1
|
Cho JY, Kim JW, Kim DG, Kim YS, Kim WJ, Kim YO, Kong HJ. The extracellular matrix protein EFEMP2 is involved in the response to VHSV infection in the olive flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109681. [PMID: 38871142 DOI: 10.1016/j.fsi.2024.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
The EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) is involved in connective tissue development, elastic fiber formation, and tumor growth. In this study, we characterized the cDNA of EFEMP2 (PoEFEMP2), a member of the fibulin family of ECM proteins, in the olive flounder Paralichthys olivaceus. The coding region of PoEFEMP2 encodes a protein that contains six calcium-binding EGF-like (EGF-CA) domains and four complement Clr-like EGF-like (cEGF) domains. PoEFEMP2 shows 67.51-96.77 % similarities to orthologs in a variety of fish species. PoEFEMP2 mRNA was detected in all tissues examined; the highest levels of PoEFEMP2 mRNA expression were observed in the heart, testis, ovary and muscle. The PoEFEMP2 mRNA level increases during early development. In addition, the PoEFEMP2 mRNA level increased at 3 h post-infection (hpi) and decreased from 6 to 48 hpi in flounder Hirame natural embryo (HINAE) cells infected with viral hemorrhagic septicemia virus (VHSV). Disruption of PoEFEMP2 using the clustered regularly interspaced short palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) system resulted in a significant upregulation of VHSV G mRNA levels and immune-related genes expression in knockout cells. These findings implicate PoEFEMP2 in antiviral responses in P. olivaceus.
Collapse
Affiliation(s)
- Ja Young Cho
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Sam Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| |
Collapse
|
2
|
Li B, Chen SN, Huang L, Li L, Ren L, Hou J, Tian JY, Liu LH, Nie P. Characterization of type II IFNs and their receptors in a cyprinid fish, the blunt snout bream Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109402. [PMID: 38281613 DOI: 10.1016/j.fsi.2024.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Type II interferons (IFNs) are a key class of molecules regulating innate and adaptive immunity in vertebrates. In the present study, two members of the type II IFNs, IFN-γ and IFNγ-rel, were identified in the blunt snout bream (Megalobrama amblycephala). The open reading frame (ORF) of IFN-γ and IFNγ-rel was found to have 564 bp and 492 bp, encoding 187 and 163 amino acids, with the first 26 and 24 amino acids being the signal peptide, respectively. IFN-γ and IFNγ-rel genes showed a high degree of similarity to their zebrafish homologues, being 76.9 % and 58.9 %, respectively. In the phylogenetic tree, IFN-γ and IFNγ-rel were clustered with homologous genes in cyprinids. In blunt snout bream, IFN-γ and IFNγ-rel were constitutively expressed in trunk kidney, head kidney, spleen, liver, heart, muscle, gill, intestine and brain and were significantly up-regulated by poly (I:C) induction in head kidney, spleen, liver, gill and intestine. Using recombinant proteins of IFN-γ and IFNγ-rel, the surface plasmon resonance (SPR) results showed that IFN-γ was bound to CRFB6, CRFB13 and CRFB17, but mainly to CRFB6 and CRFB13, whereas IFN-γrel bound mainly to CRFB17 and had no affinity with CRFB6. These results contribute to a better understanding on type II IFNs and their receptor usage in teleost fish.
