1
|
Parida S, Sahoo PK. Antioxidant Defence in Labeo rohita to Biotic and Abiotic Stress: Insight from mRNA Expression, Molecular Characterization and Recombinant Protein-Based ELISA of Catalase, Glutathione Peroxidase, CuZn Superoxide Dismutase, and Glutathione S-Transferase. Antioxidants (Basel) 2023; 13:18. [PMID: 38275638 PMCID: PMC10812468 DOI: 10.3390/antiox13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Fish possess numerous enzymatic antioxidant systems as part of their innate immunity. These systems have been poorly studied in Labeo rohita (rohu). The present study characterized and investigated the role of antioxidant genes in the defence mechanisms against two types of stressors, including infection and ammonia stress. Four key genes associated with antioxidant activity-catalase, glutathione peroxidase, glutathione S-transferase, and CuZn superoxide dismutase were successfully cloned and sequenced. These genes were found to be expressed in different tissues and developmental stages of rohu. The expression levels of these antioxidant genes in the liver and anterior kidney tissues of rohu juveniles were modulated in response to bacterial infection (Aeromonas hydrophila), parasite infection (Argulus siamensis), poly I:C stimulation and ammonia stress. Additionally, the recombinant proteins derived from these genes exhibited significant antioxidant and antibacterial activities. These proteins also demonstrated a protective effect against A. hydrophila infection in rohu and had an immunomodulatory role. Furthermore, indirect ELISA assay systems were developed to measure these protein levels in healthy as well as A. hydrophila and ammonia-induced rohu serum. Overall, this study characterized and emphasised the importance of the antioxidant mechanism in rohu's defence against oxidative damage and microbial diseases.
Collapse
Affiliation(s)
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India;
| |
Collapse
|
2
|
Gnocchi KG, Boldrini-França J, Passos LS, Gomes AS, Coppo GC, Pereira TM, Chippari-Gomes AR. Multiple biomarkers response of Astyanax lacustris (Teleostei: Characidae) exposed to manganese and temperature increase. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104124. [PMID: 37044292 DOI: 10.1016/j.etap.2023.104124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/12/2022] [Accepted: 04/08/2023] [Indexed: 06/15/2023]
Abstract
The present study aimed to evaluate the toxicity of Mn (6.65 mg/L) at different exposure times (96 h, 7, 14, and 21 days) and evaluate its possible toxic effects on the fish Astyanax lacustris through multi-biomarkers and the maximum critical temperature (CT Max). The results show an increase in the Mn accumulation (liver and gills) with increasing exposure time. The glutathione S-transferase (GST) activity showed differences in the group exposed to Mn for 96 h compared to the group exposed for 21 days. The acetylcholinesterase (AChE) activity increased in the fish exposed for 7 days compared to the control group. On the other hand, no genotoxic changes were observed. The CT Max showed that the loss of equilibrium of 50% of the fish occurs at a temperature of 39ºC, with and without the Mn presence. Furthermore, the catalase gene expression (oxidative stress) did not show alterations.
Collapse
Affiliation(s)
- Karla Giavarini Gnocchi
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Johara Boldrini-França
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Larissa Souza Passos
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 13416-000 Piracicaba, Brazil.
