1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Yao X, Yi Z, Xu M, Han Y. A Review on the Extraction, Structural Characterization, Function, and Applications of Peptidoglycan. Macromol Rapid Commun 2025; 46:e2400654. [PMID: 39748598 DOI: 10.1002/marc.202400654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/07/2024] [Indexed: 01/04/2025]
Abstract
Peptidoglycan (PGN) is the primary component of bacterial cell walls, consisting of linear glycan chains formed by alternating linkages of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) through glycosidic bonds. It exhibits biological activity in various aspects, making it a biologically significant macromolecule with extensive industrial application. This review aims to explore the latest research advancements in the extraction techniques, structural characterization, functions, and applications of PGN. The review compares the advantages and limitations of traditional chemical lysis methods with modern mechanical-assisted and bio-assisted extraction techniques, discusses chemical composition analysis techniques and structural characterization methods of PGN. The review emphasizes the potential of PGN in immune modulation, specific recognition, and adsorption functions. Furthermore, the review examines potential applications of PGN in vaccine development, the livestock industry, the removal of harmful substances, and protein bioprocessing. In the end, based on the current development trend, future research directions for PGN are proposed, including in-depth studies on the mechanisms of PGN in different hosts and its immunomodulatory effects in various disease models. It is expected that a comprehensive reference framework for the research and application of PGN will be provided through this review, offering ideas and directions for further development and utilization.
Collapse
Affiliation(s)
- Xu Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Zhongkai Yi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
3
|
Kong X, Wang W, Xia S, Zhi Y, Cai Y, Zhang H, Shen X. Molecular and functional characterization of short peptidoglycan recognition proteins in Vesicomyidae clam. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105284. [PMID: 39489409 DOI: 10.1016/j.dci.2024.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Within cold seep environments, the Vesicomyidae clam emerges as a prevalent species, distinguished by its symbiotic relationship with microorganisms housed within its organ gill. Given the extreme conditions and the symbiotic nature of this association, investigating the host's immune genes, particularly immune recognition receptors, is essential for understanding their role in facilitating host-symbiotic interactions. Three short peptidoglycan recognition proteins (PGRPs) were identified in the clam. AmPGRP-S1, -S2, and -S3 were found to possess conserved amidase binding sites and Zn2+ binding sites. Quantitative Real-time PCR (qRT-PCR) analysis revealed differential expression patterns among the PGRPs. AmPGRP-S1 and AmPGRP-S2 exhibited elevated expression levels in the gill, while AmPGRP-S3 displayed the highest expression in the adductor muscle. Functional experiments demonstrated that recombinant AmPGRP-S1, -S2, and -S3 (rAmPGRPs) exhibited binding capabilities to both L-PGN and D-PGN (peptidoglycan). Notably, rAmPGRP-S1 and -S2 possessed Zn2+-independent amidase activity, while rAmPGRP-S3 lacked this enzymatic function. rAmPGRPs were shown to bind to five different bacterial species. Among these, rAmPGRP-S1 inhibited Escherichia coli and Bacillus subtilis, while rAmPGRP-S2 and -S3 inhibited Bacillus subtilis in the absence of Zn2+. In the presence of Zn2+, rAmPGRP-S1 and -S2 exhibited enhanced inhibitory activity against Staphylococcus aureus or Bacillus subtilis. These findings suggest that AmPGRPs may play a pivotal role in mediating the interaction between the host and endosymbiotic bacteria, functioning as PGN and microbe receptors, antibacterial effectors, and regulators of host-microbe symbiosis. These results contribute to our understanding of the adaptive mechanisms of deep-sea organisms to the challenging cold seep environments.
