1
|
Li M, Chen H, Wang M, Zhong Z, Lian C, Zhou L, Zhang H, Wang H, Cao L, Li C. Phenotypic plasticity of symbiotic organ highlight deep-sea mussel as model species in monitoring fluid extinction of deep-sea methane hydrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178048. [PMID: 39689471 DOI: 10.1016/j.scitotenv.2024.178048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Methane hydrates stored in cold seeps are an important source of energy and carbon for both the endemic chemosynthetic community and humanity. However, the methane fluids may cease and even stop naturally or anthropogenically, calling for a thorough evaluation of its potential impact on the endemic species and local chemosynthetic ecosystems. As one dominant megafauna in cold seeps, some of the deep-sea mussels rely on methanotrophic endosymbionts for nutrition and therefore could serve as a promising model in monitoring the dynamic changes of methane hydrate. However, knowledge on the long-term responses of deep-sea mussels to environmental stresses induced by methane reduction and deprivation, is still lacking. Here, we set up a laboratory system and cultivated methanotrophic deep-sea mussel Gigantidas platifrons without methane supply to survey the phenotypic changes after methane deprivation. While the mussels managed to survive for >10 months after the methane deprivation, drastic changes in the metabolism, function, and development of gill tissue, and in the association with methanotrophic symbionts were observed. In detail, the mussel digested all methanotrophic endosymbionts shortly after methane deprivation for nutrition and remodeled the global metabolism of gill to conserve energy. As the methane deprivation continued, the mussel replaced its bacteriocytes with ciliated cells to support filter-feeding, which is an atavistic trait in non-symbiotic mussels. During the long-term methane deprivation assay, the mussel also retained the generation of new cells to support the phenotypic changes of gill and even promoted the activity after being transplanted back to deep-sea, showing the potential resilience after long-term methane deprivation. Evidences further highlighted the participation of symbiont sterol metabolism in regulating these processes. These results collectively show the phenotypic plasticity of deep-sea mussels and their dynamic responses to methane deprivation, providing essential information in assessing the long-term influence of methane hydrate extinction.
Collapse
Affiliation(s)
- Mengna Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National Deep Sea Center, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Laoshan Laboratory, Qingdao 266071, China.
| |
Collapse
|
2
|
Lv X, Li S, Yu Y, Jin S, Zhang X, Li F. LvCD14L Acts as a Novel Pattern Recognition Receptor and a Regulator of the Toll Signaling Pathway in Shrimp. Int J Mol Sci 2023; 24:ijms24097770. [PMID: 37175476 PMCID: PMC10178686 DOI: 10.3390/ijms24097770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Leucine-rich repeat (LRR) is a structural motif has important recognition function in immune receptors, such as Tolls and NOD-like receptors (NLRs). The immune-related LRR proteins can be divided into two categories, LRR-containing proteins and LRR-only proteins. The latter contain LRR motifs while they are without other functional domains. However, the functional mechanisms of the LRR-only proteins were still unclear in invertebrates. Here, we identified a gene encoding a secretory LRR-only protein, which possessed similarity with vertebrate CD14 and was designated as LvCD14L, from the Pacific whiteleg shrimp Litopenaeus vannamei. Its transcripts in shrimp hemocytes were apparently responsive to the infection of Vibrio parahaemolyticus. Knockdown of LvCD14L with dsRNA resulted in significant increase of the viable bacteria in the hepatopancreas of shrimp upon V. parahaemolyticus infection. Further functional studies revealed that LvCD14L could bind to microorganisms' PAMPs, showed interaction with LvToll1 and LvToll2, and regulated the expression of LvDorsal and LvALF2 in hemocytes. These results suggest that LvCD14L functions as a pattern recognition receptor and activates the NF-κB pathway through interaction with LvTolls. The present study reveals a shrimp LvCD14L-Tolls-NF-κB signaling pathway like the CD14/TLR4/NF-κB signaling pathway in mammalians, which enriches the functional mechanism of secretory LRR-only immune receptors during pathogens infection in invertebrates.
