1
|
Ying P, Qian XY, Wang ZX, Wu JL, Huang JY, Ren ZY, Chen J. Identification and characterisation of LEAP2 from Chinese spiny frogs (Quasipaa spinosa) with antimicrobial and macrophage activation properties. BMC Vet Res 2025; 21:163. [PMID: 40082911 PMCID: PMC11905587 DOI: 10.1186/s12917-025-04617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) family is an important group of antimicrobial peptides (AMPs) involved in vertebrate defence against bacterial infections. However, research on LEAP2 in amphibians is still in its infancy. RESULTS This study aimed to explore the role of LEAP2 in the Chinese spiny frog (Quasipaa spinosa). The cDNA of the LEAP2 gene (QsLEAP2) was cloned from a Chinese spiny frog. The QsLEAP2 protein comprises a signal peptide, a prodomain, and a mature peptide. Sequence analysis indicated that QsLEAP2 is a member of the amphibian LEAP2 cluster and closely related to the LEAP2 of the African clawed frog (Xenopus laevis). Expression of QsLEAP2 was detected in various tissues, with the liver exhibiting the highest expression. Following infection with Aeromonas hydrophila, QsLEAP2 expression was significantly upregulated in the spleen, lungs, kidneys, liver, and gut. The synthetic mature peptide QsLEAP2 exhibited selective antimicrobial activity against several bacterial strains in vitro. It disrupted bacterial membrane integrity and hydrolysed bacterial genomic DNA, exhibiting bactericidal effects on specific bacterial species. Furthermore, QsLEAP2 induced chemotaxis in RAW264.7 murine leukemic monocytes/macrophages, enhancing their phagocytic activity and respiratory bursts. Docking simulations revealed an interaction between QsLEAP2 and QsMOSPD2. CONCLUSIONS These findings provide new insights into the role of LEAP2 in the amphibian immune system.
Collapse
Affiliation(s)
- Ping Ying
- Zhejiang Lishui Service Platform for Technological Innovations in Traditional Chinese Medicine Industry, Lishui University, Lishui, 323000, China
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xin-Yi Qian
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zi-Xuan Wang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jia-Le Wu
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jia-Yin Huang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zi-Yi Ren
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zhu TF, Guo HP, Nie L, Chen J. Oral administration of LEAP2 enhances immunity against Edwardsiella tarda through regulation of gut bacterial community and metabolite in mudskipper. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110128. [PMID: 39824300 DOI: 10.1016/j.fsi.2025.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP2) is gaining recognition for its immune regulatory functions beyond direct antimicrobial activity. In this study, we investigated the role of mudskipper (Boleophthalmus pectinirostris) LEAP2 (BpLEAP2) in enhancing the survival, gut health, and immune resilience against Edwardsiella tarda infection. Pre-oral delivery of BpLEAP2 significantly improved survival rates and mitigated infection-induced damage to the gut, as evidenced by preserved villus length and goblet cell count. Analysis of gut microbial communities using 16S rRNA sequencing revealed that pre-oral delivery of BpLEAP2 increased microbial diversity, evenness, and the abundance of beneficial genera such as Pseudoalteromonas and Shewanella, while reducing pathogenic genera like Pseudorhodobacter. Metabolomic profiling showed that BpLEAP2 altered the gut metabolite composition, significantly increasing levels of bile acids and amino acids, which are known to support gut health and immune responses. Correlation analysis demonstrated strong positive associations between BpLEAP2-induced microbial shifts and increased metabolites involved in amino acid metabolism. These findings suggest that BpLEAP2 promotes intestinal homeostasis by modulating gut microbiota composition and enhancing beneficial metabolite production, ultimately improving gut barrier integrity and conferring resistance against E. tarda infection. This study highlights the potential application of BpLEAP2 in enhancing disease resilience in aquaculture species, offering a promising strategy for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Ting-Fang Zhu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hai-Peng Guo
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Li Y, Liu Y, Gou M. Peptide with Dual Roles in Immune and Metabolic Regulation: Liver-Expressed Antimicrobial Peptide-2 (LEAP-2). Molecules 2025; 30:429. [PMID: 39860298 PMCID: PMC11767564 DOI: 10.3390/molecules30020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway. LEAP-2 alone or the LEAP-2/ghrelin molar ratio showed potential as therapeutic targets for obesity, diabetes, and metabolic disorders. This review explores the recent advances of LEAP-2 in immune modulation and energy regulation, highlighting its potential in treating the above diseases.
Collapse
Affiliation(s)
- Yitong Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Ying Liu
- Haixia Institute of Science and Technology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China;
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
4
|
Im MH, Kim YR, Byun JH, Jeon YJ, Choi MJ, Lim HK, Kim JM. Antibacterial activity of recombinant liver-expressed antimicrobial peptide-2 derived from olive flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109954. [PMID: 39389171 DOI: 10.1016/j.fsi.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is a cysteine-rich peptide that plays a crucial role in the innate immune system of fish. To investigate the molecular function of LEAP-2 from olive flounder, Paralichthys olivaceus, we cloned the gene encoding LEAP-2 using PCR and expressed it in Escherichia coli. Analysis of LEAP-2 expression revealed predominant transcripts in the liver and lower levels in the intestine of olive flounder, whereas their expression levels in the liver and head kidney increased, during the initial stage of infection with the aquapathogenic bacterium Edwardsiella piscicida. Recombinant LEAP-2 (rOfLEAP-2) purified from E. coli exhibited antimicrobial activity, as demonstrated by the ultrasensitive radial diffusion assay, against both Gram-positive (Bacillus subtilis, Streptococcus parauberis, and Lactococcus garvieae) and Gram-negative (Vibrio harveyi and E. coli) bacteria, with minimum inhibitory concentrations ranging from 25 to 100 μg/mL depending on the species tested. The antibacterial activity of rOfLEAP-2 was attributed to its ability to disrupt bacterial membranes, validated by the N-phenylnaphthalen-1-amine uptake assays and scanning electron microscope analysis against E. coli, V. harveyi, B. subtilis, and L. garvieae treated with rOfLEAP-2. Furthermore, a synergistic enhancement of antibacterial activity was observed when rOfLEAP-2 was combined with ampicillin or synthetic LEAP-1 peptide, suggesting a distinct mechanism of action from those of other antimicrobial agents. These findings provide evidence for the antibacterial efficacy of LEAP-2 from olive flounder, highlighting its potential therapeutic application against pathogenic bacteria.