Collapse
Affiliation(s)
- Xue Kong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Wei Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Sunan Xia
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Ying Zhi
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Yuefeng Cai
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xin Shen
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222000, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222000, China.
| |
Collapse
|
4
|
Jiang P, Gao S, Zhao Z, Zhao L, Sun H, Zhang F, Li L, Li P, Pan Y, Yue D, Jiang J, Zhou Z. Characterization of a novel short-type peptidoglycan recognition protein from the sea cucumber Apostichopus japonicus. Int J Biol Macromol 2024; 283:137914. [PMID: 39577535 DOI: 10.1016/j.ijbiomac.2024.137914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Peptidoglycan recognition proteins (PGRPs) represent a key component of the family of pattern recognition receptors (PRRs). The functional mechanisms of PGRPs in innate immunity are poorly understood. In this study, we identified a novel short-type PGRP, AjPGRP-S2, from the sea cucumber Apostichopus japonicus. Our data showed that AjPGRP-S2 encoded an extracellular protein that possessed a signal peptide, a complete zinc (Zn2+) binding site, and a disulfide bond. A recombinant AjPGRP-S2 (rAjPGRP-S2) lacking the signal peptide was generated and demonstrated to exhibit amidase activity. Tissue expression analysis revealed that AjPGRP-S2 was highly expressed in coelomocytes and tube feet. Immune-responsive analysis indicated that AjPGRP-S2 was able to bind to various pathogen-associated molecular patterns (PAMPs) from bacteria and fungi, as well as to Gram-positive and -negative bacteria, and was majorly induced by DAP-PGN challenge. Basing on RNA-Seq and Pearson's correlation testing, RNA interference, and pull-down analysis, AjPGRP-S2 was found to be involved in transducing immune signals to the complement system and other PRRs, such as fibrinogen, by protein interactions to further recognize and kill pathogens. To respond comprehensively against pathogenic invasion, AjPGRP-S2 may also have the potential in transducing immune signals to key processes, such as cell adhesion, nerve conduction, apoptosis, and transcription by complex pathways that have yet to be elucidated. Our findings not only promote our understanding of the immune-related function and mechanisms of the PGRP family in A. japonicus, but also provide important data that will facilitate the identification of key evolutionary characteristics associated with invertebrate PGRPs.
Collapse
Affiliation(s)
- Pingzhe Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Shan Gao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Zelong Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Liang Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Hongjuan Sun
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Feifei Zhang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Li Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Peipei Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Yongjia Pan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Dongmei Yue
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China
| | - Jingwei Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China.
| | - Zunchun Zhou
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Province, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, China.
| |
Collapse
|
5
|
Mushtaq Z, Kurcheti PP, Jeena K, Gireesh-Babu P. Short peptidoglycan recognition protein 5 modulates immune response to bacteria in Indian major carp, Cirrhinusmrigala. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105104. [PMID: 38040045 DOI: 10.1016/j.dci.2023.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) function in host antibacterial responses by recognizing bacterial peptidoglycan (PGN). In the present study, a short pgrp5 (named mpgrp5) was identified in Cirrhinus mrigala (mrigal). The full-length cDNA of the mpgrp5 gene was 1255 bp, containing an open reading frame of 746 bp encoding a protein of 248 amino acids. The predicted protein contained the typical Pgrp/amidase domain, conserved Zn2+, and PGN binding residues. The phylogenetic analysis revealed that the mpgrp5 is closely related to Pgrps reported in Labeo rohita, Cyrinus carpio, and Ctenopharyngodon idella. The ontogenetic expression of mpgrp5 was highest at 7 days post-hatching (dph) and its possible maternal transfer. mpgrp5 was constitutively expressed in all tissues examined, with the highest expression observed in the intestine. Furthermore, mpgrp5 was found upregulated in mrigal post-challenge in a time-dependent manner at 6hpi in the liver (3.16 folds, p < 0.05) and kidney (2.79 folds, p < 0.05) and at 12hpi in gill (1.90 folds, p < 0.01), skin (1.93 folds, p < 0.01), and intestine, (2.71 folds, p < 0.05) whereas at 24hpi in spleen (4.0 folds, p < 0.01). Our results suggest that mpgrp5 may play an important role in antibacterial immune response from early life stages in mrigal.
