1
|
Peng Y, Lin C, Zhang B, Yan L, Zhang B, Zhao C, Qiu L. Characteristics and preliminary immune function of SRA5 in Lateolabrax maculatus. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110266. [PMID: 40064212 DOI: 10.1016/j.fsi.2025.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Scavenger receptors (SRs) are crucial for pattern recognition in the innate immune system. However, the role of Scavenger Receptors class A member 5 (SRA5) in the immunological response of bony fish to pathogen invasion remains unclear. This study identified and characterized the SRA5 of Lateolabrax maculatus (LmSRA5) from its transcriptome database. LmSRA5 has a 1494 bp open reading frame, encodes 497 amino acids, has a molecular weight of 55.01 kDa, and contains a collagen domain and a conserved Scavenger Receptor Cysteine-Rich domain. LmSRA5 exhibited high sequence similarity to previously reported SRA5 genes. LmSRA5 exhibited high sequence similarity to previously reported SRA5 genes. LmSRA5 is primarily localized in the cytoplasm, with its encoded proteins distributed in both the cytoplasm and the cell membrane. LmSRA5 was expressed in all tissues. The highest expression was observed in the pituitary gland, with significant levels in the stomach, intestines, liver, and kidney. LmSRA5 expression in the head kidney, spleen, blood, and intestines initially increased, then decreased following infection with Aeromonas veronii. The binding affinity of LmSRA5 for A. veronii was enhanced by increasing concentrations of the extracellular domain recombinant LmSRA5. Knockdown and overexpression experiments in liver cells demonstrated that LmSRA5 significantly regulates the expression of IL-8 and c-Jun. LmSRA5 participates in the immune response by recognizing pathogen-associated molecular patterns (PAMPs) and contributes to immune regulation through modulation IL-8 and c-Jun. This study offers valuable insights into the role of SRA5 in pathogen resistance and immune regulation in bony fish, thereby contributing to the advancement of aquaculture under escalating disease pressures.
Collapse
Affiliation(s)
- Yangtao Peng
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Changhong Lin
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China.
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China.
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, PR China.
| |
Collapse
|
2
|
Chen H, Lin C, Zhang B, Yan L, Zhang B, Wang P, Qiu L, Zhao C. Identification of scavenger receptor (LmSRA3) gene and its immune response to Aeromonas veronii in Lateolabrax maculatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105320. [PMID: 39837471 DOI: 10.1016/j.dci.2025.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
Scavenger receptors (SRs) serve as essential pattern recognition receptors in the innate immune system, playing multiple roles in the immunity of fish. They contribute to defense mechanisms against pathogenic infections through various pathways. However, research on the functions of SRs in the immune response of Spotted sea bass remains limited. Here, the LmSRA3 gene was cloned and identified from Spotted sea bass, and a bioinformatic analysis of the sequence was conducted. This analysis revealed that the open reading frame of LmSRA3 spans 1821 bp and encodes 606 amino acids. The estimated molecular mass of this protein is 66.62 kDa, accompanied by isoelectric point of 6.06. It contains a collagen domain, a low-complexity structure, and two coiled-coils regions. Multiple sequence comparisons and phylogenetic analyses demonstrated that the LmSRA3 sequence is notably conserved among fish species. Furthermore, qPCR analysis showed that the LmSRA3 gene is expressed in all examined tissues, with the highest expression in the intestine. In the head kidney, spleen, blood, and intestine after infection with A. veronii, the expression levels of the LmSRA3 gene generally exhibited a pattern of first increasing followed by decreasing, suggesting that LmSRA3 may be involved in the immune response to A. veronii infection through multiple pathways. Subcellular localization experiments revealed that LmSRA3 is predominantly distributed in the cytoplasm. Additionally, results from the enzyme-linked immunosorbent assay indicated the binding capacity of LmSRA3 to A. veronii is not significant. Furthermore, interference or overexpression of LmSRA3 significantly affected the expression of RelA, MyD88, TNFR1, and IL-1β. These results emphasize that LmSRA3 may play a crucial role in the innate immune response of Spotted sea bass and provides insights into the mechanism by which SRs are in the antibacterial immunity of this species.