Collapse
Affiliation(s)
- Min-Hyuk Im
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yeo-Reum Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jun-Hwan Byun
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yu-Jeong Jeon
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mi-Jin Choi
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Han Kyu Lim
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Jong-Myoung Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
5
|
Yu CG, Ma L, Zhang DN, Ma Y, Wang CY, Chen J. Structure-activity relationships of the intramolecular disulphide bonds in LEAP2, an antimicrobial peptide from Acrossocheilus fasciatus. BMC Vet Res 2024; 20:243. [PMID: 38835040 PMCID: PMC11149183 DOI: 10.1186/s12917-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) plays a pivotal role in the host's immune response against pathogenic microorganisms. Numerous such antimicrobial peptides have recently been shown to mitigate infection risk in fish, and studying those harboured by the economically important fish Acrossocheilus fasciatus is imperative for enhancing its immune responses against pathogenic microorganisms. In this study, we cloned and sequenced LEAP2 cDNA from A. fasciatus to examine its expression in immune tissues and investigate the structure-activity relationships of its intramolecular disulphide bonds. RESULTS The predicted amino acid sequence of A. fasciatus LEAP2 was found to include a signal peptide, pro-domain, and mature peptide. Sequence analysis indicated that A. fasciatus LEAP2 is a member of the fish LEAP2A cluster and is closely related to Cyprinus carpio LEAP2A. A. fasciatus LEAP2 transcripts were expressed in various tissues, with the head kidney exhibiting the highest mRNA levels. Upon exposure to Aeromonas hydrophila infection, LEAP2 expression was significantly upregulated in the liver, head kidney, and spleen. A mature peptide of A. fasciatus LEAP2, consisting of two disulphide bonds (Af-LEAP2-cys), and a linear form of the LEAP2 mature peptide (Af-LEAP2) were chemically synthesised. The circular dichroism spectroscopy result shows differences between the secondary structures of Af-LEAP2 and Af-LEAP2-cys, with a lower proportion of alpha helix and a higher proportion of random coil in Af-LEAP2. Af-LEAP2 exhibited potent antimicrobial activity against most tested bacteria, including Acinetobacter guillouiae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, and Staphylococcus warneri. In contrast, Af-LEAP2-cys demonstrated weak or no antibacterial activity against the tested bacteria. Af-LEAP2 had a disruptive effect on bacterial cell membrane integrity, whereas Af-LEAP2-cys did not exhibit this effect. Additionally, neither Af-LEAP2 nor Af-LEAP2-cys displayed any observable ability to hydrolyse the genomic DNA of P. aeruginosa. CONCLUSIONS Our study provides clear evidence that linear LEAP2 exhibits better antibacterial activity than oxidised LEAP2, thereby confirming, for the first time, this phenomenon in fish.
Collapse
Affiliation(s)
- Ci-Gang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Li Ma
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Di-Ni Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Yue Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Chang-Yong Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
- Lishui Institute for Ecological Economy Research, Lishui, 323000, China.
| |
Collapse
|
6
|
Huang X, Mao W, Yi Y, Lu Y, Liu F, Deng L. The effects of four paralogous piscidin antimicrobial peptides on the chemotaxis, macrophage respiratory burst, phagocytosis and expression of immune-related genes in orange-spotted grouper (Epinephelus coicodes). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105144. [PMID: 38316232 DOI: 10.1016/j.dci.2024.105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Antimicrobial peptides (AMPs) are an essential part of the vertebrate innate immune system. Piscidins are a family of AMPs specific in fish. In our previous investigation, we identified four paralogous genes of piscidins in the orange-spotted grouper (Epinephelus coicodes), which exhibited distinct activities against bacteria, fungi, and parasitic ciliated protozoa. Piscidins demonstrated their capability to modulate the expression of diverse immune-related genes; however, their precise immunoregulatory functions remain largely unexplored. In this study, we examined the immunomodulatory properties of putative mature peptides derived from four E. coicodes piscidins (ecPis1S, ecPis2S, ecPis3S, and ecPis4S) in head kidney leukocytes (HKLs) or monocytes/macrophages (MO/MΦ)-like cells isolated from E. coicodes. Our data demonstrate that E. coicodes piscidins exhibit immunomodulatory activities supported by multiple lines of evidence. Firstly, all four piscidins displayed chemotactic activities towards HKLs, with the most potent chemotactic activity observed in ecPis2S. Secondly, stimulation with E. coicodes piscidins enhanced respiratory burst and phagocytic activity in MO/MФ-like cells, with ecPis3S showing the highest efficacy in increasing phagocytosis of MO/MΦ-like cells. Thirdly, mRNA expression levels of chemokine receptors, Toll-like receptors, T cell receptors, and proinflammatory cytokines were modulated to varying extents by the four piscidins in E. coicodes HKLs. Overall, our findings indicate that the immunological activities of these four paralogous piscidins from E. coicodes are exhibited in a paralog-specific and concentration-dependent manner, highlighting their distinct and versatile immunomodulatory properties. This study makes a significant contribution to the field of fish AMPs immunology by elucidating the novel mechanisms through which members of the piscidin family exert their immunomodulatory effects. Moreover, it provides valuable insights for further exploration of fish immunomodulating agents.
Collapse
Affiliation(s)
- Xiazi Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Wei Mao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Yonghao Yi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Yubin Lu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Feihong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Li Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Zhang M, Yan X, Wang CB, Liu WQ, Wang Y, Jing H, Wang B, Yang K, Chen ZY, Luan YY, Wang GH. Molecular characterization, antibacterial and immunoregulatory activities of liver-expressed antimicrobial peptide 2 in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109467. [PMID: 38423489 DOI: 10.1016/j.fsi.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-β (IL-1β) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1β, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hao Jing
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Kai Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zi-Yue Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yu-Yu Luan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
8
|
Wang Y, Wang Z, Gao Z, Luan Y, Li Q, Pang Y, Gou M. Identification of antibacterial activity of liver-expressed antimicrobial peptide 2 (LEAP2) from primitive vertebrate lamprey. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109413. [PMID: 38311092 DOI: 10.1016/j.fsi.2024.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.
