1
|
Li W, Feng Y, Chen H, Ao J, Chen X. Identification of a type I IFN- and IRF-inducible enhancer in the 5'-UTR intron of MAVS in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110241. [PMID: 40020953 DOI: 10.1016/j.fsi.2025.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The mitochondrial antiviral signaling protein (MAVS) relays signals from RIG-I-like receptors (RLRs) to induce type I interferon (IFN) production. In teleost fish, MAVS expression is significantly upregulated in response to viral infections or synthetic double-stranded RNA (dsRNA), whereas mammalian MAVS does not exhibit a similar response. However, the mechanisms regulating MAVS expression in teleosts remain unclear. In this study, we demonstrate that the viral mimic poly(I:C)-induced upregulation of Larimichthys crocea (Lc) MAVS occurs via the type I IFN signaling pathway. Inhibition of the JAK-STAT pathway significantly suppressed both poly(I:C)- and LcIFNi-induced LcMAVS expression. Further analysis revealed that an enhancer in the 5'- untranslated region (UTR) intron of LcMAVS contains two functional interferon-stimulated response elements (ISREs), which are crucial for its activation. The enhancer activity of LcMAVS is regulated by interferon regulatory factors (IRFs), including IRF1, IRF3, IRF7, IRF9, and IRF11. These IRFs form several heterodimeric complexes, such as IRF1/3, IRF1/7, IRF3/7, and IRF3/11, to mediate LcMAVS enhancer activation. Structural analysis indicates that the ISRE motifs in the intronic enhancer can accommodate two or three DNA-binding domains (DBDs) from IRFs. These findings provide a potential explanation for the differential regulation of MAVS in response to stimuli in teleosts and mammals. Furthermore, our study demonstrates that MAVS is an interferon-stimulated gene (ISG) in a marine fish, providing insights into the evolutionary divergence of the vertebrate RLR signaling pathway.
Collapse
Affiliation(s)
- Wenxing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Feng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huazhi Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingqun Ao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
2
|
Wen Q, Tang S, Mo J, Zhang M, Long M, Lu Y, Gan Z. Different activation of STAT1 and STAT2 phosphorylation by IFNc, IFNd, and IFNh in tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109776. [PMID: 39019128 DOI: 10.1016/j.fsi.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Type I IFNs are a subset of cytokines exerting their antiviral effects mainly through the JAK-STAT signalling. Immunogenetic studies have shown that fish possess key components of IFN-JAK-STAT cascade, but the information about the distinct responses of STAT1 and STAT2 to different IFNs is rather limited in fish. Here, we identified and cloned STAT1 and STAT2 genes (named as On-STAT1 and On-STAT2) from tilapia, Oreochromis niloticus. On-STAT1 and On-STAT2 genes were detected in all orangs/tissues examined, and were rapidly induced in spleen, head kidney, and liver following the stimulation of poly(I:C). In addition, the stimulation of poly(I:C), poly(A:T), and different subgroups of recombinant IFNs could induce the expression of On-STAT1 and On-STAT2 in TA-02 cells with distinct induction levels. Importantly, On-STAT2 was rapidly phosphorylated by all three subgroups of IFNs, but the phosphorylation of On-STAT1 was only observed in IFNc- and IFNh-treated TA-02 cells, reflecting the distinct activation of STAT by different subgroups of fish IFNs. The present results thus contribute to better understanding of the JAK-STAT signalling mediated by different subgroups of IFNs in fish.
Collapse
Affiliation(s)
- Qingqing Wen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Shaoshuai Tang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meng Long
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
3
|
Das BK, Panda SP, Pradhan SP, Raut SS, Kumari M, Meena DK. Molecular insights into STAT1a protein in rohu ( Labeo rohita): unveiling expression profiles, SRC homology domain recognition, and protein-protein interactions triggered by poly I: C. Front Immunol 2024; 15:1398955. [PMID: 38994355 PMCID: PMC11237311 DOI: 10.3389/fimmu.2024.1398955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction STAT1a is an essential signal transduction protein involved in the interferon pathway, playing a vital role in IFN-alpha/beta and gamma signaling. Limited information is available about the STAT protein in fish, particularly in Indian major carps (IMC). This study aimed to identify and characterize the STAT1a protein in Labeo rohita (LrSTAT1a). Methods The full-length CDS of LrSTAT1a transcript was identified and sequenced. Phylogenetic analyses were performed based on the nucleotide sequences. The in-vivo immune stimulant poly I: C was used to treat various tissues, and the expression of LrSTAT1a was determined using quantitative real-time polymerase chain reaction (qRT-PCR). A 3D model of the STAT1a protein was generated using close structure homologs available in the database and checked using molecular dynamics (MD) simulations. Results The full-length CDS of Labeo rohita STAT1a (LrSTAT1a) transcript consisted of 3238 bp that encoded a polypeptide of 721 amino acids sequence was identified. Phylogenetic analyses were performed based on the nucleotide sequences. Based on our findings, other vertebrates share a high degree of conservation with STAT1a. Additionally, we report that the in vivo immune stimulant poly I: C treatment of various tissues resulted in the expression of LrSTAT1a as determined by quantitative real-time polymerase chain reaction (qRT-PCR). In the current investigation, treatment with poly I: C dramatically increased the expression of LrSTAT1a in nearly every organ and tissue, with the brain, muscle, kidney, and intestine showing the highest levels of expression compared to the control. We made a 3D model of the STAT1a protein by using close structure homologs that were already available in the database. The model was then checked using molecular dynamics (MD) simulations. Consistent with previous research, the MD study highlighted the significance of the STAT1a protein, which is responsible for Src homology 2 (SH2) recognition. An important H-bonding that successfully retains SH2 inside the STAT1a binding cavity was determined to be formed by the conserved residues SER107, GLN530, SER583, LYS584, MET103, and ALA106. Discussion This study provides molecular insights into the STAT1a protein in Rohu (Labeo rohita) and highlights the potential role of STAT1a in the innate immune response in fish. The high degree of conservation of STAT1a among other vertebrates suggests its crucial role in the immune response. The in-vivo immune stimulation results indicate that STAT1a is involved in the immune response in various tissues, with the brain, muscle, kidney, and intestine being the most responsive. The 3D model and MD study provide further evidence of the significance of STAT1a in the immune response, specifically in SH2 recognition. Further research is necessary to understand the specific mechanisms involved in the IFN pathway and the role of STAT1a in the immune response of IMC.