Collapse
Affiliation(s)
- Huilong Chen
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changhong Lin
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China.
| |
Collapse
|
3
|
Chen Z, Wang X, Yu G, Pu J, Li X, Tao Z, Duan Z, Zhang F, Han P, Li H, Yu H. Genome-wide identification, characterization, molecular evolution and expression profiling analysis of scavenger receptors in black rockfish (Sebastes schlegelii). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109686. [PMID: 38852787 DOI: 10.1016/j.fsi.2024.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The scavenger receptors (SRs) gene family is considered as the membrane-associated pattern recognition receptors that plays important roles in the immune responses of organisms. However, there is currently limited research on the systematic identification of the SRs gene family in teleost and their role in the innate immunity of S. schegelii. In this study, we identified and annotated 15 SRs genes in S. schegelii. Through phylogenetic analysis, analysis of conserved domains, gene structure, and motif composition, we found that SRs gene family within different classes were relatively conserved. Additionally, we used qRT-PCR to analyze the expression patterns of SRs genes in immune-related tissues from healthy and Acinetobacter johnsonii-infected S. schegelii. The results showed that SRs genes exhibited different tissue expression patterns and the expression of SRs genes significantly changed after A. johnsonii infection. These results provided a valuable basis for further understanding of the functions of SRs in the innate immune response of S. schegelii.
Collapse
Affiliation(s)
- Zhentao Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xuangang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Gan Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jingrun Pu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xuechen Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Ze Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhixiang Duan
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Fan Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Hengshun Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Chen F, Zhang W, Xu X, Gui L, Lin Y, Wu M, Li J, Shen Y. Identification of Genes Related to Resistance to Ichthyophthirius multifiliis Based on Co-expression Network Analysis in Grass Carp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:824-836. [PMID: 37610535 DOI: 10.1007/s10126-023-10243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
The ciliate protozoan Ichthyophthirius multifiliis is an essential parasite causing white spot disease in grass carp, leading to significant economic losses. Understanding the molecular basis of grass carp's response to I. multifiliis has important scientific and environmental values. The transcriptional network analysis offers a valuable strategy to decipher the changes in gene expression in grass carp infected with I. multifiliis. Our goal was to screen the genes and pathways involved in resistance to I. multifiliis in grass carp. The different traits exhibited by grass carp infected with I. multifiliis may be caused by the differences in gene expression among grass carp individuals. Herein, to reveal those resistance-associated genes against I. multifiliis infection, we performed RNA sequencing using weighted gene co-expression network analysis (WGCNA). The biological function analysis and hub gene annotation for highly relevant modules revealed that different pathogen recognition and clearance responses resulted in different resistance to I. multifiliis infection. Furthermore, gene enrichment analysis revealed that I. multifiliis invasion in the disease-resistant group mainly activated immune pathways, including scavenger receptor activity and kappa B kinase/NF-kappa B signaling. By the annotation of the highly correlated module of the hub gene, we revealed that the apoptosis and ribosome biogenesis-related genes were enriched in the disease-resistant grass carp. The results of the dark grey module showed that several genes were mainly enriched in the two-component system (ko02020) and steroid biosynthesis (ko00100), suggesting that they are resistance-associated and energy metabolism-associated genes. In the disease resistance group, hub genes mainly included Nlrc3, fos, AAP8, HAP2, HAX, cho2, and zgc:113,036. This study revealed the gene network associated with disease resistance after I. multifiliis infection. The disease resistance-related pathways and central genes identified in this study are candidate references for breeders breeding disease-resistant. The results of this study may also provide some references for the development of drugs to antagonize I. multifiliis infection.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanfeng Lin