Collapse
Affiliation(s)
- Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhuoying Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhanfeng Gao
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Department of Urology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Yimu Luan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
9
|
Fei Y, Wang Q, Lu J, Ouyang L, Hu Q, Chen L. New insights into the antimicrobial mechanism of LEAP2 mutant zebrafish under Aeromonas hydrophila infection using transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109225. [PMID: 37977545 DOI: 10.1016/j.fsi.2023.109225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a blood-derived antimicrobial peptide expressed predominantly in the liver. Although LEAP2 has been reported to exert antimicrobial effects in various fish species, its antimicrobial mechanism is not entirely understood. Zebrafish is an intensively developing animal model for studying bacterial diseases. In this study, we used zebrafish to identify the role of LEAP2 in bacterial infection. We found that knockout of LEAP2 in zebrafish led to a higher bacterial burden and mortality. To further investigate the effect of LEAP2 mutation on the immune system, we conducted a comparative transcriptome analysis of zebrafish with a mutant of LEAP2. Based on gene ontologies (GO) enrichment, LEAP2 mutant zebrafish revealed that, compared to wild-type zebrafish, robust responses to bacteria, inflammatory factors, and disrupt immune homeostasis and induct hyperinflammation. Furthermore, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, six immune pathways were identified: Phagosome, NOD-like receptor, ferroptosis, Cytokine-cytokine receptor, Toll-like receptor, and FOXO signalling pathways. Interestingly, besides the liver, muscle, intestine, and eggs are also significantly enriched to the ferroptosis pathway, as revealed using quantitative polymerase chain reaction (qPCR), further confirmed that the effect of LEAP2 mutations on inflammatory factors and ferroptosis-related genes. Most importantly, this is the first report of the zebrafish LEAP2 mutant transcriptome obtained using high-throughput sequencing. Our study employed comparative transcriptome analysis to reveal the inflammatory response and ferroptosis-signalling pathway as a novel potential mechanism of LEAP2 antibacterial activity, laying the foundation for future studies of LEAP2 immune functions.
Collapse
Affiliation(s)
- Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Linyue Ouyang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Quiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Wu YX, Hu SY, Lu XJ, Hu JR. Identification and characterization of two novel antimicrobial peptides from Japanese sea bass (Lateolabrax japonicus) with antimicrobial activity and MO/MФ activation capability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104726. [PMID: 37149238 DOI: 10.1016/j.dci.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Piscidins participate in the innate immune response of fish, which aims to eliminate recognized foreign microbes and restore the homeostasis of immune system. We characterized two piscidin-like antimicrobial peptides (LjPL-3 and LjPL-2) isolated from Japanese sea bass (Lateolabrax japonicus). LjPL-3 and LjPL-2 showed different expression patterns in tissues. After Vibrio harveyi infection, the mRNA expression of LjPL-3 and LjPL-2 was upregulated in the liver, spleen, head kidney, and trunk kidney. The synthetic mature peptides LjPL-3 and LjPL-2 exhibited different antimicrobial spectra. Furthermore, LjPL-3 and LjPL-2 treatments decreased inflammatory cytokine production while promoting chemotaxis and phagocytosis in monocytes/macrophages (MO/MФ). LjPL-2, but not LjPL-3, displayed bacterial killing capability in MO/MФ. LjPL-3 and LjPL-2 administration increased Japanese sea bass survival after V. harveyi challenge, which was accompanied by a decline in bacterial burden. These data suggested that LjPL-3 and LjPL-2 participate in immune response through direct bacterial killing and MO/MФ activation.
Collapse
Affiliation(s)
- Yi-Xin Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Shuai-Yue Hu
- Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Xin-Jiang Lu
- Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jian-Rao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
11
|
Chen J, Zhang CY, Chen JY, Seah RWX, Zhang L, Ma L, Ding GH. Host defence peptide LEAP2 contributes to antimicrobial activity in a mustache toad (Leptobrachium liui). BMC Vet Res 2023; 19:47. [PMID: 36765333 PMCID: PMC9921027 DOI: 10.1186/s12917-023-03606-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) is essential in host immunity against harmful pathogens and is only known to act as an extracellular modulator to regulate embryonic development in amphibians. However, there is a dearth of information on the antimicrobial function of amphibian LEAP2. Hence, a LEAP2 homologue from Leptobrachium liui was identified, characterized, and chemically synthesized, and its antibacterial activities and mechanisms were determined. RESULTS In this study, LEAP2 gene (Ll-LEAP2) cDNA was cloned and sequenced from the Chong'an Moustache Toad (Leptobrachium liui). The predicted amino acid sequence of Ll-LEAP2 comprises a signal peptide, a mature peptide, and a prodomain. From sequence analysis, it was revealed that Ll-LEAP2 belongs to the cluster of amphibian LEAP2 and displays high similarity to the Tropical Clawed Frog (Xenopus tropicalis)'s LEAP2. Our study revealed that LEAP2 protein was found in different tissues, with the highest concentration in the kidney and liver of L. liui; and Ll-LEAP2 mRNA transcripts were expressed in various tissues with the kidney having the highest mRNA expression level. As a result of Aeromonas hydrophila infection, Ll-LEAP2 underwent a noticeable up-regulation in the skin while it was down-regulated in the intestines. The chemically synthesized Ll-LEAP2 mature peptide was selective in its antimicrobial activity against several in vitro bacteria including both gram-positive and negative bacteria. Additionally, Ll-LEAP2 can kill specific bacteria by disrupting bacterial membrane and hydrolyzing bacterial gDNA. CONCLUSIONS This study is the first report on the antibacterial activity and mechanism of amphibian LEAP2. With more to uncover, the immunomodulatory functions and wound-healing activities of Ll-LEAP2 holds great potential for future research.
Collapse
Affiliation(s)
- Jie Chen
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Chi-Ying Zhang
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Jing-Yi Chen
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Rachel Wan Xin Seah
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, 117558 Singapore
| | - Le Zhang
- grid.440824.e0000 0004 1757 6428School of Medicine, Lishui University, Lishui, 323000 China
| | - Li Ma
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
12
|
Zhu QY, Chen RY, Yu J, Ding GH, Seah RWX, Chen J. Antimicrobial peptide hepcidin contributes to restoration of the intestinal flora after Aeromonas hydrophila infection in Acrossocheilus fasciatus. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109486. [PMID: 36216305 DOI: 10.1016/j.cbpc.2022.109486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Hepcidin is a cysteine-rich antimicrobial peptide that serves an important role in the immunity system of fishes. It exhibits antibacterial, antifungal, antiviral, and antitumor activities. However, the exact role of fish hepcidin in the regulation of the intestinal flora still remains a mystery. In our study, we sequenced and characterized hepcidin from the liver of Acrossocheilus fasciatus. Phylogenetic tree analysis showed that A. fasciatus hepcidin and Gobiocypris rarus hepcidin were the most closely related, and both belonged to the fish HAMP1 cluster. Studies conducted on in vivo tissue distribution showed that the expression of hepcidin was highest in healthy A. fasciatus liver. Aeromonas hydrophila infection was confirmed by the increased expression of pro-inflammatory cytokine genes and bacterial loads in A. fasciatus tissues. After A. hydrophila infection, hepcidin expression significantly increased in the liver, spleen, and head kidney. In vitro antibacterial assays showed that hepcidin exhibits strong broad spectrum antibacterial activity. Furthermore, we examined the regulatory effect of hepcidin on the intestinal flora and found that A. fasciatus hepcidin restored the reduced diversity and compositional changes in intestinal flora caused by A. hydrophila infection. Our results suggest that hepcidin could regulate the intestinal flora in fishes; however, the underlying mechanisms need to be explored in greater detail.