Collapse
Affiliation(s)
- Basanta Kumar Das
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Soumya Prasad Panda
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Smruti Priyambada Pradhan
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Subhashree Subhasmita Raut
- Aquatic Environmental Biotechnology (AEB) Division, Indian Council of Agricultural Research (ICAR) - Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Mala Kumari
- Riverine & Estuaries Fisheries Division, Indian Council of Agricultural Research (ICAR) -Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Dharmendra Kumar Meena
- Open Water Aquaculture Production and Management (OWAPM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Huang D, Zhang L, Mi H, Teng T, Liang H, Ren M. Transcriptome-Based Analysis of the Mechanism of Action of Metabolic Disorders Induced by Waterborne Copper Stress in Coilia nasus. BIOLOGY 2024; 13:476. [PMID: 39056671 PMCID: PMC11274096 DOI: 10.3390/biology13070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
To reveal the effects of waterborne copper stress on gene expression changes, molecular pathways, and physiological functions in Coilia nasus, juvenile fish were equally divided into two experimental groups, and the copper levels were 1.61 ± 0.03 mg/L (copper-exposed group) and 0 mg/L (control group), respectively. After 4 h, gill tissue samples were collected for transcript sequencing analysis, and two libraries were constructed from the copper treatment group (Cu) and the control group (C) and sequenced using Illumina sequencing technology. The results showed that approximately 40.2-46.0 M clean reads were obtained from each library, and the percentage of uniquely mapped transcripts ranged from 80.57 to 84.93%. A total of 3915 differentially expressed genes (DEGs) were identified under waterborne copper stress, among which 1300 genes were up-regulated, and 2615 genes were down-regulated. Twelve DEGs were randomly selected for quantitative RT-PCR (qRT-PCR) analysis, and the results confirmed that the transcriptome analysis was reliable. Furthermore, the DEGs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the results showed that most of the DEGs were involved in metabolic pathways, including steroid biosynthesis, glutathione metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Furthermore, due to the waterborne copper levels, gsk-3β was significantly up-regulated, while other metabolism-related genes (tor, pi3k, lpl, aqp7, fabp3) were significantly down-regulated. In addition, the copper-exposed group significantly reduced the expression of some immunity genes (ifn-γ, stat1, cxcl10, and tgf-β), and enhanced the expression of il-1β and tnf-α. In summary, these results indicated that copper causes metabolic disorders and insufficient energy supply in the body, and induces oxidative stress, which results in reduced immune functions.