Collapse
Affiliation(s)
- Xinjia Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Wang Y, Guo Y, Hu J, Bao Z, Zhou B, Wang M. An LRR domain-containing membrane protein gene in rotifer Brachionus plicatilis: Sequence feature, expression pattern, and ligands binding activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104634. [PMID: 36634830 DOI: 10.1016/j.dci.2023.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Leucine-rich repeat (LRR) domains mediate multiple innate immune responses via protein-ligand and protein-protein interactions, but their exact roles in invertebrates are poorly understood. Herein, an LRR domain-containing transmembrane protein (BpLRRm) was identified in the rotifer Brachionus plicatilis. The 1069 bp BpLRRm nucleotide sequence contains a 942 bp open reading frame (ORF) encoding a 313 amino acid polypeptide with four LRR motifs harbouring the LXXLXXLXLXXNXLXXL motif, and a transmembrane domain. Treatment with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) decreased BpLRRm mRNA levels at 3 h, but they increased thereafter and peaked at 12 h. Lipopolysaccharide (LPS) treatment first increased BpLRRm mRNA levels at 3 h, but levels returned to normal at 12 h, then increased and peaked at 24 h. Recombinant BpLRRm protein bound pathogen-related molecular patterns (PAMPs), including LPS, peptidoglycan (PGN), glucan (GLU) and polyinosinic-polycytidylic acid (poly IC), in a dose-dependent manner. Thus, BpLRRm might function as a pattern recognition receptor (PRR) in the innate immunity of B. plicatilis, and mediate responses to environmental pollution.
Collapse
Affiliation(s)
- Yuxi Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 57202), Ocean University of China, China
| | - Ying Guo
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 57202), Ocean University of China, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 57202), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 57202), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Bin Zhou
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 57202), Ocean University of China, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 57202), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
4
|
DNA Enrichment Methods for Microbial Symbionts in Marine Bivalves. Microorganisms 2022; 10:microorganisms10020393. [PMID: 35208848 PMCID: PMC8878965 DOI: 10.3390/microorganisms10020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
High-throughput sequencing is a powerful tool used for bivalve symbiosis research, but the largest barrier is the contamination of host DNA. In this work, we assessed the host DNA reduction efficiency, microbial community structure, and microbial diversity of four different sample pre-treatment and DNA extraction methods employed in bivalve gill tissue samples. Metagenomic sequencing showed the average proportions of reads belonging to microorganisms retrieved using PowerSoil DNA extraction kit, pre-treatment with differential centrifugation, pre-treatment with filtration, and HostZERO Microbial DNA kit samples were 2.3 ± 0.6%, 2.5 ± 0.2%, 4.7 ± 1.6%, and 42.6 ± 6.8%, respectively. The microbial DNA was effectively enriched with HostZERO Microbial DNA kit. The microbial communities revealed by amplicon sequencing of the 16S rRNA gene showed the taxonomic biases by using four different pre-treatment and DNA extraction methods. The species diversities of DNA samples extracted with the PowerSoil DNA extraction kit were similar, while lower than DNA samples extracted with HostZERO Microbial DNA kit. The results of this study emphasized the bias of these common methods in bivalve symbionts research and will be helpful to choose a fit-for-purpose microbial enrichment strategy in future research on bivalves or other microbe–invertebrate symbioses.