- Fisheries Station of Xiuning County, Huangshan, 245400, China
| | - Minglin Wu
- Fisheries Station of Xiuning County, Huangshan, 245400, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Li R, Qu J, Li H, Zhang Q. Genome-wide identification and analysis of scavenger receptors and their expression profiling in response to Edwardsiella tarda infection in Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104397. [PMID: 35307477 DOI: 10.1016/j.dci.2022.104397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The scavenger receptors (SRs) gene family, as one of pattern recognition receptors, participates in the innate immune response in diverse lineages. However, the systematic identification, characteristics and functions of SRs family are lacking in teleost. Here, we identified all 19 SRs family members in Japanese flounder (Paralichthys olivaceus) based on the genome and transcriptome data. Phylogenetic and Ka/Ks analysis demonstrated that these SRs genes were divided into five classes and all exhibited pronounced purified selection pressures. Whole genome duplication event was found in colec12, scarb2, and lamp1. Gene structure, functional domain and motif distribution analyses indicated that SRs within the different subfamilies are severely conservative. SRs genes showed diverse expression patterns in the embryogenesis and unchanged tissues. The regulations of 14 SRs genes in blood, gill and kidney after E. tarda infection suggested their roles in innate immune response. Meanwhile, ten SRs genes were differentially expressed after E. tarda stimulation in macrophages in vitro. Then we proved that PoSCARA3 could suppress the activity of NF-κB and AP-1 in HEK 293T cells by dual-luciferase assays. In summary, this study provided valuable basis for further functional characterization and immune functions of SRs genes in P. olivaceus.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Hengshun Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, 572000, Sanya, Hainan, China.
| |
Collapse
|
6
|
Highly Expressing SCARA5 Promotes Proliferation and Migration of Esophageal Squamous Cell Carcinoma. J Immunol Res 2022; 2022:2555647. [PMID: 35755171 PMCID: PMC9232322 DOI: 10.1155/2022/2555647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Thrombospondin type 1 domain-containing 7A (THSD7A) was reported to play a procancer role in esophageal squamous cell carcinoma (ESCC). The aim of the study was to screen the downstream functional genes of THSD7A and explore their functions in ESCC, based on the reported research into THSD7A function and on gene microarrays. Methods We adopted quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Celigo high-content screening (HCS) technology to screen the downstream genes of THSD7A. The expression level of target genes was examined by PCR, western blot, and immunohistochemistry (IHC). The effects of these target genes on ESCC malignant biological behavior were performed in vivo and in vitro. The Kaplan-Meier (K-M) survival analysis and Cox regression were used to analyze the prognostic significance of target genes in ESCC patients. Experiments in the literature on liver cancer (LC) were repeated to verify the functions of these genes in different tumors. We further explored the cancer-promoting mechanism of target genes in ESCC by sequencing of the genes' exons. Results Scavenger receptor class A member 5 (SCARA5) was proved to be the downstream driving gene of THSD7A. SCARA5 promoted cell proliferation and migration but inhibited apoptosis in ESCC. IHC results confirmed that SCARA5 expression in ESCC exceeded that in normal tissues. The K-M survival analysis indicated that SCARA5 expression quantity was not related to prognosis, but tumor volume and T classification were both the independent prognostic factors. Repetition of experiments in LC in the literature confirmed that SCARA5 had exactly opposite functions in EC and LC. Conclusion SCARA5 was related to the development and occurrence of ESCC. Our findings suggested that it was a potentially diagnostic individualized therapeutic target for ESCC in the future and that its application could possibly be combined with that of upstream THSD7A gene.