Collapse
Affiliation(s)
- Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Tao Teng
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
5
|
Liu J, Dai C, Yin L, Yang X, Yan J, Liu M, Wu H, Xiao J, Kong W, Xu Z, Feng H. STAT2 negatively regulates RIG-I in the antiviral innate immunity of black carp. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109510. [PMID: 38521143 DOI: 10.1016/j.fsi.2024.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
The signal transducer and activator of transcription 2 (STAT2), a downstream factor of type I interferons (IFNs), is a key component of the cellular antiviral immunity response. However, the role of STAT2 in the upstream of IFN signaling, such as the regulation of pattern recognition receptors (PRRs), remains unknown. In this study, STAT2 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized. The open reading frame (ORF) of bcSTAT2 comprises 2523 nucleotides and encodes 841 amino acids, which presents the conserved structure to that of mammalian STAT2. The dual-luciferase reporter assay and the plaque assay showed that bcSTAT2 possessed certain IFN-inducing ability and antiviral ability against both spring viremia of carp virus (SVCV) and grass carp reovirus (GCRV). Interestingly, we detected the association between bcSTAT2 and bcRIG-I through co-immunoprecipitation (co-IP) assay. Moreover, when bcSTAT2 was co-expressed with bcRIG-I, bcSTAT2 obviously suppressed bcRIG-I-induced IFN expression and antiviral activity. The subsequent co-IP assay and immunoblotting (IB) assay further demonstrated that bcSTAT2 inhibited K63-linked polyubiquitination but not K48-linked polyubiquitination of bcRIG-I, however, did not affect the oligomerization of bcRIG-I. Thus, our data conclude that black carp STAT2 negatively regulates RIG-I through attenuates its K63-linked ubiquitination, which sheds a new light on the regulation of the antiviral innate immunity cascade in vertebrates.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Chushan Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Lijun Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiao Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Meiling Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Chen K, Tian J, Shi Y, Xie T, Huang W, Jia Z, Zhang Y, Yuan G, Yan H, Wang J, Zou J. Distinct antiviral activities of IFNφ1 and IFNφ4 in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109396. [PMID: 38244820 DOI: 10.1016/j.fsi.2024.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Interferons (IFNs) are a group of secreted cytokines that play a crucial role in antiviral immunity. Type I IFNs display functional disparities. In teleosts, type I IFNs are categorized into two subgroups containing one or two pairs of disulfide bonds. However, their functional differences have not been fully elucidated. In this study, we comparatively characterized the antiviral activities of zebrafish IFNφ1 and IFNφ4 belonging to the group I type I IFNs. It was found that ifnφ1 and ifnφ4 were differentially modulated during viral infection. Although both IFNφ1 and IFNφ4 activated JAK-STAT signaling pathway via CRFB1/CRFB5 receptor complex, IFNφ4 was less potent in inducing phosphorylation of STAT1a, STAT1b and STAT2 and the expression of antiviral genes than IFNφ1, thereby conferring weaker antiviral resistance of target cells. Taken together, our results provide insights into the functional divergence of type I IFNs in lower vertebrates.
Collapse
Affiliation(s)
- Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiayin Tian
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanjie Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Teng Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui Yan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
7
|
Xu C, Wu P, Gao Q, Cai C, Fan K, Zhou J, Lei L, Chen L. Molecular characterization, expression analysis and subcellular location of the members of STAT family from spotted seabass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109241. [PMID: 37992914 DOI: 10.1016/j.fsi.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a pervasive intracellular signal transduction pathway, involving in biological processes such as cell proliferation, differentiation, apoptosis and immune regulation. In this study, seven STAT genes, STAT1, STAT1-like, STAT2, STAT3, STAT4, STAT5a and STAT5b, were identified and characterized in spotted seabass (Lateolabrax maculatus). Analyses of multiple sequence alignment, genomic organization, phylogeny and conserved synteny were conducted to infer the evolutionary conservation of these genes in the STAT family. The results of the bioinformatics analysis assumed that STAT1 and STAT1-like might be homologous to STAT1a and STAT1b, respectively. Furthermore, the expression of the seven genes were detected in eight tissues of healthy spotted seabass, which revealed that they were expressed in a variety of tissues, mainly in gill, spleen and muscle, and extremely under-expression in liver. The expression of the seven genes in gill, head-kidney, spleen and intestine were significantly induced by lipopolysaccharide (LPS) or Edwardsiella tarda challenge. The expression of most of the LmSTATs were up-regulated, and the highest expression levels at 12 h after LPS stimulation, however, the LmSTATs were down-regulated by E. tarda infection. The results of subcellular localization show that the native LmSTAT1, LmSTAT1-like, LmSTAT2, LmSTAT3 and LmSTAT5a were localized in the cytoplasm, but they were translocated into the nucleus after LPS stimulation. Whereas, LmSTAT4 and LmSTAT5b were translocation into the nucleus whether with LPS stimulation or not. Overall, this is the first study to systematically revealed the localization of STAT members in fish, and indicated that LmSTATs participate in the process of protecting the host from pathogens invasion in the form of entry into nucleus.
Collapse
Affiliation(s)
- Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ping Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chuanguo Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ke Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Lei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Liu J, He Y, Miao Y, Dai C, Yan J, Liu M, Zou J, Feng H. The phenylalanine-28 is crucial for black carp RIG-I mediated antiviral signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104917. [PMID: 37591364 DOI: 10.1016/j.dci.2023.104917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I) functions as a cytosolic sensor to recognize RNA products of the invading microorganisms and induce the production of type I interferons(IFNs). In this study, two RIG-I variants, named as bcRIG-Ia and bcRIG-Ib, were characterized in black carp (Mylopharyngodon piceus) respectively. RNA pull-down assay revealed that both bcRIG-Ia and bcRIG-Ib could bind to synthetic poly(I:C) and the RD domain was crucial for RNA binding of these two molecules. However, over-expression of bcRIG-Ib, but not bcRIG-Ia, induced the transcription of IFN promoter, and led to the improved antiviral activity against both spring viremia of carp virus (SVCV) and grass carp reovirus (GCRV). And knockdown of bcRIG-I dampened the transcription of bcViperin and bcIFNb in host cells. Truncation mutation and site mutation analysis identified that phenylalanine (F)- 28 was crucial for bcRIG-Ib oligomerization and its mediated IFN signaling. Interestingly, F28 was conserved among teleost RIG-Is and site mutation analysis revealed that F28 was essential for RIG-I mediated IFN signaling in the cyprinid fish. Thus, our study concludes that F28 is crucial for black carp RIG-I mediated antiviral signaling and suggests F28 is also essential for the activation of IFN signaling by RIG-Is from other teleost fish.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yixuan He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yujia Miao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Chushan Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Meiling Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
9
|
Wang T, Jin S, Lv R, Meng Y, Li G, Han Y, Zhang Q. Development of an indirect ELISA for detection of the adaptive immune response of black carp (Mylopharyngodon piceus). J Immunol Methods 2023; 521:113550. [PMID: 37661050 DOI: 10.1016/j.jim.2023.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Black carp (Mylopharyngodon piceus) is an important fishery resource and the main breeding target in China. Due to the lack of an assay of immunoglobulin M (IgM) antibodies in black carp, there is no effective method to evaluate adaptive immune response, which limits immunological studies and vaccine development. The present study used mAbs (monoclonal antibodies) against serum IgM of grass carp as capture antibodies. The results of Western blot analysis indicated that these antibodies had strong affinity and specificity to IgM heavy chain in black carp serum and were used to detect the antibody titer, optimize the conditions, perform a sensitivity test, and develop an indirect ELISA (enzyme-linked immunosorbent assay) to detect specific IgM antibodies in the serum. This detection method has good specificity and is effective only for grass carp (Ctenopharyngodon idella) and black carp and not for crucian carp (Carassius aumtus), silver carp (Hypophthalmichthys molitrix), bighead carp (Hypophthalmichthys nobilis), mandarin fish (Siniperca chuatsi), black bream (Megalobrama skolkovii), or yellow catfish (Pseudobagrus fulvidraco). The lowest antigen detection level was 0.05 μg/ml. The error of experimental repetition in the same sample was 1.61-4.61%. The levels of specific IgM in black carp serum were steadily increased after immunization, peaked on day 28, and then slowly decreased. Indirect ELISA can be applied to detect the changes in specific antibodies in black carp serum. Moreover, indirect ELISA provides a convenient and reliable serological detection method for immunological research and evaluation of immune effects of a vaccine in black carp.
Collapse
Affiliation(s)
- Tongtong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Shanshan Jin
- School of Agriculture, Ludong University, Yantai, China
| | - Ruoxuan Lv
- School of Agriculture, Ludong University, Yantai, China
| | - Yuting Meng
- School of Agriculture, Ludong University, Yantai, China
| | - Guozhong Li
- School of Agriculture, Ludong University, Yantai, China
| | - Yuxing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Qiusheng Zhang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
10
|
Rao SS, Nelson PA, Lunde HS, Haugland GT. Evolutionary, comparative, and functional analyses of STATs and regulation of the JAK-STAT pathway in lumpfish upon bacterial and poly(I:C) exposure. Front Cell Infect Microbiol 2023; 13:1252744. [PMID: 37808912 PMCID: PMC10556531 DOI: 10.3389/fcimb.2023.1252744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background The Janus kinase/signal transducers and activators of transcription (JAK-STAT) system regulates several biological processes by affecting transcription of genes as a response to cytokines and growth factors. In the present study, we have characterized the STAT genes in lumpfish (Cyclopterus lumpus L.), belonging to the order Perciformes, and investigated regulation of the JAK-STAT signaling pathway upon exposure to bacteria (Vibrio anguillarum) and poly(I:C), the latter mimicking antiviral responses. Methods Characterization and evolutionary analyses of the STATs were performed by phylogeny, protein domain, homology similarity and synteny analyses. Antibacterial and antiviral responses were investigated by performing KEGG pathway analysis. Results We observed that lumpfish have stat1a, 2, 3, 4, 5a, 5b, and 6. Transcriptome-wide analyses showed that most components of the JAK-STAT pathway were present in lumpfish. il-6, il-10, il-21, iκBα and stat3 were upregulated 6 hours post exposure (hpe) against bacteria while type I interferons (IFNs), irf1, irf3, irf10, stat1 and 2 were upregulated 24 hpe against poly(I:C). Conclusions Our findings shed light on the diversity and evolution of the STATs and the data show that the STAT genes are highly conserved among fish, including lumpfish. The transcriptome-wide analyses lay the groundwork for future research into the functional significance of these genes in regulating critical biological processes and make an important basis for development of prophylactic measure such as vaccination, which is highly needed for lumpfish since it is vulnerable for both bacterial and viral diseases.