Collapse
|
5
|
Gao Q, Yi S, Li Y, Luo J, Xing Q, Yang X, Zhao M, Min M, Wang Q, Wang Y, Ma L, Peng S. The Role of Flagellin B in Vibrio anguillarum-Induced Intestinal Immunity and Functional Domain Identification. Front Immunol 2021; 12:774233. [PMID: 34912344 PMCID: PMC8667730 DOI: 10.3389/fimmu.2021.774233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum, an opportunistic pathogen of aquatic animals, moves using a filament comprised of polymerised flagellin proteins. Flagellins are essential virulence factors for V. anguillarum infection. Herein, we investigated the effects of flagellins (flaA, flaB, flaC, flaD and flaE) on cell apoptosis, TLR5 expression, and production of IL-8 and TNF-α. FlaB exhibited the strongest immunostimulation effects. To explore the functions of flaB in infection, we constructed a flaB deletion mutant using a two-step recombination method, and in vitro experiments showed a significant decrease in the expression of TLR5 and inflammatory cytokines compared with wild-type cells. However in the in vivo study, expression of inflammatory cytokines and intestinal mucosal structure showed no significant differences between groups. Additionally, flaB induced a significant increase in TLR5 expression based on microscopy analysis of fluorescently labelled TLR5, indicating interactions between the two proteins, which was confirmed by native PAGE and yeast two-hybrid assay. Molecular simulation of interactions between flaB and TLR5 was performed to identify the residues involved in binding, revealing two binding sites. Then, based on molecular dynamics simulations, we carried out thirteen site-directed mutations occurring at the amino acid sites of Q57, N83, N87, R91, D94, E122, D152, N312, R313, N320, L97, H316, I324 in binding regions of flaB protein by TLR5, respectively. Surface plasmon resonance (SPR) was employed to compare the affinities of flaB mutants for TLR5, and D152, D94, I324, N87, R313, N320 and H316 were found to mediate interactions between flaB and TLR5. Our comprehensive and systematic analysis of V. anguillarum flagellins establishes the groundwork for future design of flagellin-based vaccines.
Collapse
Affiliation(s)
- Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Yang Li
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Jinping Luo
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Qianqian Xing
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Xia Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources, Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Science, Huzhou University, Huzhou, China
| | - Ming Zhao
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Minghua Min
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Qian Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yabing Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Lingbo Ma
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Shiming Peng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
6
|
Chen H, Wang M, Zhang H, Wang H, Zhou L, Zhong Z, Cao L, Lian C, Sun Y, Li C. microRNAs facilitate comprehensive responses of Bathymodiolinae mussel against symbiotic and nonsymbiotic bacteria stimulation. FISH & SHELLFISH IMMUNOLOGY 2021; 119:420-431. [PMID: 34687882 DOI: 10.1016/j.fsi.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Bathymodiolinae mussels are dominant species in cold seeps and hydrothermal vents and could harbor endosymbionts in gill bacteriocytes. However, mechanisms underlying the symbiosis have remained largely undisclosed for years. In the present study, the global expression pattern of immune-related genes and miRNAs were surveyed in Gigantidas platifrons during bacterial challenges using enriched symbiotic methane oxidation bacteria MOBs or nonsymbiotic Vibrio. As a result, multiple pattern recognition receptors were found differentially expressed at 12 h and 24 h post bacteria challenges and distinctly clustered between stimulations. Dozens of immune effectors along with signal transducers were also modulated simultaneously during MOB or Vibrio challenge. A total of 459 miRNAs were identified in the gill while some were differentially expressed post MOB or nonsymbiotic bacteria challenge. A variety of immune-related genes were annotated as target genes of aforesaid differentially expressed miRNAs. As a result, biological processes including the immune recognition, lysosome activity and bacteria engulfment were suggested to be dynamically modulated by miRNAs in either symbiotic or nonsymbiotic bacteria challenge. It was suggested that G. platifrons mussels could maintain a robust immune response against invading pathogens while establishing symbiosis with chemosynthetic bacteria with the orchestra of immune-related genes and miRNAs.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Wang
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Zhou
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Lei Cao
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Lian
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yan Sun
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, And CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
7
|