Collapse
Affiliation(s)
- Zahoor Mushtaq
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - K Jeena
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - P Gireesh-Babu
- ICAR-National Research Centre on Meat, Hyderabad, 500092, India
| |
Collapse
|
6
|
Jiang J, Gao S, Zhao Z, Chen Z, Zhang F, Li L, Jiang P, Guan X, Li P, Pan Y, Zhou Z. A novel short-type peptidoglycan recognition protein with unique polysaccharide recognition specificity in sea cucumber, Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109263. [PMID: 38040134 DOI: 10.1016/j.fsi.2023.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Pattern recognition receptors (PRRs) are the first line of immune defense in invertebrates against pathogen infection; they recognize pathogens and transmit signals to downstream immune pathways. Among these, peptidoglycan recognition proteins (PGRPs) are an important family in invertebrates that generally comprise of complicated isoforms. A comprehensive understanding of PGRPs in evolutionarily and economically important marine invertebrates, such as the sea cucumber, Apostichopus japonicus, is crucial. Previous studies have identified two PGRPs in sea cucumber, AjPGRP-S and AjPGRP-S1, and another novel short-type PGRP, AjPGRP-S3, was additionally identified here. The full-length cDNA sequence of AjPGRP-S3 was obtained here by PCR-RACE, followed by which showed its gene expression analyses by in situ hybridization that showed it to be relatively highly expressed in coelomocytes and tube feet. Based on an analysis of the recombinant protein, rAjPGRP-S3, a board-spectrum pathogen recognition ability was noted that covered diverse Gram-negative and -positive bacteria, and fungi. Moreover, according to the results of yeast two-hybridization, it was suggested that rAJPGRP-S3 interacted with multiple immune-related factors, including proteins involved in the complement system, extracellular matrix, vesicle trafficking, and antioxidant system. These findings prove the important functions of AjPGRP-S3 in the transduction of pathogen signals to downstream immune effectors and help explore the functional differences in the AjPGRP isoforms.
Collapse
Affiliation(s)
- Jingwei Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Shan Gao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Zelong Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Zhong Chen
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Feifei Zhang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Li Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Pingzhe Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Xiaoyan Guan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Peipei Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Yongjia Pan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China
| | - Zunchun Zhou
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, PR China.
| |
Collapse
|
7
|
Jiang J, Zhao Z, Gao S, Chen Z, Pan Y, Guan X, Jiang P, Li P, Wang B, Sun H, Dong Y, Zhou Z. Functions of lysin motif (LysM)-containing protein in antibacterial responses of sea cucumbers, Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1275-1281. [PMID: 36400371 DOI: 10.1016/j.fsi.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The lysin motif (LysM)-containing protein is one of widespread pattern-recognition receptors in prokaryotes and eukaryotes. Numerous LysM-containing gene sequences are present in gene databases; however, few have been well characterized, especially in echinoderms. In this study, the full-length cDNA of a novel LysM-containing gene was obtained from the sea cucumber Apostichopus japonicus, named AjLysM-1, using polymerase chain reaction (PCR) combined with rapid amplification of cDNA ends. We prepared and expressed recombinant AjLysM-1 protein (rAjLysM-1) and determined its pathogen-recognition ability by enzyme-linked immunosorbent and immunofluorescence assays. We also analyzed the tissue expression pattern and response to immune challenges of AjLysM-1 using quantitative real-time reverse transcription-PCR and in situ hybridization. The AjLysM-1 protein was predicted to be an intracellular non-secreted LysM-containing protein, highly homologous to the same protein in other marine echinoderms. AjLysM-1 transcripts were highest expressed in coelomocytes and were strikingly induced by challenge with representative bacterial and fungal polysaccharides. rAjLysM-1 showed weak binding to mannan, Pseudoalteromonas nigrifaciens, and Shewanella baltica, implying that AjLysM-1 might provide inadequate defense against Gram-negative bacteria and fungi. Notably, rAjLysM-1 also interacted with tyrosine protein kinase and filamin-B, indicating that it could be involved in focal adhesion in A. japonicus. These findings improve our understanding of the functions of LysM-containing proteins in marine echinoderms.