Collapse
Affiliation(s)
- Qun-Yin Zhu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ru-Yi Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jing Yu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Guo-Hua Ding
- College of Ecology, Lishui University, Lishui 323000, China
| | - Rachel Wan Xin Seah
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
| | - Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China.
| |
Collapse
|
13
|
Liu X, Hu YZ, Pan YR, Liu J, Jiang YB, Zhang YA, Zhang XJ. Comparative study on antibacterial characteristics of the multiple liver expressed antimicrobial peptides (LEAPs) in teleost fish. Front Immunol 2023; 14:1128138. [PMID: 36891317 PMCID: PMC9986249 DOI: 10.3389/fimmu.2023.1128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.
Collapse
Affiliation(s)
- Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - You-Bo Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Li CH, Chen J, Nie L, Chen J. MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris. Zool Res 2021; 41:644-655. [PMID: 33124217 PMCID: PMC7671916 DOI: 10.24272/j.issn.2095-8137.2020.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in a host's innate immune system. We previously demonstrated that mudskipper ( Boleophthalmus pectinirostris) LEAP-2 (BpLEAP-2) induces chemotaxis and activation of monocytes/ macrophages (MO/MФ). However, the molecular mechanism by which BpLEAP-2 regulates MO/MΦ remains unclear. In this study, we used yeast two-hybrid cDNA library screening to identify mudskipper protein(s) that interacted with BpLEAP-2, and characterized a sequence encoding motile sperm domain-containing protein 2 (BpMOSPD2). The interaction between BpLEAP-2 and BpMOSPD2 was subsequently confirmed by co-immunoprecipitation (Co-IP). Sequence analyses revealed that the predicted BpMOSPD2 contained an N-terminal extracellular portion composed of a CRAL-TRIO domain and a motile sperm domain, a C-terminal transmembrane domain, and a short cytoplasmic tail. Phylogenetic tree analysis indicated that BpMOSPD2 grouped tightly with fish MOSPD2 homologs and was most closely related to that of the Nile tilapia ( Oreochromis niloticus). The recombinant BpMOSPD2 was produced by prokaryotic expression and the corresponding antibody was prepared for protein concentration determination. RNA interference was used to knockdown BpMOSPD2 expression in the mudskipper MO/MФ, and the knockdown efficiency was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Knockdown of BpMOSPD2 significantly inhibited BpLEAP-2-induced chemotaxis of mudskipper MO/MФ and BpLEAP-2-induced bacterial killing activity. Furthermore, knockdown of BpMOSPD2 inhibited the effect of BpLEAP-2 on mRNA expression levels of BpIL-10, BpTNFα, BpIL-1β, and BpTGFβ in MO/MФ. In general, BpMOSPD2 directly interacted with BpLEAP-2, and mediated the effects of BpLEAP-2 on chemotaxis and activation of mudskipper MO/MФ. This is the first identification of MOSPD2 as a receptor for LEAP-2.
Collapse
Affiliation(s)
- Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
15
|
Chen Y, Wu J, Cheng H, Dai Y, Wang Y, Yang H, Xiong F, Xu W, Wei L. Anti-infective Effects of a Fish-Derived Antimicrobial Peptide Against Drug-Resistant Bacteria and Its Synergistic Effects With Antibiotic. Front Microbiol 2020; 11:602412. [PMID: 33329494 PMCID: PMC7719739 DOI: 10.3389/fmicb.2020.602412] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) play pivotal roles in protecting against microbial infection in fish. However, AMPs from topmouth culter (Erythroculter ilishaeformis) are rarely known. In our study, we isolated an AMP from the head kidney of topmouth culter, which belonged to liver-expressed antimicrobial peptide 2 (LEAP-2) family. Topmouth culter LEAP-2 showed inhibitory effects on aquatic bacterial growth, including antibiotic-resistant bacteria, with minimal inhibitory concentration values ranging from 18.75 to 150 μg/ml. It was lethal for Aeromonas hydrophila (resistant to ampicillin), and took less than 60 min to kill A. hydrophila at a concentration of 5 × MIC. Scanning electron microscope (SEM) and SYTOX Green uptake assay indicated that it impaired the integrity of bacterial membrane by eliciting pore formation, thereby increasing the permeabilization of bacterial membrane. In addition, it showed none inducible drug resistance to aquatic bacteria. Interestingly, it efficiently delayed ampicillin-induced drug resistance in Vibrio parahaemolyticus (sensitive to ampicillin) and sensitized ampicillin-resistant bacteria to ampicillin. The chequerboard assay indicated that topmouth culter LEAP-2 generated synergistic effects with ampicillin, indicating the combinational usage potential of topmouth culter LEAP-2 with antibiotics. As expected, topmouth culter LEAP-2 significantly alleviated ampicillin-resistant A. hydrophila infection in vivo, and enhanced the therapeutic efficacy of ampicillin against A. hydrophila in vivo. Our findings provide a fish innate immune system-derived peptide candidate for the substitute of antibiotics and highlight its potential for application in antibiotic-resistant bacterial infection in aquaculture industry.