Li M, Chen H, Wang M, Zhong Z, Wang H, Zhou L, Zhang H, Li C. A Toll-like receptor identified in Gigantidas platifrons and its potential role in the immune recognition of endosymbiotic methane oxidation bacteria. PeerJ 2021; 9:e11282. [PMID: 33986997 PMCID: PMC8092104 DOI: 10.7717/peerj.11282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Symbiosis with chemosynthetic bacteria is an important ecological strategy for the deep-sea megafaunas including mollusks, tubeworms and crustacean to obtain nutrients in hydrothermal vents and cold seeps. How the megafaunas recognize symbionts and establish the symbiosis has attracted much attention. Bathymodiolinae mussels are endemic species in both hydrothermal vents and cold seeps while the immune recognition mechanism underlying the symbiosis is not well understood due to the nonculturable symbionts. In previous study, a lipopolysaccharide (LPS) pull-down assay was conducted in Gigantidas platifrons to screen the pattern recognition receptors potentially involved in the recognition of symbiotic methane-oxidizing bacteria (MOB). Consequently, a total of 208 proteins including GpTLR13 were identified. Here the molecular structure, expression pattern and immune function of GpTLR13 were further analyzed. It was found that GpTLR13 could bind intensively with the lipid A structure of LPS through surface plasmon resonance analysis. The expression alternations of GpTLR13 transcripts during a 28-day of symbiont-depletion assay were investigated by real-time qPCR. As a result, a robust decrease of GpTLR13 transcripts was observed accompanying with the loss of symbionts, implying its participation in symbiosis. In addition, GpTLR13 transcripts were found expressed exclusively in the bacteriocytes of gills of G. platifrons by in situ hybridization. It was therefore speculated that GpTLR13 may be involved in the immune recognition of symbiotic methane-oxidizing bacteria by specifically recognizing the lipid A structure of LPS. However, the interaction between GpTLR13 and symbiotic MOB was failed to be addressed due to the nonculturable symbionts. Nevertheless, the present result has provided with a promising candidate as well as a new approach for the identification of symbiont-related genes in Bathymodiolinae mussels.
Collapse
Affiliation(s)
- Mengna Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Chen
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
8
|
Chen H, Wang M, Li M, Lian C, Zhou L, Zhang X, Zhang H, Zhong Z, Wang H, Cao L, Li C. A glimpse of deep-sea adaptation in chemosynthetic holobionts: Depressurization causes DNA fragmentation and cell death of methanotrophic endosymbionts rather than their deep-sea Bathymodiolinae host. Mol Ecol 2021; 30:2298-2312. [PMID: 33774874 DOI: 10.1111/mec.15904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/27/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Bathymodiolinae mussels are typical species in deep-sea cold seeps and hydrothermal vents and an ideal model for investigating chemosynthetic symbiosis and the influence of high hydrostatic pressure on deep-sea organisms. Herein, the potential influence of depressurization on DNA fragmentation and cell death in Bathymodiolinae hosts and their methanotrophic symbionts were surveyed using isobaric and unpressurized samples. As a hallmark of cell death, massive DNA fragmentation was observed in methanotrophic symbionts from unpressurized Bathymodiolinae while several endonucleases and restriction enzymes were upregulated. Additionally, genes involved in DNA repair, glucose/methane metabolism as well as two-component regulatory system were also differentially expressed in depressurized symbionts. DNA fragmentation and programmed cell death, however, were rarely detected in the host bacteriocytes owing to the orchestrated upregulation of inhibitor of apoptosis genes and downregulation of caspase genes. Meanwhile, diverse host immune recognition receptors were promoted during depressurization, probably enabling the regain of symbionts. When the holobionts were subjected to a prolonged acclimation at atmospheric pressure, alternations in both the DNA fragmentation and the expression atlas of aforesaid genes were continuously observed in symbionts, demonstrating the persistent influence of depressurization. Contrarily, the host cells demonstrated certain tolerance against depressurization stress as expression level of some immune-related genes returned to the basal level in isobaric samples. Altogether, the present study illustrates the distinct stress responses of Bathymodiolinae hosts and their methanotrophic symbionts against depressurization, which could provide further insight into the deep-sea adaptation of Bathymodiolinae holobionts while highlighting the necessity of using isobaric sampling methods in deep-sea research.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Mengna Li
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Lian