| | - Aline Silva Gomes
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Gabriel Carvalho Coppo
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil; Benthic Ecology Group, Department of Oceanography, Federal University of Espírito Santo, Av. Fernando Ferrari, 29055-460 Vitória, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | | |
Collapse
|
3
|
Hossen S, Sukhan ZP, Kim SC, Hanif MA, Kong IK, Kho KH. Molecular Cloning and Functional Characterization of Catalase in Stress Physiology, Innate Immunity, Testicular Development, Metamorphosis, and Cryopreserved Sperm of Pacific Abalone. Antioxidants (Basel) 2023; 12:antiox12010109. [PMID: 36670971 PMCID: PMC9854591 DOI: 10.3390/antiox12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Catalase is a crucial enzyme of the antioxidant defense system responsible for the maintenance of cellular redox homeostasis. The aim of the present study was to evaluate the molecular regulation of catalase (Hdh-CAT) in stress physiology, innate immunity, testicular development, metamorphosis, and cryopreserved sperm of Pacific abalone. Hdh-CAT gene was cloned from the digestive gland (DG) of Pacific abalone. The 2894 bp sequence of Hdh-CAT had an open reading frame of 1506 bp encoding 501 deduced amino acids. Fluorescence in situ hybridization confirmed Hdh-CAT localization in the digestive tubules of the DG. Hdh-CAT was induced by different types of stress including thermal stress, H2O2 induction, and starvation. Immune challenges with Vibrio, lipopolysaccharides, and polyinosinic-polycytidylic acid sodium salt also upregulated Hdh-CAT mRNA expression and catalase activity. Hdh-CAT responded to cadmium induced-toxicity by increasing mRNA expression and catalase activity. Elevated seasonal temperature also altered Hdh-CAT mRNA expression. Hdh-CAT mRNA expression was relatively higher at the trochophore larvae stage of metamorphosis. Cryopreserved sperm showed significantly lower Hdh-CAT mRNA expression levels compared with fresh sperm. Hdh-CAT mRNA expression showed a relationship with the production of ROS. These results suggest that Hdh-CAT might play a role in stress physiology, innate immunity, testicular development, metamorphosis, and sperm cryo-tolerance of Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Soo Cheol Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea
| | - Md. Abu Hanif
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
4
|
Sellaththurai S, Ganeshalingam S, Jung S, Choi JY, Kim DJ, Lee J. Insight into the molecular structure and function of peptidoglycan recognition protein SC2 (PGRP-SC2) from Amphiprion clarkii: Investigating the role in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 131:559-569. [PMID: 36241004 DOI: 10.1016/j.fsi.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) belong to the pattern recognition receptor (PRR) family and are conserved from insects to mammals. PGRPs show specific binding abilities to peptidoglycans (PGNs) in various microbes. In this study, molecular and functional analyses of PGRP-SC2 from Amphiprion clarkii (AcPGRP-SC2) were conducted. The 492 bp ORF of AcPGRP-SC2 encoded a protein of 164 amino acids with a molecular weight of 17.58 kDa and pI of 8.9. The PGRP superfamily domain was identified from the protein sequence of AcPGRP-SC2 and sequence similarities were observed with homologous proteins. Quantitative polymerase chain reaction (qPCR) analysis revealed that AcPGRP-SC2 transcripts were ubiquitously expressed in all tested tissues, with high levels in the skin, and transcript expression was significantly modulated by immune stimulation with lipopolysaccharide (LPS), Polyinosinic:polycytidylic acid (poly I:C), and Vibrio harveyi post-immune challenge. Recombinant AcPGRP-SC2 with the maltose-binding protein fusion (rAcPGRP-SC2) was used to evaluate LPS-, PGN-, and bacterial-binding activities and to conduct bacterial agglutination assays, and the results demonstrated that AcPGRP-SC2 exhibited bacterial recognition, binding, and colonization abilities to a range of Gram-positive and Gram-negative bacterial strains. Moreover, rAcPGRP-SC2-pre-treated Fat Head Minnow (FHM) cells exhibited significant upregulation in NF-ĸB1, NF-ĸB2, and stat3 expression upon treatment with killed bacteria. Taken together, our findings suggest that AcPGRP-SC2 plays an important role in the immune response against microbial pathogens in A. clarkii.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Ji Yong Choi
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, South Korea
| | - Dae-Jung Kim
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, South Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
5
|
Yang Z, Mo Y, Cheng F, Zhang H, Shang R, Wang X, Liang J, Liu Y, Hao B. Antioxidant Effects and Potential Molecular Mechanism of Action of Limonium aureum Extract Based on Systematic Network Pharmacology. Front Vet Sci 2022; 8:775490. [PMID: 35071383 PMCID: PMC8767100 DOI: 10.3389/fvets.2021.775490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is the redox imbalance state of organisms that involves in a variety of biological processes of diseases. Limonium aureum (L.) Hill. is an excellent wild plant resource in northern China, which has potential application value for treating oxidative stress. However, there are few studies that focused on the antioxidant effect and related mechanism of L. aureum. Thus, the present study combining systematic network pharmacology and molecular biology aimed to investigate the antioxidant effects of