Y.-C.L.); (Y.-C.T.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
11
|
Periyasamy T, Xiao Joe JT, Lu MW. Cloning and expression of Malabar grouper (Epinephelus malabaricus) ADAR1 gene in response to immune stimulants and nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2017; 71:116-126. [PMID: 29017946 DOI: 10.1016/j.fsi.2017.09.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/20/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
ADARs are RNA editing catalysts that bind double-stranded RNA and convert adenosine to inosine, a process that can lead to destabilization of dsRNA structures and suppression of mRNA translation. In mammals, ADAR1 genes are involved in various cellular pathways, including interferon (IFN)-mediated response. However, the function of fish ADAR1 remains unclear. We report here the cloning of ADAR1 in Malabar grouper (Epinephelus malabaricus) (MgADAR1) and its response to various immune stimulants. The MgADAR1 cDNA is 5371-bp long, consisting of an open reading frame encoding a putative protein of 1381 amino acids, a 235-nt 5'-terminal untranslated region (UTR), and a 990-nt 3'-UTR. The deduced amino acid sequence exhibits signature features of a chitin synthesis regulation domain, two Z-DNA-binding domains (Z alpha), three dsRNA binding motifs (DSRM) and one tRNA-specific and dsRNA adenosine deaminase domain (ADEAMc). MgADAR1 mRNA expressed ubiquitously in tissues of healthy Malabar grouper, with elevated levels in the brain, gills and eyes. In response to poly (I: C), the MgADAR1 mRNA level was significantly up-regulated in the brain and spleen, but not head kidney. Upon nervous necrosis virus (NNV) infection the level of MgADAR1 increased in the brain, whereas Mx increased in the brain, spleen and head kidney. Induction of MgADAR1 by poly (I: C) and NNV was also observed in vitro. Additionally, the expression of MgADAR1 was upregulated by recombinant grouper IFN in grouper cells. These data indicate an intricate interplay between ADAR1 and NNV infection in grouper as MgADAR1 might be regulated in a tissue-specific manner.
Collapse
Affiliation(s)
- Thirunavukkarasu Periyasamy
- Laboratory of Molecular Virology and Immunology, Department of Aquaculture, The College of Life Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 202, Taiwan
| | - Joan Tang Xiao Joe
- Laboratory of Molecular Virology and Immunology, Department of Aquaculture, The College of Life Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 202, Taiwan
| | - Ming-Wei Lu
- Laboratory of Molecular Virology and Immunology, Department of Aquaculture, The College of Life Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Beining Road, Keelung 202, Taiwan.
| |
Collapse
|
12
|
Xiang Y, Liu W, Jia P, Li Y, Jin Y, Chen L, Zhang J, Jia K, Yi M. Molecular characterization and expression analysis of interferon-gamma in black seabream Acanthopagrus schlegelii. FISH & SHELLFISH IMMUNOLOGY 2017; 70:140-148. [PMID: 28870857 DOI: 10.1016/j.fsi.2017.08.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFN-γ) is a major component in immunological signaling and plays a key role in resisting viral infection. In this study, we identified and characterized an IFN-γ gene (AsIFN-γ) in the marine fish black seabream (Acanthopagrus schlegelii). We cloned AsIFN-γ genomic sequence, which comprises four exons, three introns and an upstream promoter including several conserved regulatory elements. The complete cDNA of AsIFN-γ was 816 bp in length and encoded a putative 194 amino acids (aa) protein with a 22 aa signal peptide, six α-helices and one nuclear localization signal (NLS). Multiple alignment showed that AsIFN-γ protein shared 31-60% identity with IFN-γ of other fish but low identity with fish IFN-γrel and IFN-γ of other vertebrates. AsIFN-γ was constitutively expressed in all examined tissues with the highest expression level in immune organs, such as spleen, gill and kidney. In black seabream infected by red spotted nervous necrosis virus (RGNNV), the expression of AsIFN-γ was significantly up-regulated in most tissues, and RGNNV infection in vitro also induced significant up-regulation of AsIFN-γ, indicating that AsIFN-γ was involved in immune response to RGNNV infection. Overexpression of AsIFN-γ in cultured Acanthopagrus schlegelii brain (AsB) cells rapidly and transiently stimulated the expression of JAK-STAT signaling pathway related genes including STAT1, STAT2 and IRF9, as well as the downstream antiviral genes MX1 and ISG15. Furthermore, overexpression of AsIFN-γ was able to significantly inhibit RGNNV replication and virus production in AsB cells. In summary, we identified a conserved IFN-γ gene of black seabream, and demonstrated the rapid and strong antiviral activities of AsIFN-γ against RGNNV in black seabream.