Collapse
|
7
|
Liu X, Wang B, Gao C, Xue T, Liu Z, Su B, Li C, Yang N. Characterization and the potential immune role of class A scavenger receptor member 4 (SCARA4) in bacterial infection in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2022; 120:590-598. [PMID: 34965442 DOI: 10.1016/j.fsi.2021.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The class A scavenger receptors play important roles in innate immunity and are distributed on plasma membrane of macrophages and other cell types. Notably, the class A scavenger receptor 4 (SCARA4) contains a typical C-type (calcium-dependent) lectin domain, which belongs to the collectin family of pattern recognition receptors and is involved in the immune response against infection. Here, one turbot SCARA4 gene was identified with a 2,292 bp open reading frame (ORF) encoding 763 amino acid residues. Multiple sequence analysis and phylogenetic analysis confirmed that SmSCARA4 gene was more close to that of P. olivaceus. Gene structure and syntenic analysis showed conserved exon/intron organization pattern and syntenic pattern across selected vertebrate species. Tissue distribution analysis showed SmSCARA4 was expressed in all the tested healthy tissues with the relative high expression levels in skin, gill and spleen. Following both E. tarda and V. anguillarum challenge in vivo, SmSCARA4 was significantly repressed in gill and intestine. Remarkably, SmSCARA4 showed the strongest binding ability to LPS and strongest upregulation in turbot head kidney macrophages in response to LPS. Knockdown and overexpression of SmSCARA4 revealed its interactions with the two pro-inflammatory cytokines, TNF-α and IL-1β. Finally, repression of SmSCARA4 via combined treatment of LPS and overexpression of SmSCARA4 construct in turbot head kidney macrophages further indicated an inhibitory role of SmSCARA4 in LPS-stimulated inflammation. Taken together, turbot SmSCARA4 plays an important role in turbot immunity, especially in the mucosa-related systems; SmSCARA4 possesses strong binding specificity to LPS, and exerts protective roles in response to LPS infection by reducing the release of pro-inflammatory cytokines. The mechanisms of inhibitory role of SmSCARA4 in LPS-elicited inflammation await further investigation.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhe Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Deep Transcriptomic Analysis Reveals the Dynamic Developmental Progression during Early Development of Channel Catfish ( Ictalurus punctatus). Int J Mol Sci 2020; 21:ijms21155535. [PMID: 32748829 PMCID: PMC7432863 DOI: 10.3390/ijms21155535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
The transition from fertilized egg to larva in fish is accompanied with various biological processes. We selected seven early developmental stages in channel catfish, Ictalurus punctatus, for transcriptome analysis, and covered 22,635 genes with 590 million high-quality RNA-sequencing (seq) reads. Differential expression analysis between neighboring developmental timepoints revealed significantly enriched biological categories associated with growth, development and morphogenesis, which was most evident at 2 vs. 5 days post fertilization (dpf) and 5 vs. 6 dpf. A gene co-expression network was constructed using the Weighted Gene Co-expression Network Analysis (WGCNA) approach and four critical modules were identified. Among candidate hub genes, GDF10, FOXA2, HCEA and SYCE3 were involved in head formation, egg development and the transverse central element of synaptonemal complexes. CK1, OAZ2, DARS1 and UBE2V2 were mainly associated with regulation of cell cycle, growth, brain development, differentiation and proliferation of enterocytes. IFI44L and ZIP10 were critical for the regulation of immune activity and ion transport. Additionally, TCK1 and TGFB1 were related to phosphate transport and regulating cell proliferation. All these genes play vital roles in embryogenesis and regulation of early development. These results serve as a rich dataset for functional genomic studies. Our work reveals new insights of the underlying mechanisms in channel catfish early development.
Collapse
|
9
|
Abram QH, Rodriguez-Ramos T, Bols NC, Katzenback BA, Dixon B. Effect of suboptimal temperature on the regulation of endogenous antigen presentation in a rainbow trout hypodermal fibroblast cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103423. [PMID: 31254564 DOI: 10.1016/j.dci.2019.103423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) face low environmental temperatures over winter months and during extreme low temperature events. Suboptimal temperatures are known to negatively impact the teleost immune system, although there is mixed evidence in rainbow trout as to the effect on the endogenous antigen processing and presentation pathway (EAPP). The EAPP is an important pathway for antiviral defense that involves the presentation of endogenous peptides on the cell surface for recognition by cytotoxic T cells. Using a rainbow trout hypodermal fibroblast (RTHDF) cell line as an in vitro model, we determined that constitutive EAPP transcript levels are not impaired at low temperature, but induction of up-regulation of these transcripts is delayed at the suboptimal temperature following exposure to poly(I:C) or viral haemorrhagic septicaemia virus IVb, which was still able to enter and replicate in the cell line at 4 °C, albeit with reduced efficiency. The delay in the induction of EAPP mRNA level up-regulation following poly(I:C) stimulation coincided with a delay in ifn1 transcript levels and secretion, which is important since interferon-stimulated response elements were identified in the promoter regions of the EAPP-specific members of the pathway, implying that IFN1 is involved in the regulation of these genes. Our results suggest that the ability of rainbow trout to mount an effective immune response to viral pathogens may be lessened at suboptimal temperatures.