Collapse
Affiliation(s)
- Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Pingzhe Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Peipei Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Hongjuan Sun
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
8
|
Liao Z, Yang Z, Wang Y, He J, He Z, Zhang X, Buttino I, Qi P, Fan M, Guo B, Yan X, He M. Molecular characterization of peptidoglycan recognition proteins from Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:612-623. [PMID: 36272520 DOI: 10.1016/j.fsi.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Mytilus shows great immune resistance to various bacteria from the living waters, indicating a complex immune recognition mechanism against various microbes. Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Therefore, eight PGRPs were identified from the gill transcriptome of Mytilus coruscus. The sequence features, expression pattern in various organs and larval development stages, and microbes induced expression profiles of these Mytilus PGRPs were determined. Our data revealed the constitutive expression of PGRPs in various organs with relative higher expression level in immune-related organs. The expression of PGRPs is developmentally regulated, and most PGRPs are undetectable in larvae stages. The expression level of most PGRPs was significantly increased with in vivo microbial challenges, showing strong response to Gram-positive strain in gill and digestive gland, strong response to Gram-negative strain in hemocytes, and relative weaker response to fungus in the three tested organs. In addition, the function analysis of the representative recombinant expressed PGRP (rMcPGRP-2) confirmed the antimicrobial and agglutination activities, showing the immune-related importance of PGRP in Mytilus. Our work suggests that Mytilus PGRPs can act as pattern recognition receptors to recognize the invading microorganisms and the antimicrobial effectors during the innate immune response of Mytilus.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zongxin Yang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Zhijiang He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144, Rome, Italy
| | - Pengzhi Qi
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Meihua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Baoying Guo
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Menglan He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China.
| |
Collapse
|
9
|
Liu W, Liu B, Zhang G, Jia H, Zhang Y, Cen X, Yao G, He M. Molecular and Functional Characterization of a Short-Type Peptidoglycan Recognition Protein, Ct-PGRP-S1 in the Giant Triton Snail Charonia tritonis. Int J Mol Sci 2022; 23:11062. [PMID: 36232364 PMCID: PMC9570181 DOI: 10.3390/ijms231911062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors (PRRs) involved in host antibacterial responses, and their functions have been characterized in most invertebrate and vertebrate animals. However, little information is available regarding the potential function of PGRPs in the giant triton snail Charonia tritonis. In this study, a short-type PGRP gene (termed Ct-PGRP-S1) was identified in C. tritonis. Ct-PGRP-S1 was predicted to contain several structural features known in PGRPs, including a typical PGRP domain (Amidase_2) and Src homology-3 (SH3) domain. The Ct-PGRP-S1 gene was constitutively expressed in all tissues examined except in proboscis, with the highest expression level observed in the liver. As a typical PRR, Ct-PGRP-S1 has an ability to degrade peptidoglycan (PGN) and was proven to have non-Zn2+-dependent amidase activity and antibacterial activity against Vibrioalginolyticus and Staphylococcus aureus. It is the first report to reveal the peptidoglycan recognition protein in C. tritonis, and these results suggest that peptidoglycan recognition protein Ct-PGRP-S1 is an important effector of C. tritonis that modulates bacterial infection resistance of V. alginolyticus and S. aureus, and this study may provide crucial basic data for the understanding of an innate immunity system of C. tritonis.