Collapse
Affiliation(s)
- Shreesha S Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Patrick A Nelson
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Gyri T Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Yan J, Qiao G, Wang E, Peng Y, Yu J, Wu H, Liu M, Tu J, Zhang Y, Feng H. Negatively regulation of MAVS-mediated antiviral innate immune response by E3 ligase RNF5 in black carp. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108583. [PMID: 36740081 DOI: 10.1016/j.fsi.2023.108583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS) is as an adaptor in RIG-I like receptor (RLR) signaling, which plays the key role in interferon (IFN) production during host antiviral innate immune activation. MAVS is fine tuned to avoid excess IFN production, which have been extensively studied in human and mammals. However, the regulation of MAVS in teleost still remains obscure. In this manuscript, we cloned ring finger protein 5 (bcRNF5) of black carp (Mylopharyngodon piceus) and characterized this teleost E3 ubiquitin ligase as a negative regulator of MAVS. The coding region of bcRNF5 consists of 615 nucleotides which encode 205 amino acids, containing two trans-membrane domain (TM) and a ring-finger domain (RING). The transcription regulation of bcRNF5 varies in host cells in response to stimulations of LPS, poly (I:C), grass carp reovirus (GCRV) and spring viremia of carp virus (SVCV). bcRNF5 migrates around 22 KDa in immunoblot (IB) assay and distributes mainly in cytoplasm by immunofluorescent (IF) staining test. Moreover, bcRNF5 significantly inhibits bcMAVS-mediated IFN promoter transcription. In addition, both IF and co-immunoprecipitation assay showed that bcRNF5 interacts with bcMAVS. Furthermore, bcMAVS-mediated antiviral ability is distinctly impaired by bcRNF5. Taken together, these results conclude that bcRNF5, as a negative regulator of the MAVS-mediated IFN signaling, may play a key role in host protection upon virus infection in black carp.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Guoxia Qiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Enhui Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuqing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiamin Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Meiling Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jiagang Tu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
12
|
Wang X, Chen D, Lv Z, Zhao X, Ding C, Liu Y, Xiao T. Transcriptomics analysis provides new insights into the fish antiviral mechanism and identification of interferon-stimulated genes in grass carp (Ctenopharyngodon idella). Mol Immunol 2022; 148:81-90. [PMID: 35688049 DOI: 10.1016/j.molimm.2022.05.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Grass carp is an economically important freshwater fish in China, and haemorrhagic disease caused by GCRV has seriously restricted its farming scale. To understand the host molecular basis for antiviral defence and explore the effector molecules, a global transcriptional profiling of four major immune tissues (liver, spleen, head kidney, and trunk kidney) of GCRV-infected grass carp was established. A total of 192.65 Gb clean data was obtained with 6.11 Gb per sample and stored in the NCBI Sequence Read Archive (with accession number PRJNA759556). Based on the GO and KEEG analyses, 108 unique GO terms were enriched in the four tissues. Thirty-five enriched pathways were obtained, with 21 metabolism-related pathways mainly gained in the liver and trunk kidney, and 14 immune response pathways were enriched in the spleen and head kidney. Also demonstrated was that GCRV stimulates not only the expression of interferon-stimulated genes (ISGs) but also proinflammatory cytokines. 27 ISGs were screened from the candidate DEGs, and eight ISGs were identified for the first time in grass crap. These ISGs were classified into three categories by their function found in mammals: (i) positively regulates the IFN signalling pathway (RIG-I, MDA5, IRF7, IRF9, STAT2, and TRIM25); (ii) negatively regulates the IFN signalling pathway (usp18 and SOCS1); and (iii) exerts direct antiviral activity such as Mx1, ISG15, ISG56, ISG58, viperin, and PKR. Eight major ISGs and four typical differentially inflammatory cytokines were used for further expression analysis with prominent expression in the liver, spleen and kidney. The onset time of IFN-mediated antiviral response was trunk kidney (12-24 h) > liver (48 h) > spleen (96-120 h), and the intensity was liver > spleen > trunk kidney. Notably, the inflammatory reaction occurs early in the liver and trunk kidney. This result implies that ISGs may act synergistically and that the IFN response is closely related to the inflammatory response against GCRV infection. The transcriptomic profiles obtained and the function of ISGs predicted in this study provide new insights into fish antiviral mechanisms and developing effective therapeutic directions.
Collapse
Affiliation(s)
- Xiaodong Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Dunxue Chen
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yi Liu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
13
|
Xu X, Wang J, Wu J, Wang H, Liu H. Evolution and expression analysis of STAT family members in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2022; 121:316-321. [PMID: 34998988 DOI: 10.1016/j.fsi.2021.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is involved in regulating the body's immunity, cell proliferation, differentiation, and apoptosis. Members of the STAT family have been extensively studied in different mammalian species. However, there are few studies on the STAT family genes in farmed economic fish. In this study, eight STAT genes including STAT1a, STAT1b, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6, in blunt snout bream (Megalobrama amblycephala), an economically important fish in China, were identified and characterized. Analyses of gene location, phylogeny and conserved synteny were conducted to infer the evolutionary origin of these STAT family genes. Furthermore, the evolutionary origin model of STATs was constructed based on the 2R hypothesis and teleost genome duplication (TGD) hypothesis, which clarified the evolutionary origin of the eight STATs in blunt snout bream. Besides, expression of the eight STATs was detected in 10 tissues of healthy blunt snout bream, which showed different expression patterns, and all had the highest level in the blood. In addition, expression of the STATs was significantly induced in the spleen, liver, and kidney after infection of Aeromonas hydrophila, suggesting that they play an important role in protecting the host from pathogens. In general, the evolution of cytokine-related genes parallels that of the immune system, which has likely been a main evolutionary driver. Therefore, the evolutionary model of STAT genes, constructed in the non-model organism pioneeringly, may provide some enlightenment for the evolution of the fish STAT family genes and their involvement in the immune function.