Collapse
Affiliation(s)
- Bo Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lin Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, Guangxi Zhuang Autonomous Region, 530001, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Jing Hou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jing Yun Tian
- Marine Science Research Institute of Shandong Province & National Oceanographic Center, 7 Youyun Road, Qingdao, Shandong Province, 266104, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
3
|
Yan L, Guo J, Zhao C, Wang P, Zhang B, Zhang B, Qiu L. Type II interferons (IFN-γ and IFN-γrel) activate downstream genes through various potential receptor combinations to exert antiviral functions in spotted sea bass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109292. [PMID: 38145783 DOI: 10.1016/j.fsi.2023.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023]
Abstract
Type II interferons (IFNs) exert antiviral functions by binding to receptors and activating downstream signaling pathways. However, our understanding of the antiviral functions and the receptor complex model of type II IFNs in teleost fish remains limited. In this study, we determined the functions of type II IFNs (LmIFN-γ and LmIFN-γrel) in Lateolabrax maculatus and assessed their antiviral ability mediated by their combination with different cytokine receptor family B members (LmCRFB6, LmCRFB13, and LmCRFB17). After infection with largemouth bass ulcer syndrome virus (LBUSV), the expression levels of LmIFNs and LmCRFBs increased significantly in vitro and in vivo. Incubation or injection with LmIFNs-His activated the expressions of LmISG15, LmMx, and LmIRF1. LmIFN-γ and LmIFN-γrel both bound to the extracellular domains of the three CRFBs via Pull-down. Furthermore, LmIFN-γ combined with LmCRFB6, LmCRFB6+LmCRFB13, and LmCRFB6+LmCRFB13+LmCRFB17 and LmIFN-γrel combined with all combinations containing LmCRFB17 induced the transcription of downstream genes and reduced the number of LBUSV copies. Therefore, type II IFNs (LmIFN-γ and LmIFN-γrel) contribute to enhanced antiviral immunity in L. maculatus and that ligand-receptor combinations effectively suppress virus replication. These findings provide a reference for future studies of the signal transduction mechanism of type II IFNs in teleost fish.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Jieyun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
4
|
Kim JY, Kim HJ, Park JS, Kwon SR. DNA vaccine dual-expressing viral hemorrhagic septicemia virus glycoprotein and C-C motif chemokine ligand 19 induces the expression of immune-related genes in zebrafish (Danio rerio). JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:1032-1038. [PMID: 35913595 DOI: 10.1007/s12275-022-2231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
Abstract
Glycoprotein (G protein)-based DNA vaccines are effective in protecting aquaculture fish from rhabdoviruses but the degree of immune response they elicit depends on plasmid concentration and antigen cassette. Here, we developed a DNA vaccine using the viral hemorrhagic septicemia virus G (VG) gene and chemokine (C-C motif) ligand 19 (CCL19)a.2 regulated by the CMV promoter as the molecular adjuvant. After transfection of the prepared plasmid (pVG + CCL19) into epithelioma papulosum cyprini cells, mRNA expression was confirmed through quantitative real-time polymerase chain reaction. The vaccine was intramuscularly injected into zebrafish (Danio rerio), and 28 days after immunization, viral hemorrhagic septicemia virus (105 TCID50/10 µl/fish) was intraperitoneally injected. A survival rate of 68% was observed in the pVG + CCL19 group but this was not significantly different from the survival rate of fish treated with pVG alone, that is, without the adjuvant. However, the expression of interferon- and cytokine-related genes in the spleen and kidney tissues of zebrafish was significantly increased (p < 0.05) on days 1, 3, 7, and 14 after immunization. Thus, CCL19a.2 induced an initial immune response as a molecular adjuvant, which may provide initial protection against virus infection before vaccination-induced antibody formation. This study provides insights on the functions of CCL19a.2 adjuvant in DNA vaccines.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, Korea
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, Korea
| | - Jeong Su Park
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, Korea
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, Korea.