Collapse
Affiliation(s)
- Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Honglan Cheng
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceuticals, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hailong Yang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Xiong
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Mahgoub HA, El-Adl MAM, Ghanem HM, Martyniuk CJ. The effect of fucoidan or potassium permanganate on growth performance, intestinal pathology, and antioxidant status in Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2109-2131. [PMID: 32829475 DOI: 10.1007/s10695-020-00858-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Fucoidans are marine algal sulfated glycans that are widely used as dietary additives in aquaculture. These glycans are recognized as beneficial supplements for their antimicrobial, anti-inflammatory, anticancer, and antiviral properties. Potassium permanganate is another commonly used chemical that is used in aquaculture to treat infections in fish. Despite their widespread use, there are few data available regarding the potential sublethal toxicity associated with fucoidan and potassium permanganate treatments of fish. In this study, we investigated the effect of each compound on the growth, intestinal health, and antioxidant status of Nile tilapia (Oreochromis niloticus). Both compounds affected the growth of experimental fish compared with untreated fish. However, while growth parameters were positively associated with the dose of fucoidan administered, growth was negatively associated with the dose of potassium permanganate in Nile tilapia. Fucoidan treatment was observed to improve the intestinal health of fish based upon increases in intestinal villous area, intestinal villous length and width, and the intraepithelial lymphocyte number and decreases in the total intestinal bacterial count compared with untreated fish. Conversely, potassium permanganate induced intestinal epithelium proliferation and villous branching, a histopathological response typically observed with chemical irritants. Both fucoidan and potassium permanganate decreased levels of oxidative and nitrosative stress markers and enhanced the antioxidant status in multiple organs. Taken together, fucoidan dietary application improved the growth, intestinal health, and antioxidant status in Nile tilapia, supporting the use of this compound as a promising feed additive for aquaculture production. Conversely, potassium permanganate baths have negative effects on fish growth at higher doses and appeared to act as a gastrointestinal irritant in tilapia. This study improves knowledge regarding the biochemical and histological responses in Nile tilapia to two widely used aquaculture-related treatments.
Collapse
Affiliation(s)
- Hebatallah A Mahgoub
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA.
| | - Mohamed A M El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hanaa M Ghanem
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| |
Collapse
|
17
|
Liu B, Liu GD, Guo HY, Zhu KC, Guo L, Zhang N, Liu BS, Jiang SG, Zhang DC. Characterization and functional analysis of liver-expressed antimicrobial peptide-2 (LEAP-2) from golden pompano Trachinotus ovatus (Linnaeus 1758). FISH & SHELLFISH IMMUNOLOGY 2020; 104:419-430. [PMID: 32562868 DOI: 10.1016/j.fsi.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The liver-expressed antimicrobial peptide-2 (LEAP-2) is an important component of the innate immune defense system and plays an important role in resisting the invasion of pathogenic microorganisms. In this study, LEAP-2 from golden pompano (Trachinotus ovatus) was characterized and its expression in response to Photobacterium damselae was investigated. The full-length LEAP-2 cDNA was 1758 bp, which comprised a 5'-UTR of 250 bp, an ORF of 321 bp, and a 3'-UTR of 1187 bp, encoding 106 amino acids. LEAP-2 consisted of a conserved saposin B domain and four conserved cysteines that formed two pairs of disulphide bonds. The genomic organization of LEAP-2 was also determined and shown to consisted of three introns and two exons. The predicted promoter region of ToLEAP-2 contained several putative transcription factor binding sites. Quantitative real-time (qRT-PCR) analysis indicated that LEAP-2 was ubiquitously expressed in all examined tissues, with higher mRNA levels observed in the muscle, liver, spleen, and kidney. After P. damselae stimulation, the expression level of LEAP-2 mRNA was significantly upregulated in various tissues of golden pompano. In addition, SDS-PAGE showed that the molecular mass of recombinant LEAP-2 expressed in pET-32a was approximately 23 kDa. The purified recombinant protein showed antibacterial activity against Gram-positive and Gram-negative bacteria. Luciferase reporters were constructed for five deletion fragments of different lengths from the promoter region (-1575 bp to +251 bp), and the results showed that L3 (-659 bp to +251 bp) presented the highest activity, and it was therefore defined as the core region of the LEAP-2 promoter. The seven predicted transcription factor binding sites were deleted by using PCR technology, and the results showed that the mutation of the USF transcription factor binding site caused the activity to significantly decrease. The results indicate that golden pompano LEAP-2 potentially exhibits antimicrobial effects in fish innate immunity.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Guang-Dong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
18
|
Shen HY, Zhou Y, Zhou QJ, Li MY, Chen J. Mudskipper interleukin-34 modulates the functions of monocytes/macrophages via the colony-stimulating factor-1 receptor 1. Zool Res 2020; 41:123-137. [PMID: 32150792 PMCID: PMC7109011 DOI: 10.24272/j.issn.2095-8137.2020.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interleukin-34 (IL-34) is a novel cytokine that plays an important role in innate immunity and inflammatory processes by binding to the colony-stimulating factor-1 receptor (CSF-1R). However, information on the function of IL-34 in fish remains limited. In the present study, we identified an IL-34 homolog from mudskippers (Boleophthalmus pectinirostris). In silico analysis showed that the mudskipper IL-34 (BpIL-34) was similar to other known IL-34 variants in sequence and structure and was most closely related to an orange-spotted grouper (Epinephelus coioides) homolog. BpIL-34 transcripts were constitutively expressed in various tissues, with the highest level of expression found in the brain. Edwardsiella tarda infection significantly up-regulated the mRNA expression of BpIL-34 in the mudskipper tissues. The recombinant mature BpIL-34 peptide (rBpIL-34) was purified and used to produce anti-rBpIL-34 IgG. Western blot analysis combined with PNGase F digestion revealed that native BpIL-34 in monocytes/macrophages (MOs/MФs) was N-glycosylated. In vitro, rBpIL-34 treatment enhanced the phagocytotic and bactericidal activity of mudskipper MOs/MФs, as well as the mRNA expression of pro-inflammatory cytokines like tumor necrosis factor α (BpTNF-α) and BpIL-1β in these cells. Furthermore, the knockdown of mudskipper CSF-1R1 (BpCSF-1R1), but not mudskipper BpCSF-1R2, significantly inhibited the rBpIL-34-mediated enhanced effect on MO/MФ function. In conclusion, our results indicate that mudskipper BpIL-34 modulates the functions of MOs/MФs via BpCSF-1R1.