L. aureum and explore its underlying anti-oxidation mechanisms. First, the antioxidant activity of L. aureum extracts was confirmed by in vitro and intracellular antioxidant assays. Then, a total of 11 bioactive compounds, 102 predicted targets, and 70 antioxidant-related targets were obtained from open source databases. For elucidating the molecular mechanisms of L. aureum, the PPI network and integrated visualization network based on bioinformatics assays were constructed to preliminarily understand the active compounds and related targets. The subsequent enrichment analysis results showed that L. aureum mainly affect the biological processes involving oxidation-reduction process, response to drug, etc., and the interference with these biological processes might be due to the simultaneous influence on multiple signaling pathways, including the HIF-1 and ERBB signaling pathways. Moreover, the mRNA levels of predicted hub genes were measured by qRT-PCR to verify the regulatory effect of L. aureum on them. Collectively, this finding lays a foundation for further elucidating the anti-oxidative damage mechanism of L. aureum and promotes the development of therapeutic drugs for oxidative stress.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yanan Mo
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Feng Cheng
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Xuehong Wang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Jianping Liang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| |
Collapse
|
6
|
Queiroz LG, do Prado CCA, de Almeida ÉC, Dörr FA, Pinto E, da Silva FT, de Paiva TCB. Responses of Aquatic Nontarget Organisms in Experiments Simulating a Scenario of Contamination by Imidacloprid in a Freshwater Environment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:437-449. [PMID: 33275184 DOI: 10.1007/s00244-020-00782-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Several studies have indicated the presence of the neonicotinoid insecticide imidacloprid (IMI) in aquatic ecosystems in concentrations up to 320.0 µg L-1. In the present study, we evaluated the effects of the highest IMI concentration detected in surface water (320.0 µg L-1) on the survival of Chironomus sancticaroli, Daphnia similis, and Danio rerio in three different scenarios of water contamination. The enzymatic activities of glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) in D. rerio also were determined. For this evaluation, we have simulated a lotic environment using an indoor system of artificial channels developed for the present study. In this system, three scenarios of contamination by IMI (320.0 µg L-1) were reproduced: one using reconstituted water (RW) and the other two using water samples collected in unpolluted (UW) and polluted (DW) areas of a river. The results indicated that the tested concentration was not able to cause mortality in D. similis and D. rerio in any proposed treatment (RW, UW, and DW). However, C. sancticaroli showed 100% of mortality in the presence of IMI in the three proposed treatments, demonstrating its potential to impact the community of aquatic nontarget insects negatively. Low IMI concentrations did not offer risks to D. rerio survival. However, we observed alterations in GST, CAT, and APX activities in treatments that used IMI and water with no evidence of pollution (i.e., RW and UW). These last results demonstrated that fish are more susceptible to the effects of IMI in unpolluted environments.
Collapse
Affiliation(s)
- Lucas Gonçalves Queiroz
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil.
| | | | - Éryka Costa de Almeida
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe Augusto Dörr
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flávio Teixeira da Silva
- Department of Biotechnology, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil
| | - Teresa Cristina Brazil de Paiva
- Department of Basic and Environmental Sciences, School of Engineering of Lorena, University of São Paulo, Lorena, SP, Brazil
| |
Collapse
|
7
|
Shen B, Wei K, Ding Y, Zhang J. Molecular cloning, mRNA expression and functional characterization of a catalase from Chinese black sleeper (Bostrychus sinensis). FISH & SHELLFISH IMMUNOLOGY 2020; 103:310-320. [PMID: 32428652 DOI: 10.1016/j.fsi.2020.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
In this study, the catalase gene of Chinese black sleeper Bostrychus sinensis (termed as BsCat) was sequenced and characterized. The BsCat, which encodes 525 amino acids, contains a catalase proximal active site signature domain (64FDRERIPERVVHAKGAG80) and a catalase proximal heme-ligand signature domain (354RLFAYPDTH362). The BsCat exhibits high sequence similarity with Cat of other species. Phylogenetic tree reconstruction revealed a close evolutionary relationship of BsCat to catalase genes of other fishes. The results of Real-time PCR showed that the BsCat gene was constitutively expressed in most organs of B. sinensis, with predominant expression detected in liver, followed by peripheral blood and spleen. Moreover, the BsCat gene was significantly changed after either poly (I:C) stimulation or Vibrio parahemolyticus infection in peripheral blood, head kidney, liver and spleen. The enzymatic activity of purified recombinant BsCat (rBsCat) was 2261 ± 96 U/mg. The rBsCat exhibits optimum enzymatic activity at 15 °C and pH 7.0. Our results suggested that the BsCat is involved in the antioxidant defense and host immune response of Chinese black sleeper during pathogen invasion.