Collapse
Affiliation(s)
- Xiaohui Xu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jixiu Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
14
|
Guo M, Liu X, Zhang W, Duan J, Ji C, He Z, Shi G. Preparation and anti-fatigue effects of Vicatia thibertica polysaccharide. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_213_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Lu S, Peng X, Zeng S, Deng H, Feng Z, Zeng Q, Cheng X, Hu J, Ye Z, Li M, Xu X, Lin G, Hu C. Grass carp (Ctenopharyngodon idellus) PIAS1 inhibits innate immune response via interacting with STAT1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104216. [PMID: 34331975 DOI: 10.1016/j.dci.2021.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Protein inhibitor of activated signal transducer and activator of transcription (PIAS) family protein involved in gene transcriptional regulation acts as negative regulator in Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway. But until now, the roles of PIAS in fish are not clear. In this study, we identified the two mammalian PIAS1 orthologs from Ctenopharyngodon idellus, namely CiPIAS1a and CiPIAS1b, respectively. They can respond to the stimulation from Polyribocytidylic acid (Poly I:C), Grass Carp Reovirus (GCRV) and Lipopolysaccharides (LPS) respectively, so we suggested that they could participate in interferon (IFN)-mediated antiviral and antibacterial immune response. The subcellular localization and nuclear cytoplasm extraction showed that CiPIAS1a and CiPIAS1b were mainly distributed in the nucleus. In addition, Co-IP showed that they separately inhibited the phosphorylation of STAT1 via interacting with it, which leads to the reduction of IFN1 expression.
Collapse
Affiliation(s)
- Shina Lu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaojue Peng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shanshan Zeng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hang Deng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zhiqing Feng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Qing Zeng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xining Cheng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jihuan Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zuocheng Ye
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Meifeng Li
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Gang Lin
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
16
|
Smith NC, Umasuthan N, Kumar S, Woldemariam NT, Andreassen R, Christian SL, Rise ML. Transcriptome Profiling of Atlantic Salmon Adherent Head Kidney Leukocytes Reveals That Macrophages Are Selectively Enriched During Culture. Front Immunol 2021; 12:709910. [PMID: 34484211 PMCID: PMC8415484 DOI: 10.3389/fimmu.2021.709910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
The Atlantic salmon (Salmo salar) is an economically important fish, both in aquaculture and in the wild. In vertebrates, macrophages are some of the first cell types to respond to pathogen infection and disease. While macrophage biology has been characterized in mammals, less is known in fish. Our previous work identified changes in the morphology, phagocytic ability, and miRNA profile of Atlantic salmon adherent head kidney leukocytes (HKLs) from predominantly “monocyte-like” at Day 1 of in vitro culture to predominantly “macrophage-like” at Day 5 of culture. Therefore, to further characterize these two cell populations, we examined the mRNA transcriptome profile in Day 1 and Day 5 HKLs using a 44K oligonucleotide microarray. Large changes in the transcriptome were revealed, including changes in the expression of macrophage and immune-related transcripts (e.g. csf1r, arg1, tnfa, mx2), lipid-related transcripts (e.g. fasn, dhcr7, fabp6), and transcription factors involved in macrophage differentiation and function (e.g. klf2, klf9, irf7, irf8, stat1). The in silico target prediction analysis of differentially expressed genes (DEGs) using miRNAs known to change expression in Day 5 HKLs, followed by gene pathway enrichment analysis, supported that these miRNAs may be involved in macrophage maturation by targeting specific DEGs. Elucidating how immune cells, such as macrophages, develop and function is a key step in understanding the Atlantic salmon immune system. Overall, the results indicate that, without the addition of exogenous factors, the adherent HKL cell population differentiates in vitro to become macrophage-like.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nardos T Woldemariam
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
17
|
Bmp8a is an essential positive regulator of antiviral immunity in zebrafish. Commun Biol 2021; 4:318. [PMID: 33750893 PMCID: PMC7943762 DOI: 10.1038/s42003-021-01811-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein (BMP) is a kind of classical multi-functional growth factor that plays a vital role in the formation and maintenance of bone, cartilage, muscle, blood vessels, and the regulation of adipogenesis and thermogenesis. However, understanding of the role of BMPs in antiviral immunity is still limited. Here we demonstrate that Bmp8a is a newly-identified positive regulator for antiviral immune responses. The bmp8a−/− zebrafish, when infected with viruses, show reduced antiviral immunity and increased viral load and mortality. We also show for the first time that Bmp8a interacts with Alk6a, which promotes the phosphorylation of Tbk1 and Irf3 through p38 MAPK pathway, and induces the production of type I interferons (IFNs) in response to viral infection. Our study uncovers a previously unrecognized role of Bmp8a in regulation of antiviral immune responses and provides a target for controlling viral infection. Zhang, Liu and colleagues identify the role of Bmp8a in antiviral immunity in zebrafish and provide mechanistic insight into its function. Bmp8a could serve as a future target for investigative studies of antiviral immune responses.