Collapse
Affiliation(s)
- Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bing Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Jia
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xitong Cen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoyou Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
10
|
Meng Y, Dai W, Lin Z, Zhang W, Dong Y. Expression and functional characterization of peptidoglycan recognition protein-S6 involved in antibacterial responses in the razor clam Sinonovacula constricta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104331. [PMID: 34883108 DOI: 10.1016/j.dci.2021.104331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
It has been recognized that peptidoglycan recognition proteins (PGRPs), structurally conserved molecules, play crucial roles in the innate immunity of invertebrate. However, few studies have been taken to explore their potential functions. In this study, a novel PGRP from the razor clam Sinonovacula constrict designated as ScPGRP-S6 was identified and characterized. The open reading frame (ORF) of ScPGRP-S6 was 666 bp in length, encoding a protein of 221 amino acid with a signal peptide (1-30) and a typical PGRP domain (39-187). The sequence alignment combined with phylogenetic analysis collectively confirmed that ScPGRP-S6 was a novel member belonging to PGRP-S family. The mRNA transcript of ScPGRP-S6 in the hepatopancreases was significantly up-regulated after peptidoglycan (PGN) stimulation, while it was moderately up-regulated after lipopolysaccharide (LPS) stimulation. The result of immunofluorescence detection demonstrated that the positive signal enhanced obviously after Vibrio parahaemolyticus challenge. Notably, the recombinant protein of ScPGRP-S6 (designed as rScPGRP-S6) exhibited high agglutination activity towards V. parahaemolyticus but weak to Staphylococcus aureus. Furthermore, rScPGRP-S6 showed strong amidase and antibacterial activity in the presence of Zn2+. Collectively, our results manifested that ScPGRP-S6 could act as a scavenger in the innate immune response of S. constricta.
Collapse
Affiliation(s)
- Yiping Meng
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; College of Marine Sciences, Ningbo University, Ningbo, 315010, PR China
| | - Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, PR China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, PR China
| | - Weiwei Zhang
- College of Marine Sciences, Ningbo University, Ningbo, 315010, PR China
| | - Yinghui Dong
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, PR China.
| |
Collapse
|
11
|
Jiang J, Gao S, Chen Z, Guan X, Zhang F, Li L, Zhao Z, Zhao L, Xiao Y, Dong Y, Zhou Z. Apostichopus japonicus matrix metalloproteinase-16 might act as a pattern recognition receptor. FISH & SHELLFISH IMMUNOLOGY 2022; 121:135-141. [PMID: 34998985 DOI: 10.1016/j.fsi.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Matrix metalloproteinases (MMPs) are an important family of proteinases involved in various physiological processes and associated with the immune response. However, the role of MMPs in the immune response remains unclear. To explore the possible role of MMPs in innate immunity, this study selected the MMP-16 gene encoding peptidoglycan (PGN) binding domain identified in the sea cucumber Apostichopus japonicus (named AjMMP-16, GenBank accession No. AQT26486) for microbial polysaccharide-induced transcriptional expression analysis by quantitative real-time PCR, correlation analysis with nine representative genes from A. japonicus immune pathways in microbial polysaccharide-induced transcriptional expression by using Pearson's correlation test, and prokaryotic recombinant expression. Next, its recombinant protein was employed for microbial polysaccharide-binding analysis with ELISA and bacterial binding analysis with the indirect immunofluorescence method. The results showed that AjMMP-16 was significantly induced by diaminopimelic acid (DAP)-type PGN, lipopolysaccharide, mannan, and β-1,3-glucan and was closely correlated with myeloid differentiation factor 88 (MyD88) in microbial polysaccharide-induced transcriptional expression. In addition, recombinant AjMMP-16 bound to lysine-type PGN, DAP-type PGN, lipopolysaccharide, mannan, β-1,3-glucan, Vibrio splendidus, Pseudoalteromonas nigrifaciens, Shewanella baltica, Bacillus cereus, Escherichia coli, and Staphylococcus aureus. These results suggest that AjMMP-16 might act as a pattern recognition receptor in innate immunity and play an important role in initiating the MyD88-dependent Toll-like receptor signaling pathway.