Collapse
Affiliation(s)
- Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Ke Wei
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yuehan Ding
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
8
|
Lawrence MJ, Raby GD, Teffer AK, Jeffries KM, Danylchuk AJ, Eliason EJ, Hasler CT, Clark TD, Cooke SJ. Best practices for non-lethal blood sampling of fish via the caudal vasculature. JOURNAL OF FISH BIOLOGY 2020; 97:4-15. [PMID: 32243570 DOI: 10.1111/jfb.14339] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 05/07/2023]
Abstract
Blood sampling through the caudal vasculature is a widely used technique in fish biology for investigating organismal health and physiology. In live fishes, it can provide a quick, easy and relatively non-invasive method for obtaining a blood sample (cf. cannulation and cardiac puncture). Here, a general set of recommendations are provided for optimizing the blood sampling protocol that reflects best practices in animal welfare and sample integrity. This includes selecting appropriate use of anaesthetics for blood sampling as well as restraint techniques for situations where sedation is not used. In addition, ideal sampling environments where the fish can freely ventilate and strategies for minimizing handling time are discussed. This study summarizes the techniques used for extracting blood from the caudal vasculature in live fishes, highlighting the phlebotomy itself, the timing of sampling events and acceptable blood sample volumes. This study further discuss considerations for selecting appropriate physiological metrics when sampling in the caudal region and the potential benefits that this technique provides with respect to long-term biological assessments. Although general guidelines for blood sampling are provided here, it should be recognized that contextual considerations (e.g., taxonomic diversity, legal matters, environmental constraints) may influence the approach to blood sampling. Overall, it can be concluded that when done properly, blood sampling live fishes through the caudal vasculature is quick, efficient and minimally invasive, thus promoting conditions where live release of focal animals is possible.
Collapse
Affiliation(s)
- Michael J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Graham D Raby
- Great Lakes Institute for Environmental Science, University of Windsor, Windsor, Ontario, Canada
| | - Amy K Teffer
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Caleb T Hasler
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Sellaththurai S, Shanaka KASN, Liyanage DS, Yang H, Priyathilaka TT, Lee J. Molecular and functional insights into a novel teleost malectin from big-belly seahorse Hippocampus abdominalis. FISH & SHELLFISH IMMUNOLOGY 2020; 99:483-494. [PMID: 32087279 PMCID: PMC7129624 DOI: 10.1016/j.fsi.2020.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 05/05/2023]
Abstract
Malectin is a carbohydrate-binding lectin protein found in the endoplasmic reticulum (ER). It selectivity binds to Glc2-N-glycan and is involved in a glycoprotein quality control mechanism. Even though malectin may play a role in immunity, its role in innate immunity is not fully known. In the present study, we identified and characterized the malectin gene from Hippocampus abdominalis (HaMLEC). We analyzed sequence features, spatial expression levels, temporal expression profiles upon immune responses, bacterial and carbohydrate binding abilities and anti-viral properties to investigate the potential role of HaMLEC in innate immunity. The molecular weight and isoelectric point (pI) were estimated to be 31.99 kDa and 5.17, respectively. The N-terminal signal peptide, malectin superfamily domain and C-terminal transmembrane region were identified from the amino acid sequence of HaMLEC. The close evolutionary relationship of HaMLEC with other teleosts was identified by phylogenetic analysis. According to quantitative PCR (qPCR) results, HaMLEC expression was observed in all the examined tissues and high expression was observed in the ovary and brain, compared to other tested tissues. Temporal expression of HaMLEC in liver and blood tissues were significant modulated upon exposure to immunogens Edwardasiella tarda, Streptococcus iniae, polyinosinic:polycytidylic and lipopolysaccharide. The presence of carbohydrate binding modules (CBMs) of bacterial glycosyl hydrolases were functionally confirmed by a bacterial binding assay. Anti-viral activity significantly reduced viral hemorrhagic septicemia virus (VHSV) replication in cells overexpressing HaMLEC. The observed results suggested that HaMLEC may have a significant role in innate immunity in Hippocampus abdominalis.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|