| |
Collapse
|
5
|
Abdellaoui N, Kim SY, Kim KH, Kim MS. Effects of Non-Virion Gene Expression Level and Viral
Genome Length on the Replication and Pathogenicity of Viral Hemorrhagic Septicemia Virus. Viruses 2022; 14:v14091886. [PMID: 36146693 PMCID: PMC9505938 DOI: 10.3390/v14091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Fish novirhabdoviruses, including viral hemorrhagic septicemia virus (VHSV), hirame rhabdovirus (HIRRV), and infectious hematopoietic necrosis virus (IHNV), harbor a unique non-virion (NV) gene that is crucial for efficient replication and pathogenicity. The effective levels and the function of the N-terminal region of the NV protein, however, remain poorly understood. In the present study, several recombinant VHSVs, which completely lack (rVHSV-ΔNV) or harbor an additional (rVHSV-dNV) NV gene, were generated using reverse genetics. To confirm the function of the N-terminal region of the NV protein, recombinant VHSVs with the NV gene that gradually mutated from the start codon (ATG) to the stop codon (TGA), expressed as N-terminally truncated NV proteins (rVHSV-NV1, -NV2, and -NV3), were generated. CPE progression and viral growth analyses showed that epithelioma papulosum cyprini (EPC) cells infected with rVHSV-ΔNV or rVHSV-NV3—which did not express NV protein—rarely showed CPE and viral replication as opposed to EPC cells infected with rVHSV-wild. Interestingly, regardless of the presence of two NV genes in the rVHSV-dNV genome, EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP (control) failed to induce CPE and viral replication. In EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP, which harbored a longer VHSV genome than the wild-type, Mx gene expression levels, which were detected by luciferase activity assay, were particularly high; Mx gene expression levels were higher in EPC cells infected with rVHSV-ΔNV, -NV2, or -NV3 than in those infected with rVHSV-wild or rVHSV-NV1. The total amount of NV transcript produced in EPC cells infected with rVHSV-wild was much higher than that in EPC cells infected with rVHSV-dNV. However, the expression levels of the NV gene per viral particle were significantly higher in EPC cells infected with rVHSV-dNV than in cells infected with rVHSV-wild. These results suggest that the NV protein is an essential component in the inhibition of host type-I interferon (IFN) and the induction of viral replication. Most importantly, viral genome length might affect viral replication efficiency to a greater extent than does NV gene expression. In in vivo pathogenicity experiments, the cumulative mortality rates of olive flounder fingerlings infected with rVHSV-dNV or rVHSV-wild were similar (60–70%), while those of fingerlings infected with rVHSV-A-EGFP were lower. Moreover, the virulence of rVHSV-ΔNV and rVHSV, both harboring a truncated NV gene (rVHSV-NV1, -NV2, and -NV3), was completely attenuated in the olive flounder. These results suggest that viral pathogenicity is affected by the viral replication rate and NV gene expression. In conclusion, the genome length and NV gene (particularly the N-terminal region) expression of VHSVs are closely associated with viral replication in host type-I IFN response and the viral pathogenicity.
Collapse
Affiliation(s)
- Najib Abdellaoui
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Seon Young Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
- Correspondence:
| |
Collapse
|
6
|
Woo SJ, Jeong MG, Jeon EJ, Do MY, Kim NY. Antiparasitic potential of ethanolic extracts of Carpesii Fructus against Miamiensis avidus in hirame natural embryo cell line and their effects on immune response- and biotransformation-related genes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109214. [PMID: 34673250 DOI: 10.1016/j.cbpc.2021.109214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
Scuticociliatosis, caused by Miamiensis avidus, is a severe parasitic disease affecting marine organisms, particularly Paralichthys olivaceus. The aim of this study was to assess the antiparasitic potential of ethanolic extracts of Carpesii Fructus (EECF), the dried fruit of Carpesium abrotanoides L., which is used in traditional Chinese medicine, in vitro. We found that 50%, 70%, and 100% EECF induced morphological changes in M. avidus, including reduced motility, cell shrinkage, and lysis. Nearly 100% cell lysis was observed in M. avidus after 2 h of treating with 100% EECF. After 24 h, the survival rates of M. avidus treated with 100%, 70%, and 50% EECF were 10%, 20%, and 30%, respectively. Additionally, the mRNA levels of immune response-related (IL-1β, IL-8, TNF-α, and CD8-α) and biotransformation-related (CYP1A, CYP1B, CYP3A4, and UGT2B19) genes increased with 70% and 100% EECF treatment and decreased with 50% EECF treatment following pretreatment with concanavalin A. The viability of hirame natural embryo (HINAE) cells was reduced by 50%, 70%, and 100% EECF (100 mg/L) and was between 67 and 80%. The IC50 values of 50%, 70%, 90%, and 100% EECF in HINAE cells were 102.3, 42.93, 39.15, and 38.39 mg/L, respectively. These results indicated that 50% EECF was less toxic to HINAE cells than 70% or 100% EECF, while still exhibiting antiparasitic activity against M. avidus. Therefore, we demonstrated the role of EECF as a natural antiparasitic agent against M. avidus. Our findings suggest that Carpesii Fructus has potential use as an antiparasitic agent in the aquaculture industry.