Collapse
Affiliation(s)
- Hai-Yu Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail: .,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ming-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China E-mail: jchen1975@ 163.com
| |
Collapse
|
19
|
Luo SW, Luo KK, Liu SJ. A novel LEAP-2 in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var. ♂) confers protection against bacteria-stimulated inflammatory response. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108665. [PMID: 31707088 DOI: 10.1016/j.cbpc.2019.108665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
LEAP-2, a multifunctional peptide, not only exhibits a regulatory role in pathogenic infection, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-LEAP-2 was 240 bp and encoded 79 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-LEAP-2 was observed in liver. Aeromonas hydrophila challenge can sharply increase WR-LEAP-2 mRNA expression in liver, kidney and spleen. The purified WR-LEAP-2 peptide can directly bind to A. hydrophila and S. agalactiae, reduce the relative bacterial activity and limit bacterial growth in vitro. In addition, the treatment of WR-LEAP-2 can restrict bacterial dissemination in vivo and reduce production of pro-inflammatory cytokines. These results indicated that WR-LEAP-2 can confer protection against A. hydrophila- or S. agalactiae-stimulated MyD88-dependent pro-inflammatory cytokines activation.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
20
|
Jiang W, Chen J, Guo ZP, Zhang L, Chen GP. Molecular characterization of a MOSPD2 homolog in the barbel steed (Hemibarbus labeo) and its involvement in monocyte/macrophage and neutrophil migration. Mol Immunol 2020; 119:8-17. [PMID: 31927202 DOI: 10.1016/j.molimm.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Motile sperm domain containing 2 (MOSPD2) is a single-pass membrane protein to which until recently little function had been ascribed. Although its mammalian homologs have been identified, the status of the mospd2 gene in lower vertebrates is still unknown. In the present study, cDNA of the mospd2 gene of barbel steed (Hemibarbus labeo) was cloned and sequenced to characterize its potential involvement in the innate immune system of this fish. Sequence analysis revealed that the predicted barbel steed MOSPD2 protein contained an N-terminal extracellular portion composed of a CRAL-TRIO domain, a motile sperm domain, and a transmembrane domain, as well as a short C-terminal intracellular domain. Phylogenetic tree analysis indicated that barbel steed MOSPD2 is closely related to that of zebrafish. Barbel steed mospd2 transcripts were detected in a wide range of tissues, with the highest level being found in the gill. In response to lipopolysaccharide (LPS) treatment or Aeromonas hydrophila infection, mospd2 gene expression was significantly altered in the head kidney, spleen, and mid-intestine. The expression of mospd2 gene was detected in monocytes/macrophages (MO/MФ), neutrophils, and lymphocytes, and was found to be mainly expressed in MO/MФ. At the same time, using flow cytometry, we also confirmed that MOSPD2 protein is located on MO/MФ, neutrophil, and lymphocyte membranes. Following treatment with LPS or A. hydrophila, MOSPD2 protein expression was induced in these immune cells. The migration of MO/MФ and neutrophils decreased significantly upon MOSPD2 blockade with anti-MOSPD2 IgG in a dose-dependent manner, whereas this treatment had no significant effect on lymphocytes migration. To the best of our knowledge, our study, for the first time, provides evidence that MOSPD2 mediates the migration of MO/MФ and neutrophils in a fish species.
Collapse
Affiliation(s)
- Wei Jiang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Zhi-Ping Guo
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Le Zhang
- College of Medicine and Health, Lishui University, Lishui, 323000, China
| | - Guang-Ping Chen
- College of Medicine and Health, Lishui University, Lishui, 323000, China
| |
Collapse
|
21
|
Cai SY, Nie L, Chen J. C-reactive protein/serum amyloid P promotes pro-inflammatory function and induces M1-type polarization of monocytes/macrophages in mudskipper, Boleophthalmus pectinirostris. FISH & SHELLFISH IMMUNOLOGY 2019; 94:318-326. [PMID: 31513914 DOI: 10.1016/j.fsi.2019.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
C-reactive protein (CRP) and serum amyloid P (SAP) play essential roles in the phagocytic cell-mediated innate immune response of mammals. In-depth studies into CRP and SAP have been completed in mammals; however, such studies, particularly those relating to the functions of CRP and SAP, are rare in fish species. In this study, a homolog of CRP/SAP (BpCRP/SAP) was identified in mudskipper (Boleophthalmus pectinirostris), which had the typical characteristics of a fish short pentraxin protein. Phylogenetic tree analysis revealed that BpCRP/SAP was most closely related to mudskipper CRP/SAP-l3. BpCRP/SAP transcripts were detected in all tested tissues, with the highest level observed in the liver; transcripts in the immune tissues and protein expression in the serum were induced in response to Edwardsiella tarda infection. The active recombinant BpCRP/SAP (rBpCRP/SAP) was able to augment the mRNA expression of pro-inflammatory cytokines and attenuate the mRNA expression of anti-inflammatory cytokines in monocytes/macrophages (MO/MΦ). In addition, phagocytosis and bacterial killing of E. tarda by mudskipper MO/MΦ were boosted by rBpCRP/SAP stimulation. rBpCRP/SAP also promoted M1-type MO/MΦ polarization, but inhibited M2-type polarization. In conclusion, the present research describes the pro-inflammatory function of BpCRP/SAP in mudskipper against E. tarda infection.
Collapse
Affiliation(s)
- Shi-Yu Cai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
22
|
Dang Y, Meng X, Lu J, Liu L, Li J. Role of mannose-binding lectin in regulating monocytes/macrophages functions during Aeromonas hydrophila infection in grass carp, Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103408. [PMID: 31173786 DOI: 10.1016/j.dci.2019.103408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Mannose-binding lectin (MBL) is a vital component in host's innate immune system and the initiator of the lectin pathway of complement cascade. However, its opsonic role has rarely been reported. In this study, we revealed the biological function of Ctenopharyngodon idella MBL (CiMBL) in regulating monocytes/macrophages (MO/MФ) in the grass carp (C. idella). Flow cytometry results indicated that recombinant CiMBL (rCiMBL) significantly enhanced the phagocytotic activity of MO/MФ. Recombinant CiMBL also enhanced bactericidal activity and respiratory burst capacity in Aeromonas hydrophila-infected MO/MФ, regulated A. hydrophila-induced polarization of MO/MФ including down- and up-regulated pro- and anti-inflammatory cytokines, respectively, suppressed the inducible nitric oxide synthase activity, and enhanced the arginase activity. In addition, rCiMBL suppressed the bacteria burden in tissues and blood in vivo and enhanced the survival rate of juvenile A. hydrophila-infected grass carp. We provide evidence that CiMBL was synthesized by MO/MФ, regulating the biological function of MO/MФ against A. hydrophila infection.