Collapse
Affiliation(s)
- Yangxi Xiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yunlong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
13
|
Doan QK, Vandeputte M, Chatain B, Morin T, Allal F. Viral encephalopathy and retinopathy in aquaculture: a review. JOURNAL OF FISH DISEASES 2017; 40:717-742. [PMID: 27633881 DOI: 10.1111/jfd.12541] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
Viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN), is a major devastating threat for aquatic animals. Betanodaviruses have been isolated in at least 70 aquatic animal species in marine and in freshwater environments throughout the world, with the notable exception of South America. In this review, the main features of betanodavirus, including its diversity, its distribution and its transmission modes in fish, are firstly presented. Then, the existing diagnosis and detection methods, as well as the different control procedures of this disease, are reviewed. Finally, the potential of selective breeding, including both conventional and genomic selection, as an opportunity to obtain resistant commercial populations, is examined.
Collapse
Affiliation(s)
- Q K Doan
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
- TNU, Thai Nguyen University of Agriculture and Forestry (TUAF), Quyet Thang Commune, Thai Nguyen City, Vietnam
| | - M Vandeputte
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
- INRA, GABI, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - B Chatain
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
| | - T Morin
- Anses, Ploufragan-Plouzané Laboratory, Unit Viral Diseases of Fish, Plouzané, France
| | - F Allal
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
| |
Collapse
|
14
|
Cao Y, Xu L, LaPatra SE, Zhao J, Liu M, Liu H, Lu T, Zhang Q. The kinetics and protection of the antiviral state induced by recombinant iIFN1a in rainbow trout against infectious hematopoietic necrosis virus. Mol Immunol 2016; 76:55-61. [PMID: 27348633 DOI: 10.1016/j.molimm.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023]
Abstract
The iIFN1a (intracellular IFN-a1), that is one of the IFN-a1 variants, was shown to be functional intracellularly and act as a novel defense against an infectious hematopoietic necrosis virus (IHNV). To determine its antiviral properties, a recombinant iIFN1a was generated in Escherichia coli. Its antiviral activity against IHNV was 1.69×10(7)U/mg in CHSE-214 cells. Additionally, iIFN1a was capable of inducing comparable levels of IRF-1, IRF-2, IFN-I, IFN-γ and Mx transcription in head kidney, spleen and liver tissues at an early time point (6h), that was followed by a rapid decline 24h after induction. The recombinant protein also elicited protection against IHNV in vivo. At 6 and 24h after induction there was 100% protection against the virus, however, at 48 and 72h the protection decreased to 57 and 40%, respectively. The in vivo protection kinetics correlated with the kinetics of gene expression. The results of this study provide details of the antiviral state that was induced by iIFN1a in vivo for the first time. Additionally, this information will facilitate the development of this recombinant protein as a potential anti-viral treatment and/or adjuvant.
Collapse
Affiliation(s)
- Yongsheng Cao
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Liming Xu
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Scott E LaPatra
- Research Division, Clear Springs Foods Inc., P.O. Box 712, Buhl, ID 83316, USA.
| | - Jingzhuang Zhao
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Miao Liu
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Hongbai Liu
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Tongyan Lu
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
15
|
Costa JZ, Thompson KD. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2016; 53:35-49. [PMID: 26997200 DOI: 10.1016/j.fsi.2016.03.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease has become a serious problem of marine finfish aquaculture, and more recently the disease has also been associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 variable region of their capsid protein, and are named after the fish species from which they were first derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. However, these genotypes tend to be associated with a particular water temperature range rather than being species-specific. Larvae and juvenile fish are especially susceptible to VER, with up to 100% mortality resulting in these age groups during disease episodes, with vertical transmission of the virus increasing the disease problem in smaller fish. A number of vaccine preparations have been tested in the laboratory and in the field e.g. inactivated virus, recombinant proteins, virus-like particles and DNA based vaccines, and their efficacy, based on relative percentage survival, has ranged from medium to high levels of protection to little or no protection. Ultimately a combination of effective prophylactic measures, including vaccination, is needed to control VER, and should also target larvae and broodstock stages of production to help the industry deal with the problem of vertical transmission. As yet there are no commercial vaccines for VER and the aquaculture industry eagerly awaits such a product. In this review we provide an overview on the current state of knowledge of the disease, the pathogen, and interactions between betanodavirus and its host, to provide a greater understanding of the multiple factors involved in the disease process. Such knowledge is needed to develop effective methods for controlling VER in the field, to protect the various aquaculture species farmed globally from the different Betanodavirus genotypes to which they are susceptible.
Collapse
Affiliation(s)
- Janina Z Costa
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom
| |
Collapse
|
16
|
Zou J, Secombes CJ. The Function of Fish Cytokines. BIOLOGY 2016; 5:biology5020023. [PMID: 27231948 PMCID: PMC4929537 DOI: 10.3390/biology5020023] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|