Collapse
|
18
|
Cao Y, Fang T, Fan M, Wang L, Lv C, Jin P, Ma F. Functional characterization of STATa/b genes encoding transcription factors from Branchiostoma belcheri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103838. [PMID: 32846160 DOI: 10.1016/j.dci.2020.103838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The signal transducer and activator of transcription (STAT), as an important transcription factor of the Janus kinase (JAK)-STAT signaling pathway, is pivotal for development and immunity and well documented in vertebrates. However, the STAT gene has not been reported in chordate amphioxus (Branchiostoma belcheri). In this study, we firstly identify and characterize two STAT genes from Branchiostoma belcheri (designed as AmphiSTATa and AmphiSTATb). Secondly, our results reveal that AmphiSTATa is clustered with vertebrate STAT1, STAT2, STAT3 and STAT4, whereas AmphiSTATb is grouped with STAT5 and STAT6 based on phylogenetic analysis. Thirdly, AmphiSTATa and AmphiSTATb are found to widely express in five representative tissues of amphioxus (gill, hepatic cecum, intestine, muscle and notochord) by RT-qPCR analysis. Importantly, both AmphiSTATa and AmphiSTATb can be involved in innate immune responses to LPS stimulation. Fourthly, we demonstrate that AmphiSTATa and AmphiSTATb can form homodimers or heterodimers by Co-IP and Native-PAGE assay, and that AmphiSTATa and AmphiSTATb proteins can also distribute in cytoplasm and nucleus by the subcellular localization. Taken together, our findings not only reveal the roles of AmphiSTATa and AmphiSTATb in amphioxus innate immune responses to LPS stimulation, but provide a new insight into further elucidating the evolution and function of STATs in animals.
Collapse
Affiliation(s)
- Yunpeng Cao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Tao Fang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Mingli Fan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Lei Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Caiyun Lv
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
19
|
Liang Y, Liu H, Li X, Huang W, Huang B, Xu J, Xiong J, Zhai S. Molecular insight, expression profile and subcellular localization of two STAT family members, STAT1a and STAT2, from Japanese eel, Anguilla japonica. Gene 2020; 769:145257. [PMID: 33164823 DOI: 10.1016/j.gene.2020.145257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 1 (STAT1) and STAT2 are critical components of type I and type II IFNs signaling. To date, seven STAT family proteins have been identified from mammals. However, the information on STAT genes in teleost fish is still limited. In the present study, two STAT family genes (STAT1a and STAT2) were identified from Japanese eel, Anguilla japonica and designated as AjSTAT1a and AjSTAT2. The open reading frames of AjSTAT1a and AjSTAT2 are 2244 bp and 2421 bp, encoding for polypeptides of 747 aa and 806 aa, respectively. Both AjSTAT1a and AjSTAT2 contain the conserved domains of STAT proteins. Phylogenetic analysis was performed based on the STATs protein sequences, and showed that AjSTAT1a and AjSTAT2 shared the closest relationship with Oncorhynchus mykiss. Quantitative real-time PCR analysis revealed that AjSTAT1a and AjSTAT2 were expressed in most examined tissues, with the highest expression both in blood. Significantly up-regulated transcripts of AjSTAT1a and AjSTAT2 were detected in response to poly I:C stimulation, and Edwardsiella tarda induced increase in the expression of AjSTAT1a and AjSTAT2 genes. Subcellular localization analysis showed that in both IFNγ-stimulated and unstimulated EPC cells AjSTAT1a and AjSTAT2 were mainly distributed in the cytoplasm, but few AjSTAT1a was distributed in the nucleus. All these results suggested that AjSTAT1a and AjSTAT2 may be critical for regulating the host innate immune defense against pathogens invasion.
Collapse
Affiliation(s)
- Ying Liang
- Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361000, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China.
| | - Haizi Liu
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiang Li
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Jisong Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Jing Xiong
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| |
Collapse
|
20
|
Yan J, Zhang Y, Tan Y, Dai Y, Wei J, Cao Y, Feng H. Black carp TRAFD1 restrains MAVS-mediated antiviral signaling during the innate immune activation. FISH & SHELLFISH IMMUNOLOGY 2020; 103:66-72. [PMID: 32334128 DOI: 10.1016/j.fsi.2020.04.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
TRAFD1 negatively regulates TLR and RLR signaling in human and mammal; however, its role in teleost fish remains unknown. In this paper, the TRAFD1 homologue has been cloned and characterized from black carp (Mylopharyngodon piceus). Black carp TRAFD1 (bcTRAFD1) consists of 567 amino acids and shows low similarity to that of mammalian TRAFD1, which has been identified as a cytosolic protein through immunofluorescence staining. When co-expressed with bcTRAFD1, the IFN promoter-inducing ability of black carp MAVS (bcMAVS) was obviously dampened in the luciferase reporter assay. Accordingly, bcMAVS-mediated antiviral activity against grass carp reovirus (GCRV) and spring viremia of carp virus (SVCV) was potently repressed by bcTRAFD1 in plaque assay. And the co-immunoprecipitation assay between bcTRAFD1 and bcMAVS has identified the association between these two molecules. Thus, our data supports the conclusion that bcTRAFD1 interacts with bcMAVS and negatively regulates bcMAVS-mediated antiviral signaling during the innate immune activation, which sheds a light on the regulation of MAVS in teleost.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yinyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuhan Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jing Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yingyi Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
21
|