Collapse
Affiliation(s)
- Soo Ji Woo
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Min Gyeong Jeong
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Eun Ji Jeon
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Mi Young Do
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Na Young Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea.
| |
Collapse
|
7
|
Kwak JS, Kim MS, Kim KH. Harnessing snakehead rhabdovirus (SHRV) for gene editing by installment of CRISPR/Cas9 in viral genome. Virus Res 2021; 305:198578. [PMID: 34560185 DOI: 10.1016/j.virusres.2021.198578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
As there is no risk of viral genome integration into host chromosome, cytoplasmic RNA viruses can be a safer vehicle to deliver CRISPR/Cas system. Snakehead rhabdovirus (SHRV) is a piscine RNA virus belonging to the family Rhabdoviridae, and, in the present study, we evaluated the availability of SHRV as a tool for CRISPR/Cas9 delivery in mammalian cells. SHRV was grown well in baby hamster kidney (BHK-21) cells at 28 °C, and the replication ability was greatly reduced by temperature up-shift to 37 °C. We rescued a recombinant SHRV that harboring not only the interferon regulatory factor 9 (IRF9) gene-targeting single-guide RNA (sgRNA) but also Cas9 gene in the genome using the reverse genetic technology. The IRF9 gene of BHK-21 cells was knocked-out by the infection with the IRF9 gene-targeting rSHRV. Moreover, the rSHRVs were sharply disappeared in the cells by elevating temperature to 37 °C, suggesting the possible regulation of knockout efficiency before virus infection-caused cell damage. Although further optimization researches are needed to enhance the editing efficiency using the recombinant SHRV, to our knowledge, this is the first report on the possible applicability of piscine RNA virus for the gene editing in mammalian cells.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
8
|
Kim JY, Park JS, Jung TS, Kim HJ, Kwon SR. Molecular cloning and characterization of chemokine C-C motif ligand 34 (CCL34) genes from olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2021; 116:42-51. [PMID: 34146672 DOI: 10.1016/j.fsi.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Chemokines are a superfamily of chemotactic cytokines that regulate the migration and immune responses of leukocytes. Depending on the arrangement of the first two cysteine residues, chemokines are divided into four groups: CXC (α), CC (β), C (γ), and CX3C (δ). Chemokine C-C motif ligand 34 (CCL34) is a member of the CC chemokine family and is known as a fish-specific CC chemokine. In this experiment, we analyzed the molecular cloning and characterization of the PoCCL34 gene in olive flounder (Paralichthys olivaceus), including CCL34a.3 (PoCCL34a.3) and CCL34b.3 (PoCCL34b.3). The amino acid sequence of PoCCL34 has four highly conserved cysteine residues and it has a C-C motif. Phylogenetic analysis revealed that PoCCL34 was phylogenetically clustered in the fish CCL34 subcluster. Recombinant PoCCL34 induced chemotaxis of head kidney leukocytes in a dose-dependent manner. Head kidney leukocytes stimulated with PoCCL34 also exhibited significant respiratory burst activity and increased expression of pro-inflammatory cytokines (IL-1β, IL-6, and CXCL8), but the overall expression of interferon-related genes (IFN-α/β, IFN-γ, Mx, and ISG15) did not increase. Olive flounder injected with recombinant PoCCL34 demonstrated increased expression of pro-inflammatory cytokines (IL-1β and IL-6) in the head kidney. However, there was no increase in the expression of interferon-related genes (IFN-α/β, IFN-γ, Mx, and ISG15). Additionally, recombinant PoCCL34 induced high lysozyme activity in the serum of the flounder. These results indicate that although PoCCL34 is not involved in the antiviral response, it may play a significant role in the overall immune response of the flounder, particularly in mediating the inflammatory response.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea
| | - Jeong Su Park
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, South Korea.