Collapse
Affiliation(s)
- Quinn H Abram
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | | | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
10
|
Alkie TN, de Jong J, Jenik K, Klinger KM, DeWitte-Orr SJ. Enhancing innate antiviral immune responses in rainbow trout by double stranded RNA delivered with cationic phytoglycogen nanoparticles. Sci Rep 2019; 9:13619. [PMID: 31541160 PMCID: PMC6754369 DOI: 10.1038/s41598-019-49931-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is induced when pathogen-associated molecular patterns (PAMPs) bind host pattern recognition receptors (PRRs). Polyinosinic:polycytidylic acid [poly(I:C)] is a synthetic analogue of viral dsRNA that acts as a PAMP, inducing type I interferons (IFNs) in vertebrates. In the present study, the immunostimulatory effects of high molecular weight (HMW) poly(I:C) in rainbow trout cells were measured when bound to a cationic phytoglycogen nanoparticle (Nano-HMW). The physical characteristics of the nanoparticle itself, when bound to different lengths of dsRNA and when cell associated was evaluated. Optimal concentration and timing for innate immune stimulation was measured using the RTG-P1 reporter cell line. The immunostimulatory effects of HMW poly (I:C) was compared to Nano-HMW in vitro using the RTgutGC cell line cultured in a conventional monolayer or a transwell culture system. The ability of an activated intestinal epithelium to transmit an antiviral signal to macrophages was evaluated using a co-culture of RTgutGC cells and RTSll (a monocyte/macrophage cell). In all culture conditions, Nano-HMW was a more effective inducer of IFN-related antiviral immune responses compared to HMW poly (I:C) alone. This study introduces the use of cationic phytoglycogen nanoparticles as a novel delivery system for immunomodulatory molecules to enhance immune responses in aquatic vertebrates.
Collapse
Affiliation(s)
- Tamiru N Alkie
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jondavid de Jong
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.,Glysantis Inc., Guelph, ON, Canada
| | - Kristof Jenik
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | |
Collapse
|
11
|
Vo NTK, Everson J, Moore L, DeWitte-Orr SJ. Class A scavenger receptor expression and function in eight novel tadpole cell lines from the green frog (Lithobates clamitans) and the wood frog (Lithobates sylvatica). Cytotechnology 2019; 71:757-768. [PMID: 31172374 PMCID: PMC6663960 DOI: 10.1007/s10616-019-00318-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023] Open
Abstract
A total of eight tadpole cell lines were established from green frogs (Lithobates clamitans) and wood frogs (Lithobates sylvatica). The five green frog cell lines were named GreenTad-HF1, GreenTad-HF2, GreenTad-HF3, GreenTad-HE4, and GreenTad-gill. The three wood frog cell lines were named WoodTad-HE1, WoodTad-Bone, and WoodTad-rpe. DNA barcoding confirmed the cell lines to be from the correct species and the growth characteristics (optimal temperature and FBS requirement) were elucidated. In order to begin studying the innate immune capacity for each cell line, class A scavenger receptor expression and function were next explored. All cell lines expressed genes for at least 3 of the 5 class A scavenger receptor (SR-A) family members, but the gene expression patterns varied between cell lines. MARCO was only expressed in GreenTad-HE4 and WoodTad-Bone, while only GreenTad-HF3 did not express SCARA5 and only WoodTad-rpe did not express SR-AI. Acetylated low density lipoprotein (AcLDL) is a well-defined ligand for SR-As and WoodTad-rpe was the only cell line to which it was unable to bind. In the other seven tadpole cell lines, the SR-A competitive ligands (dextran sulfate, fucoidan, polyinosinic acid) blocked AcLDL binding whereas the SR-A non-competitive ligand counterparts (chondroitin sulfate, fetuin, polycytidylic acid, respectively) did not. Overall, these new eight cell lines can become important tools in the study of innate immunity in general and SR-A functions in particular in green frogs and wood frogs.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Joshua Everson