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Zhou L, Cao L, Wang X, Wang M, Wang H, Zhong Z, Xu Z, Chen H, Li L, Li M, Wang H, Zhang H, Lian C, Sun Y, Li C. Metal adaptation strategies of deep-sea Bathymodiolus mussels from a cold seep and three hydrothermal vents in the West Pacific. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136046. [PMID: 31863974 DOI: 10.1016/j.scitotenv.2019.136046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Deep-sea Bathymodiolus mussels are ubiquitous in most cold seeps and hydrothermal fields, where they have adapted to various toxic environments including high metal exposure. However, there is scarce knowledge of metal accumulation and metal-related biomarkers in B. mussels. Here, we present data for metal concentrations (Ag, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) and metal related biomarkers (superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPX, glutathione-GSH, metallothioneins-MTs, and lipid peroxidation-LPO) in different tissues of B. mussels from four different deep-sea geochemical settings: one cold seep and three vent fields in the West Pacific Ocean. Results showed that mussel gills generally exhibited higher metal enrichment than the mantle. Mussels from hydrothermal vents usually had higher metal concentrations (Fe, Cr, Cd, and Pb) than those from cold seep, which could be related to their higher contents in fluids or sediments. However, despite quite different metals loads among the geochemical environment settings, Mn, Zn, and Cu concentrations varied over a smaller range across the sampling sites, implying biological regulation by deep-sea mussels for these elements. Several statistically significant correlations were observed between SOD, CAT, GSH, MTs, and metal levels in analyzed tissues. Although the vent ecosystem is harsher than the cold seep ecosystem, according to our results their mussels' biomarker levels were not so different. This finding suggests that some adaptive or compensatory mechanisms may occur in chronically polluted deep-sea mussels. Principal component analysis allowed for distinguishing different deep-sea settings, indicating that B. mussels are robust indicators of their living environments. We also compared our results with those reported for coastal mussels. To our best knowledge, this is the first integrated study to report metal accumulation and metal-related biomarkers in the deep-sea B. mussels from the West Pacific.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaocheng Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haining Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zheng Xu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Leilei Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengna Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yan Sun
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
10
|
Li M, Chen H, Wang M, Zhong Z, Zhou L, Li C. Identification and characterization of endosymbiosis-related immune genes in deep-sea mussels Gigantidas platifrons. JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2020; 38:1292-1303. [PMID: 32834906 PMCID: PMC7377973 DOI: 10.1007/s00343-020-0040-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 05/15/2023]
Abstract
Deep-sea mussels of the subfamily Bathymodiolinae are common and numerically dominant species widely distributed in cold seeps and hydrothermal vents. During long-time evolution, deep-sea mussels have evolved to be well adapted to the local environment of cold seeps and hydrothermal vents by various ways, especially by establishing endosymbiosis with chemotrophic bacteria. However, biological processes underlying the establishment and maintenance of symbiosis between host mussels and symbionts are largely unclear. In the present study, Gigantidas platifrons genes possibly involved in the symbiosis with methane oxidation symbionts were identified and characterized by Lipopolysaccharide (LPS) pull-down and in situ hybridization. Five immune related proteins including Toll-like receptor 2 (TLR2), integrin, vacuolar sorting protein (VSP), matrix metalloproteinase 1 (MMP1), and leucine-rich repeat (LRR-1) were identified by LPS pull-down assay. These five proteins were all conserved in either molecular sequences or functional domains and known to be key molecules in host immune recognition, phagocytosis, and lysosome-mediated digestion. Furthermore, in situ hybridization of LRR-1, TLR2 and VSP genes was conducted to investigate their expression patterns in gill tissues of G. platifrons. Consequently, LRR-1, TLR2, and VSP genes were found expressed exclusively in the bacteriocytes of G. platifrons. Therefore, it was suggested that TLR2, integrin, VSP, MMP1, and LRR-1 might be crucial molecules in the symbiosis between G. platifrons and methane oxidation bacteria by participating in symbiosis-related immune processes.
Collapse
Affiliation(s)
- Mengna Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hao Chen
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Minxiao Wang
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Zhaoshan Zhong
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Zhou
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Chaolun Li
- Center of Deep Sea Research and Key Laboratory of Marine Ecology & Environmental Sciences (CODR and KLMEES), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|