Collapse
Affiliation(s)
- Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Feifei Zhang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Li Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Liang Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Yao Xiao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
12
|
Sun Q, Liu X, Li X. Peptidoglycan-based immunomodulation. Appl Microbiol Biotechnol 2022; 106:981-993. [PMID: 35076738 DOI: 10.1007/s00253-022-11795-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Peptidoglycan (PGN) is a unique component in the cytoderm of prokaryotes which can be recognized by different pathogen-associated molecular patterns (PAMPs) in eukaryotes, followed by a cascade of immune responses via different pathways. This review outlined the basic structure of PGN, its immunologic functions. The immunomodulation pathways mediated by PGN were elaborated. PGN induces specific immunity through stimulating different cytokine release and Th1/Th2-dominated immune responses during humoral/cellular immune response. The nonspecific immunity activation by PGN involves immunomodulation by different pattern recognition receptors (PRRs) including PGN recognition proteins (PGRPs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), Toll-like receptors (TLRs), and C-type lectin receptors (CLRs). The sources and classification of PGRPs were summarized. In view of the stimulating activities of PGN and its monomers, the potential application of PGN as vaccine or adjuvant was prospected. This review provides systematic information on PGN functionalities from the point of immunoregulation, which might be useful in the deep exploitation of PGN.Key points. The immunological functions of PGN were illustrated. Cellular and humoral immunomodulation by PGN were outlined. The use of PGN as vaccine or adjuvant was prospected.
Collapse
Affiliation(s)
- Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiaoli Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiuliang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China. .,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
13
|
Gorbushin AM. Identification of peptidoglycan recognition proteins in hemocytes and kidney of common periwinkle Littorinalittorea. FISH & SHELLFISH IMMUNOLOGY 2022; 120:11-14. [PMID: 34774730 DOI: 10.1016/j.fsi.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Peptidoglycan Recognition Proteins (PGRPs) are a diverse group of proteins involved in innate immunity. In particular, PGRPs have been shown to participate in immune pattern recognition in various mollusks. However, they have not been described in Caenogastropoda, a large molluscan group comprising sea, freshwater and land snails. In this study, four short PGRPs with molecular weights ranging from 21 to 34 kDa and their isoforms were identified and structurally characterized in the kidney and hemocytic transcriptomes of a caenogastropod mollusk Littorina littorea. All of them (LlPGRP1-4) are secretory, possess a signal peptide and a characteristic N-terminal N-acetylmuramoyl-l-alanine amidase (Ami) domain with conserved Zn2+ binding- and amidase catalytic sites. The shortest proteins, LlPGRP1 and LlPGRP2, have no additional conserved motifs on the N-terminus. In longer and most abundantly expressed LlPGRP3 and LlPGRP4 the Ami-domain is combined with an N-terminal SH3-domain and a cysteine-rich motif, respectively. Expression analysis showed that LlPGRPs of the common periwinkle were uninvolved in the immune response to infection with trematode Himasthla elongata though they might act in antibacterial defense.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| |
Collapse
|
14
|
Li Q, Cui K, Xu D, Wu M, Mai K, Ai Q. Molecular identification of peptidoglycan recognition protein 5 and its functional characterization in innate immunity of large yellow croaker, Larimichthys crocea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104130. [PMID: 34081942 DOI: 10.1016/j.dci.2021.104130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Fish peptidoglycan recognition proteins (PGRPs) play important roles in microbial recognition, and bacterial elimination. In the present study, a short-type PGRP from large yellow croaker, LcPGRP5 was cloned and its functions were characterized. LcPGRP5 gene encodes a protein containing conserved PGRP domain, but no signal peptide. Phylogenetic analysis shows that LcPGRP5 is clustered with other short PGRPs identified in other teleosts. LcPGRP5 is constitutively expressed in all tissues examined, with the highest expression being detected in the head kidney. Recombinant LcPGRP5 protein features amidase activity and bactericidal activity. Notably, LcPGRP5 could enhance the phagocytosis of the bacteria by large yellow croaker macrophage, with higher phagocytic capacity being observed in Staphylococcus aureus compared to Escherichia coli. Moreover, overexpression of LcPGRP5 suppresses pro-inflammatory effects elicited by bacterial exposure in the macrophage cell line. Overall, the present results clearly indicate the important roles of LcPGRP5 played in the innate immune responses against bacterial infection.