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Levi Moore
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
12
|
Semple SL, Vo NTK, Poynter SJ, Li M, Heath DD, DeWitte-Orr SJ, Dixon B. Extracellular dsRNA induces a type I interferon response mediated via class A scavenger receptors in a novel Chinook salmon derived spleen cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:93-101. [PMID: 30118734 DOI: 10.1016/j.dci.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Despite increased global interest in Chinook salmon aquaculture, little is known of their viral immune defenses. This study describes the establishment and characterization of a continuous cell line derived from Chinook salmon spleen, CHSS, and its use in innate immune studies. Optimal growth was seen at 14-18 °C when grown in Leibovitz's L-15 media with 20% fetal bovine serum. DNA analyses confirmed that CHSS was Chinook salmon and genetically different from the only other available Chinook salmon cell line, CHSE-214. Unlike CHSE-214, CHSS could bind extracellular dsRNA, resulting in the rapid and robust expression of antiviral genes. Receptor/ligand blocking assays confirmed that class A scavenger receptors (SR-A) facilitated dsRNA binding and subsequent gene expression. Although both cell lines expressed three SR-A genes: SCARA3, SCARA4, and SCARA5, only CHSS appeared to have functional cell-surface SR-As for dsRNA. Collectively, CHSS is an excellent cell model to study dsRNA-mediated innate immunity in Chinook salmon.
Collapse
Affiliation(s)
- S L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - N T K Vo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - S J Poynter
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - M Li
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - D D Heath
- Great Lakes Institute of Environmental Research, University of Windsor, 2990 Riverside Drive, West Windsor, Ontario, N9C 1A2, Canada
| | - S J DeWitte-Orr
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - B Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
13
|
Li C, Tian M, Zhang L, Fu Q, Song L, Chen F, Yang N. The characterization and initial immune functional analysis of SCARA5 in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2018; 81:242-249. [PMID: 30006044 DOI: 10.1016/j.fsi.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Scavenger receptors (SRs) are a group of membrane-bound receptors that could bind to a variety of ligands including endogenous proteins and pathogens. SRs have been recognized to play vital roles in innate immune response against pathogen infection in both vertebrates and invertebrates. In this regard, one SmSCARA5 gene was captured in turbot (Scophthalmus maximus). The full-length SmSCARA5 transcript contains an open reading frame (ORF) of 1494 bp. SmSCARA55 showed both the highest identity and similarity to half-smooth tongue sole (Cynoglossus semilaevis), and a high degree of conservation of genomic structure to the teleost species. In addition, the phylogenetic tree analysis showed SmSCARA5 had the closest relationship to half-smooth tongue sole, the syntenic analysis revealed a relatively conserved synteny pattern of SmSCARA5 to other species. Moreover, SmSCARA5 was ubiquitously expressed in all the examined tissues, with the highest expression level in brain and the lowest expression level in blood. And it was significantly down-regulated in intestine following Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae challenge. Finally, the recombinant SmSCARA5 showed the highest affinity to lipopolysaccharide (LPS), followed by peptidoglycan (PGN) and lipoteichoic acid (LTA), as well as the strong inhibition effect on the growth of V. anguillarum. Taken together, our results suggested SmSCARA5 plays vital roles in innate immune response in teleost, further studies should be carried out to better understand its regulatory mechanism for innate inflammation response in teleost.
Collapse
Affiliation(s)
- Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, People's Republic of China
| | - Fei Chen
- Weifang Animal Health Supervision Institute, Weifang, 261031, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|