Collapse
Affiliation(s)
- Yunfei Dang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Xinzhan Meng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianfei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lei Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
23
|
Kim CH, Kim EJ, Nam YK. Subfunctionalization and evolution of liver-expressed antimicrobial peptide 2 (LEAP2) isoform genes in Siberian sturgeon (Acipenser baerii), a primitive chondrostean fish species. FISH & SHELLFISH IMMUNOLOGY 2019; 93:161-173. [PMID: 31319209 DOI: 10.1016/j.fsi.2019.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Two liver-expressed antimicrobial peptide 2 (LEAP2) isoforms were characterized in a primitive chondrostean sturgeon species, Acipenser baerii (Acipenseriformes). A. baerii LEAP2 isoforms represented essentially common structures shared by their vertebrate orthologs at both genomic (i.e., tripartite organization) and peptide (two conserved disulfide bonds) levels. A. baerii LEAP2 isoforms (designed LEAP2AB and LEAP2C, respectively) phylogenetically occupy the most basal position in the actinopterygian lineage and represent an intermediate character between teleostean and tetrapodian LEAP2s in the sequence alignment. Molecular phylogenetic analysis including LEAP2s from extant primitive fish species indicated that the evolutionary origin of ancestral LEAP2 in vertebrate groups should date back to earlier than the actinopterygian-sarcopterygian split. Gene expression assays under both basal and stimulated conditions suggested that A. baerii LEAP2 isoforms have undergone substantial subfunctionalization in tissue distribution pattern, developmental/ontogenetic expression, and immune responses. LEAP2AB showed a predominant liver expression, while LEAP2C exhibited the highest level of expression in the intestine. LEAP2C was a more dominantly expressed isoform during embryonic development and prelarval ontogeny. The LEAP2AB isoform is more closely associated with innate immune response to microbial invasion, compared with LEAP2C, as evidenced by results from LPS, poly(I:C) and Aeromonas hydrophila challenges. Synthetic mature peptides of LEAP2AB displayed a more potent antimicrobial activity than did LEAP2C. Data from this study could be useful not only to provide deeper insights into the evolutionary mechanism of LEAP2 in the actinopterygian lineage but also to better understand the innate immunity of this commercially important chondrostean species.
Collapse
Affiliation(s)
- Chan-Hee Kim
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea
| | - Eun Jeong Kim
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea
| | - Yoon Kwon Nam
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
24
|
Ding FF, Li CH, Chen J. Molecular characterization of the NK-lysin in a teleost fish, Boleophthalmus pectinirostris: Antimicrobial activity and immunomodulatory activity on monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 92:256-264. [PMID: 31200076 DOI: 10.1016/j.fsi.2019.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
NK-lysin (NKL) is a cationic host defense peptide that plays an important role in host immune responses against various pathogens. However, the immunomodulatory activity of NKL in fishes is rarely investigated. In this study, we characterized a cDNA sequence encoding an NK-lysin homolog (BpNKL) from the fish, mudskipper (Boleophthalmus pectinirostris). Sequence analysis revealed that BpNKL is most closely related to tiger puffer (Takifugu rubripes) NKL. BpNKL transcript was detected in all the tested tissues, with the highest level in the gill, followed by the spleen and kidney. Upon Edwardsiella tarda infection, the mRNA expression of BpNKL in the mudskipper was significantly upregulated in the spleen, kidney, and gill. A shortened peptide derived from BpNKL, BpNKLP40, was then chemically synthesized and its biological functions were investigated. BpNKLP40 exhibited a direct antibacterial activity against some Gram-negative bacteria, including E. tarda, Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio harveyi, and induced hydrolysis of E. tarda genomic DNA. Intraperitoneal injection of 1.0 μg/g BpNKLP40 significantly improved the survival of mudskipper following E. tarda infection and reduced the bacterial burden in tissues and blood. Moreover, 1.0 μg/ml BpNKLP40 treatment had an enhanced effect on the intracellular killing of E. tarda by monocytes/macrophages (MO/MФ) as well as on the mRNA expression of pro-inflammatory cytokines in MO/MФ. In conclusion, our study reveals that BpNKL plays a role against E. tarda infection in the mudskipper by not only directly killing bacteria but also through an immunomodulatory activity on MO/MФ.
Collapse
Affiliation(s)
- Fei-Fei Ding
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chang-Hong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
25
|
Chen J, Lv YP, Dai QM, Hu ZH, Liu ZM, Li JH. Host defense peptide LEAP-2 contributes to monocyte/macrophage polarization in barbel steed (Hemibarbus labeo). FISH & SHELLFISH IMMUNOLOGY 2019; 87:184-192. [PMID: 30641185 DOI: 10.1016/j.fsi.2019.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP-2) plays a vital role in host immunity against pathogenic organisms. In the present study, cDNA of the LEAP-2 gene was cloned and sequenced from the barbel steed (Hemibarbus labeo). The predicted amino acid sequence of the barbel steed LEAP-2 comprises a signal peptide and a prodomain, which is followed by the mature peptide. Sequence analysis revealed that barbel steed LEAP-2 belongs to the fish LEAP-2A cluster and that it is closely related to zebrafish LEAP-2A. We found that barbel steed LEAP-2 transcripts were expressed in a wide range of tissues, with the highest mRNA levels detected in the liver. In response to lipopolysaccharide (LPS) treatment, LEAP-2 was significantly upregulated in the liver, head kidney, spleen, gill, and mid intestine. A chemically synthesized LEAP-2 mature peptide exhibited selective antimicrobial activity against several bacteria in vitro. Moreover, LEAP-2, alone or in combination with LPS or phorbol 12-myristate 13-acetate, strongly induced a pro-inflammatory reaction in barbel steed monocytes/macrophages (MO/MФ), involving the induction of iNOS activity, respiratory burst, and the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1β. Collectively, the results of this study indicate the importance of fish LEAP-2 in the M1-type polarization of MO/MΦ.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yao-Ping Lv
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Qing-Min Dai
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ze-Hui Hu
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ji-Heng Li
- College of Ecology, Lishui University, Lishui, 323000, China
| |
Collapse
|
26
|
Yu L, Li CH, Chen J. A novel CC chemokine ligand 2 like gene from ayu Plecoglossus altivelis is involved in the innate immune response against to Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2019; 87:886-896. [PMID: 30797066 DOI: 10.1016/j.fsi.2019.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Chemokine (CC motif) ligand 2 (CCL2), also known as monocyte chemoattractant protein 1 (MCP-1), is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages (MO/MФ) in mammals. However, the functional repertoire of fish CCL2 remains unclear. Here, we identified a cDNA sequence encoding a novel CCL2-like protein (PaCCL2L) in ayu, Plecoglossus altivelis. Sequence analysis revealed that PaCCL2L grouped with CCL2 homologs, and is most closely related to Mexican tetra (Astyanax mexicanus) and zebrafish (Danio rerio) homologs. PaCCL2 transcripts were expressed in all tested tissues from healthy ayu, with the highest level in the spleen. Upon Vibrio anguillarum infection, PaCCL2L transcripts increased significantly in tested tissues, including the liver, spleen, and head kidney. We then produced the recombinant PaCCL2L mature peptide (rPaCCL2L) by prokaryotic expression and generated the corresponding antibodies (anti-PaCCL2L). A significant increase in PaCCL2L protein and mRNA expression was observed in ayu MO/MФ following V. anguillarum challenge. Intraperitoneal injection of rPaCCL2L resulted in significantly improved survival and reduced tissue bacterial load in V. anguillarum-infected ayu. rPaCCL2L had a positive effect on the chemotaxis of MO/MΦ and neutrophils both in vitro and in vivo. Meanwhile, rPaCCL2L exhibited a positive effect on the chemotaxis of LPS-stimulated MO/MΦ (M1 type) in vitro, whereas it exhibited no chemotaxis effect on cAMP-stimulated MO/MΦ (M2 type). In addition, rPaCCL2L treatment exhibited an enhanced effect on MO/MΦ phagocytosis, bacterial killing, respiratory burst, and mRNA expression of proinflammatory cytokines, whereas anti-PaCCL2L treatment had an inhibitory effect. Our study demonstrates that PaCCL2L might play a role in the immune response of ayu against V. anguillarum infection through chemotactic recruitment and activation of MO/MΦ.