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan, 31460, South Korea; Genome-based BioIT Convergence Institute, Asan, 31460, South Korea.
| |
Collapse
|
9
|
Kwak JS, Kim KH. Enhancing immunogenicity of a reporter protein by fusion to glycoprotein and nucleoprotein of viral hemorrhagic septicemia virus (VHSV) particles. FISH & SHELLFISH IMMUNOLOGY 2020; 105:35-40. [PMID: 32619626 DOI: 10.1016/j.fsi.2020.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The introduction of reverse genetic technology to generate recombinant VHSVs (rVHSVs) has contributed to the uncovering of functional roles of viral genes and to the development of attenuated prophylactic vaccines. In this study, to assess the possible use of rVHSVs as a tool of combined vaccines, we newly rescued rVHSVs that harbor viral envelop-studded eGFP (rVHSV-A-SGT) or nucleoprotein-fused eGFP (rVHSV-A-NLG), and the ability of these rVHSVs to induce adaptive humoral immunity in olive flounder (Paralichthys olivaceus) was compared with that of rVHSV-A-eGFP that expresses eGFP as a soluble form in the cytoplasm of infected cells. The results showed that antibodies against eGFP were efficiently induced by the immunization of olive flounder with rVHSV-A-SGT and rVHSV-A-NLG, while rVHSV-A-eGFP was poor in the ability to induce antibody response against eGFP. These results suggest that the display of heterologous antigens on VHSV envelop is a good way to develop efficient combined vaccines and the fusion of foreign antigen with N protein can also be a way to enhance immunogenicity of a foreign antigen. The present recombinant VHSVs - rVHSV-A-SGT and rVHSV-A-NLG - not only express foreign antigens in host cell cytoplasm but also display antigens in or on the virus particles. Further researches on the availability of recombinant VHSVs as combined vaccines against multiple fish pathogens are needed.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
10
|
Kim MS, Kim KH. Genetically engineered viral hemorrhagic septicemia virus (VHSV) vaccines. FISH & SHELLFISH IMMUNOLOGY 2019; 95:11-15. [PMID: 31622675 DOI: 10.1016/j.fsi.2019.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) has been one of the major causes of mortality in a wide range of freshwater and marine fishes worldwide. Although various types of vaccines have been tried to prevent VHSV disease in cultured fishes, there are still no commercial vaccines. Reverse genetics have made it possible to change a certain regions on viral genome in accordance with the requirements of a research. Various types of VHSV mutants have been generated through the reverse genetic method, and most of them were recovered to investigate the virulence mechanisms of VHSV. In the reverse genetically generated VHSV mutants-based vaccines, high protective efficacies of attenuated VHSVs and single-cycle VHSV particles have been reported. Furthermore, the application of VHSV for the delivery tools of heterologous antigens including not only fish pathogens but also mammalian pathogens has been studied. As not much research has been conducted on VHSV mutants-based vaccines, more studies on the enhancement of immunogenicity, vaccine administration routes, safety to environments are needed for the practical use in aquaculture farms.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
11
|
Kwak JS, Kim MS, Kim KH. Generation of microRNA-30e-producing recombinant viral hemorrhagic septicemia virus (VHSV) and its effect on in vitro immune responses. FISH & SHELLFISH IMMUNOLOGY 2019; 94:381-388. [PMID: 31521783 DOI: 10.1016/j.fsi.2019.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs involved in the regulation of gene expression. In the present study, we firstly reported the use of a fish RNA virus, viral hemorrhagic septicemia virus (VHSV), as a delivery vehicle of a miRNA-30e, and the effect of miR-30e produced by the recombinant VHSV on the immune responses of Epithelioma papulosum cyprini (EPC) cells was investigated. The expression of functional miR-30e using a CMV promoter-driven vector was verified by the significantly lower eGFP expression in cells transfected with a vector containing miR-30e sponge sequence than that in cells transfected with a control vector that had mutated miR-30e sponge