Collapse
Affiliation(s)
- Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Mengjiao Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Li K, Qiu H, Yan J, Shen X, Wei X, Duan M, Yang J. The involvement of TNF-α and TNF-β as proinflammatory cytokines in lymphocyte-mediated adaptive immunity of Nile tilapia by initiating apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103884. [PMID: 33045273 DOI: 10.1016/j.dci.2020.103884] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factors (TNFs) are pleiotropic cytokines with important functions in homeostasis and disease pathogenesis. Recent advances have shown that TNFs are also involved in the regulation of adaptive immune responses. However, the knowledge about how TNF participates in and regulates adaptive immune response in early vertebrates is still limited. In present study, we identified two isoforms of TNF, TNF-α and TNF-β, from Nile tilapia Oreochromis niloticus (On-TNF-α and β). After analyzing the sequence characteristics, we investigated their regulatory roles in adaptive immune response of this fish species. On-TNF-α and β are evolutionarily conserved compare with their homologs from other vertebrates. Both TNFs were distributed in a wide range of tissues in O. niloticus, and with relative higher expression level in gill. After the animals were infected by Streptococcus agalactiae, mRNA levels of On-TNF-α and TNF-β in spleen lymphocytes were significantly upregulated during the primary response stage of adaptive immunity. Meanwhile, both TNF proteins in spleen lymphocytes were also dramatically elevated during the adaptive immune stage after bacterial infection. These results indicate the potential participation of On-TNF-α and TNF-β in adaptive immune response of Nile tilapia. Furthermore, On-TNF-α and β transcripts were obviously augmented, once spleen lymphocytes were activated by T cell-specific mitogen PHA. More importantly, both recombinant On-TNF-α and β could induce the apoptosis of head-kidney leukocytes of Nile tilapia. And On-TNF-β but not On-TNF-α promoted the apoptosis by activating caspase-8 in the target cells. Altogether, our study revealed that TNF-α and TNF-β participated in the lymphocyte-mediated adaptive immune response of Nile tilapia by initiating the apoptosis, and thus shed novel perspective for the regulatory mechanism of adaptive immunity in teleost.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hong Qiu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaotong Shen
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Yang D, Han Y, Liu Y, Cao R, Wang Q, Dong Z, Liu H, Zhang X, Zhang Q, Zhao J. A peptidoglycan recognition protein involved in immune recognition and immune defenses in Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2019; 88:441-448. [PMID: 30872031 DOI: 10.1016/j.fsi.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are important pattern recognition receptors in the innate immune system of invertebrates. In the study, a short PGRP (designed as RpPGRP) was identified and characterized from the manila clam Ruditapes philippinarum. The open reading frame of RpPGRP encoded a polypeptide of 249-amino acids with a calculated molecular mass of 27.2 kDa and an isoelectric point of 6.62. Multiple alignments and phylogenetic analysis strongly suggested that RpPGRP was a new member of the PGRP superfamily. In non-stimulated clams, RpPGRP exhibited different tissue expression pattern, and highly expressed in hepatopancreas and hemocytes. Expression of RpPGRP transcripts was significantly up-regulated in hemocytes of clams post Vibrio anguillarum or Micrococcus luteus challenge. The recombinant RpPGRP (rRpPGRP) exhibited high affinity to PGN, LPS and zymosan in a concentration-dependent manner. With a broad spectrum of bacterial binding activities, rRpPGRP exhibited strong agglutination activity to Escherichia coli, Vibrio splendidus, V. anguillarum and M. luteus. Furthermore, rRpPGRP exhibited Zn2+-dependent amidase activity and catalyzed the degradation of insoluble PGN. Especially, rRpPGRP exhibited significant antibacterial activity against E. coli and M. luteus. Moreover, the biofilm formation of E. coli could be inhibited after rRpPGRP incubation in the presence of Zn2+. This inhibitory effect of rRpPGRP might attribute to its amide bactericidal activity. Taken together, rRpPGRP played important roles in PGRP-mediated immune defense mechanisms, especially by recognizing antigens and eliminating bacteria.