Wu M, Li H, Chen X, Jiang Y, Jiang W. Studies on the clinical symptoms, virus distribution, and mRNA expression of several antiviral immunity-related genes in grass carp after infection with genotype II grass carp reovirus. Arch Virol 2020; 165:1599-1609. [PMID: 32399788 DOI: 10.1007/s00705-020-04654-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
The viral hemorrhage disease caused by grass carp reovirus (GCRV) is a serious contagious disease of grass carp that mainly infects fingerlings and yearlings. Epidemiological studies have shown that GCRV genotype II is currently the prominent genotype. However, little is known about the histopathological characteristics, virus distribution, and expression of immunity-related genes in grass carp infected by GCRV genotype II. In this study, we found that grass carp infected by GCRV genotype II lost appetite, swam alone, and rolled, and their fins, eyes, operculum, oral cavity, abdomen, intestine, and muscles showed pronounced punctate hemorrhage. Congestion, swelling, deformation, thinning of membranes, dilatation and darkened color of nucleoli, cathepsis, erythrocyte infiltration, and vacuole formation were observed in some infected tissues. A qRT-PCR test showed that the 11 genome segments of GCRV had similar expression patterns in different tissues. The S8 segment, with unknown function and no homologous sequences, had the highest expression level, while the most conserved segment, L2, had the lowest expression level. GCRV particles were distributed in different tissues, especially in the intestine. In the infected intestine, the expression of various receptors and adaptor molecules was modulated at different levels. Pro-inflammatory cytokine interleukin-1β (IL-1β) expression was 2160.9 times higher than that in the control group. The upregulation of immunity-related genes activated the antiviral immunity pathways. Therefore, the intestine might play a dual role in mediating GCRV infection and the antiviral immune response. This study provides detailed information about the pathogenicity of GCRV and expression of immunity-related genes, laying the foundation for further research on virus control and treatment.
Collapse
Affiliation(s)
- Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
| | - Haiyang Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Xiaowu Chen
- Shanghai Ocean University, No.999 Huchenghuan Road, Nanhui New City, 201306, Shanghai, China
| | - Yangyang Jiang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Wei Jiang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, No. 40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| |
Collapse
|
22
|
Lu X, Liu J, Yan J, Wu H, Feng H. Identification and characterization of IRF9 from black carp Mylopharyngodon piceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103528. [PMID: 31654647 DOI: 10.1016/j.dci.2019.103528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factor 9 (IRF9) plays a crucial role in JAK-STAT signaling in human and mammal. However, the relationship between IRF9 and STAT1 in teleost fish remains largely unknown. The previous study has elucidated that two STAT1 isoforms (bcSTAT1a and bcSTAT1b) of black carp (Mylopharyngodon piceus) play an important role during the innate immune activation initiated by grass carp reovirus (GCRV). In this paper, black carp IRF9 (bcIRF9) has been identified and characterized. bcIRF9 was distributed majorly in the nucleus and the linker domain (LD) of bcIRF9 was vital for its nuclear localization. bcIRF9 showed ISRE-inducing activity in reporter assay and presented antiviral activity against GCRV in plaque assay, in which both DNA binding domain (DBD) and LD of bcIRF9 were essential for its antiviral signaling. bcIRF9 was identified to interact with both bcSTAT1a and bcSTAT1b in the co-immunoprecipitation assay. It was interesting that bcIRF9-mediated antiviral signaling was up-regulated by bcSTAT1a; however, down-regulated by bcSTAT1b. Thus, our data support the conclusion that bcIRF9 plays an important role in the innate immune defense against GCRV, in which two STAT1 proteins function differently.
Collapse
Affiliation(s)
- Xingyu Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
23
|
Jiang Y, Liu L, Yang S, Cao Y, Song X, Xiao J, Feng H. Black carp PRMT6 inhibits TBK1-IRF3/7 signaling during the antiviral innate immune activation. FISH & SHELLFISH IMMUNOLOGY 2019; 93:108-115. [PMID: 31326582 DOI: 10.1016/j.fsi.2019.07.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Protein arginine methylation is a prevalent posttranslational modification and protein arginine methyltransferases 6 (PRMT6) has been identified as a suppressor of TBK1/IRF3 in human and mammals. To explore the role of PRMT6 in teleost fish, PRMT6 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized in this study. Black carp PRMT6 (bcPRMT6) transcription in host cells varies in response to different stimuli and bcPRMT6 migrates around 43 kDa in the immunoblot assay. Like its mammalian counterpart, bcPRMT6 has been identified to distribute majorly in the nucleus through the immunofluorescent staining assay. bcPRMT6 shows little interferon (IFN) promoter-inducing activity in the reporter assay and bcPRMT6 shows no antiviral activity against either grass carp reovirus (GCRV) or spring viremia of carp virus (SVCV) in plaque assay. When co-expressed with bcPRMT6, the IFN promoter-inducing abilities of black carp TBK1 (bcTBK1) and IRF3/7 (bcIRF3/7) are fiercely attenuated. Accordingly, bcTBK1-mediated antiviral activity in EPC cells is obviously dampened by bcPRMT6. The interaction between bcPRMT6 and bcIRF3/7 has been identified by co-immunoprecipitation assay; however, no direct association between bcPRMT6 and bcTBK1 has been detected. Taken together, our data elucidates for the first time in teleost fish that PRMT6 suppresses TBK1-IRF3/7 signaling during host antiviral innate immune activation.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shisi Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yingyi Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xuejiao Song
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|