sequence. Furthermore, the down-regulation of reporter gene containing 3'-UTR of NF-κb inhibitor α-like protein B (NFκbiαb) by miR-30e was demonstrated, suggesting that miR-30e overexpression can increase immune responses related to NF-κB activation through inhibition of IκB. A miR-30e-expressing recombinant VHSV (rVHSV-A-miR30e) that had primary microRNA-30e sequence between N and P genes was rescued using the reverse genetic method, and the successful expression of miR-30e in the cells infected with rVHSV-A-miR30e was demonstrated using Northern blot and qRT-PCR. Cells infected with rVHSV-A-miR30e showed the increase of NF-κB activation and type I interferon induced genes expression, suggesting that rVHSV-A-miR30e can produce functional miR-30e in fish cells, and VHSV can be used as a vehicle to deliver functional microRNAs in fish.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
12
|
Capsid amino acids at positions 247 and 270 are involved in the virulence of betanodaviruses to European sea bass. Sci Rep 2019; 9:14068. [PMID: 31575937 PMCID: PMC6773868 DOI: 10.1038/s41598-019-50622-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
European sea bass (Dicentrarchus labrax) is severely affected by nervous necrosis disease, caused by nervous necrosis virus (NNV). Two out of the four genotypes of this virus (red-spotted grouper nervous necrosis virus, RGNNV; and striped jack nervous necrosis virus, SJNNV) have been detected in sea bass, although showing different levels of virulence to this fish species. Thus, sea bass is highly susceptible to RGNNV, whereas outbreaks caused by SJNNV have not been reported in this fish species. The role of the capsid protein (Cp) amino acids 247 and 270 in the virulence of a RGNNV isolate to sea bass has been evaluated by the generation of recombinant RGNNV viruses harbouring SJNNV-type amino acids in the above mentioned positions (Mut247Dl965, Mut270Dl965 and Mut247 + 270Dl965). Viral in vitro and in vivo replication, virus virulence and fish immune response triggered by these viruses have been analysed. Mutated viruses replicated on E-11 cells, although showing some differences compared to the wild type virus, suggesting that the mutations can affect the viral cell recognition and entry. In vivo, fish mortality caused by mutated viruses was 75% lower, and viral replication in sea bass brain was altered compared to non-mutated virus. Regarding sea bass immune response, mutated viruses triggered a lower induction of IFN I system and inflammatory response-related genes. Furthermore, mutations caused changes in viral serological properties (especially the mutation in amino acid 270), inducing higher seroconversion and changing antigen recognition.
Collapse
|
13
|
Gotesman M, Menanteau-Ledouble S, Saleh M, Bergmann SM, El-Matbouli M. A new age in AquaMedicine: unconventional approach in studying aquatic diseases. BMC Vet Res 2018; 14:178. [PMID: 29879957 PMCID: PMC5992843 DOI: 10.1186/s12917-018-1501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Marine and aquaculture industries are important sectors of the food production and global trade. Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and marine fish communities are rapidly incorporating novel and most up to date techniques for detection, characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large disease outbreaks. MAIN TEXT One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in the present paper. This allowed us to describe the most recent development research regarding the control of diseases in the aquatic environment as well as promising avenues that may result in beneficial developments. For the characterization of diseases, traditional sequencing and histological based methods have been augmented with transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine. CONCLUSIONS In our modern times, when the marine industry has become so vital for feed and economic stability, even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease to control invasive species populations should be considered.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, New York City College of Technology of the City University of New York, Brooklyn, New York, USA
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|