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chang-Hong Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
27
|
Chen J, Nie L, Chen J. Mudskipper (Boleophthalmus pectinirostris) Hepcidin-1 and Hepcidin-2 Present Different Gene Expression Profile and Antibacterial Activity and Possess Distinct Protective Effect against Edwardsiella tarda Infection. Probiotics Antimicrob Proteins 2019; 10:176-185. [PMID: 29151250 DOI: 10.1007/s12602-017-9352-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in fish immunity against pathogens. Most fish species have two or more hepcidin homologs that have distinct functions. This study investigated the immune functions of mudskipper (Boleophthalmus pectinirostris) hepcidin-1 (BpHep-1) and hepcidin-2 (BpHep-2) in vitro and in vivo. Upon infection with Edwardsiella tarda, the expression of BpHep-1 and BpHep-2 mRNA in immune tissues was significantly upregulated, but the expression profiles were different. Chemically synthesized BpHep-1 and BpHep-2 mature peptides exhibited selective antibacterial activity against various bacterial species, and BpHep-2 exhibited a stronger antibacterial activity and broader spectrum than BpHep-1. BpHep-1 and BpHep-2 both inhibited the growth of E. tarda in vitro, with the latter being more effective than the former. In addition, both peptides induced hydrolysis of purified bacterial genomic DNA (gDNA) or gDNA in live bacteria. In vivo, an intraperitoneal injection of 1.0 μg/g BpHep-2 significantly improved the survival rate of mudskippers against E. tarda infection compared with 0.1 μg/g BpHep-2 or 0.1 and 1.0 μg/g BpHep-1. Similarly, only BpHep-2 treatment effectively reduced the tissue bacterial load in E. tarda-infected mudskippers. Furthermore, treatment with 1.0 or 10.0 μg/ml BpHep-2 promoted the phagocytic and bactericidal activities of mudskipper monocytes/macrophages (MO/MФ). However, only the highest dose (10.0 μg/ml) of BpHep-1 enhanced phagocytosis, and BpHep-1 exerted no obvious effects on bactericidal activity. In conclusion, BpHep-2 is a stronger bactericide than BpHep-1 in mudskippers, and acts not only by directly killing bacteria but also through an immunomodulatory function on MO/MФ.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
28
|
Immuno-Stimulatory Peptides as a Potential Adjunct Therapy against Intra-Macrophagic Pathogens. Molecules 2017; 22:molecules22081297. [PMID: 28777342 PMCID: PMC6152048 DOI: 10.3390/molecules22081297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
The treatment of infectious diseases is increasingly prone to failure due to the rapid spread of antibiotic-resistant pathogens. Antimicrobial peptides (AMPs) are natural components of the innate immune system of most living organisms. Their capacity to kill microbes through multiple mechanisms makes the development of bacterial resistance less likely. Additionally, AMPs have important immunomodulatory effects, which critically contribute to their role in host defense. In this paper, we review the most recent evidence for the importance of AMPs in host defense against intracellular pathogens, particularly intra-macrophagic pathogens, such as mycobacteria. Cathelicidins and defensins are reviewed in more detail, due to the abundance of studies on these molecules. The cell-intrinsic as well as the systemic immune-related effects of the different AMPs are discussed. In the face of the strong potential emerging from the reviewed studies, the prospects for future use of AMPs as part of the therapeutic armamentarium against infectious diseases are presented.
Collapse
|
29
|
Yang J, Lu XJ, Chai FC, Chen J. Molecular characterization and functional analysis of a piscidin gene in large yellow croaker ( Larimichthys crocea). Zool Res 2016; 37:347-355. [PMID: 28105799 PMCID: PMC5359322 DOI: 10.13918/j.issn.2095-8137.2016.6.347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/09/2016] [Indexed: 11/04/2022] Open
Abstract
The piscidin family, which includes potent antimicrobial peptides with broad-spectrum activity, plays an important role in the innate immune system of fish. In this study, we cloned piscidin-5-like type 3 (Lcpis5lt3) in large yellow croaker (Larimichthys crocea). Multiple alignments with other known piscidins revealed amino acid conservation throughout the fish, especially at the signal peptide (22 amino acids). The phylogenetic tree confirmed that Lcpis5lt3 and large yellow croaker piscidin-5-like proteins were grouped together to form a branch. Quantitative real-time PCR revealed that Lcpis5lt3 was expressed in a wide range of tissues, including the brain, muscle, gill, head kidney, intestine, kidney, liver, and spleen. The highest mRNA expression level of Lcpis5lt3 was found in the spleen. After Vibrio alginolyticus infection, mRNA expression was rapidly upregulated in the liver, head kidney, gill, kidney, and intestine at 4, 8, 12, and 24 h post infection (hpi), whereas there were no significant changes in the spleen. The antimicrobial spectrum showed that the synthetic mature peptide of Lcpis5lt3 exhibited different activity in vitro against various bacteria, such as Aeromonas hydrophila, V. anguillarum, V. alginolyticus, V. parahaemolyticus, Staphylococcus aureus, and Listeria monocytogenes. In addition, survival rates from the in vivo assay indicated that the synthetic peptide of Lcpis5lt3 increased the survival rate of large yellow croaker after V. alginolyticus challenge, resulting in a decline in bacterial burden and mRNA expression levels of interleukin-1β, interleukin-10, and tumor necrosis factor-α. These data suggest that Lcpis5lt3 plays an important role in innate immunity in large yellow croaker and might represent a potential therapeutic agent against pathogen invasion.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fang-Chao Chai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|