Collapse
Affiliation(s)
- Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongliang Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Ruiwen Cao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hui Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qianqian Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China.
| |
Collapse
|
17
|
Molecular and functional characterization of ApPGRP from Anatolica polita in the immune response to Escherichia coli. Gene 2019; 690:21-29. [DOI: 10.1016/j.gene.2018.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022]
|
18
|
Huang Y, Pan J, Li X, Ren Q, Zhao Z. Molecular cloning and functional characterization of a short peptidoglycan recognition protein from triangle-shell pearl mussel (Hyriopsis cumingii). FISH & SHELLFISH IMMUNOLOGY 2019; 86:571-580. [PMID: 30529463 DOI: 10.1016/j.fsi.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Peptidoglycan (PGN) is an important target of recognition in invertebrate innate immunity. PGN recognition proteins (PGRPs) are responsible for PGN recognition. In this study, we cloned and functionally analyzed a short PGRP (HcPGRP2) from the triangle-shell pearl mussel Hyriopsis cumingii. The full-length cDNA sequence of HcPGRP2 gene was 1185 bp containing an open reading frame of 882 bp encoding a 293 amino acid protein. HcPGRP2 was predicted to have two SH3b domains and a conserved C-terminal PGRP domain. Quantitative real-time RT-PCR showed that HcPGRP2 was expressed in all examined tissues and its expression was induced most significantly by Staphylococcus aureus and Vibrio parahaemolyticus in the hepatopancreas and gills. RNA interference by siRNA results revealed that HcPGRP2 was involved in the regulation of whey acidic protein, theromacin, and defensin expression. As a pattern-recognition receptor, recombinant HcPGRP2 (rHcPGRP2) protein can bind and agglutinate (Ca2+ dependent) all tested bacteria. rHcPGRP2 exhibited specific binding to PGN but not to lipopolysaccharide. Moreover, rHcPGRP2 inhibited the growth activities of S. aureus and V. parahaemolyticus in vitro and accelerated the clearance of V. parahaemolyticus in vivo. Overall, our results indicated that HcPGRP2 may play an important role in the antibacterial immune mechanisms of H. cumingii.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Jianlin Pan
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| | - Zhe Zhao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China.
| |
Collapse
|
19
|
Zhao T, Wei X, Yang J, Wang S, Zhang Y. Galactoside-binding lectin in Solen grandis as a pattern recognition receptor mediating opsonization. FISH & SHELLFISH IMMUNOLOGY 2018; 82:183-189. [PMID: 30107261 DOI: 10.1016/j.fsi.2018.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/31/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
Galactoside-binding lectin (galectin) is a type of pathogen recognition molecule that occupies an important position in the invertebrate innate immunity system. Our previous study has identified a galectin gene in mollusk Solen grandis (SgGal-1) and illustrated its potential roles in innate immunity. By the functional study using recombinant protein and specific antibody, here, we confirmed the pivotal roles of SgGal-1 in immune defense of S. grandis. SgGal-1 protein was expressed in many tested tissues including gill, mantle, hepatopancreas and gonad, except hemocytes and muscle. The recombinant SgGal-1 (rSgGal-1) bound PGN and β-glucan instead of LPS in vitro, and it further caused significant agglutination of five different microbes, suggesting SgGal-1 served as a pattern recognition receptor (PRR) involved in immune defense of mollusk. Furthermore, SgGal-1 recruited hemocytes to encapsulate, which was blocked by anti-rSgGal-1 serum. In the meantime, rSgGal-1 as well as promoted the phagocytosis of hemocytes against Escherichia coli in vitro. All these results suggested that SgGal-1 in S. grandis not only acted as a PRR recognizing microbes but also directly participated in the process of immune opsonization to protect the host from pathogenic infection.
Collapse
Affiliation(s)
- Tianyu Zhao
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiumei Wei
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Jialong Yang
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Sheng Wang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yu Zhang
- Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|