1
|
Zhang M, Sun J, Zhang F, Zhang Y, Wu M, Kong W, Guan X, Liu M. Molecular mechanism of TRIM32 in antiviral immunity in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109765. [PMID: 39004296 DOI: 10.1016/j.fsi.2024.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
TRIM family proteins are widely found in multicellular organisms and are involved in a wide range of life activities, and also act as crucial regulators in the antiviral natural immune response. This study aimed to reveal the molecular mechanism of rainbow trout TRIM protein in the anti-IHNV process. The results demonstrated that 99.1 % homology between the rainbow trout and the chinook salmon (Oncorhynchus tshawytscha) TRIM32. When rainbow trout were infected with IHNV, the TRIM32 was highly expressed in the gill, spleen, kidney and blood. Meanwhile, rainbow trout TRIM32 has E3 ubiquitin ligase activity and undergoes K29-linked polyubiquitination modifications dependent on the RING structural domain was determined by immunoprecipitation. TRIM32 could interact with the NV protein of IHNV and degrade NV protein through the ubiquitin-proteasome pathway, and was also able to activate NF-κB transcription, thereby inhibiting the replication of IHNV. Moreover, the results of the animal studies showed that the survival rate of rainbow trout overexpressing TRIM32 was 70.2 % which was significantly higher than that of the control group, and stimulating the body to produce high levels of IgM when the host was infected with the virus. In addition, TRIM32 can activate the NF-κB signalling pathway and participate in the antiviral natural immune response. The results of this study will help us to understand the molecular mechanism of TRIM protein resistance in rainbow trout, and provide new ideas for disease resistance breeding, vaccine development and immune formulation development in rainbow trout.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Jinhui Sun
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Futing Zhang
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Yingrui Zhang
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Mian Wu
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Weiliang Kong
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China.
| | - Min Liu
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Meng XY, Jiang QQ, Yu XD, Zhang QY, Ke F. Eukaryotic translation elongation factor 1 alpha (eEF1A) inhibits Siniperca chuatsi rhabdovirus (SCRV) infection through two distinct mechanisms. J Virol 2023; 97:e0122623. [PMID: 37861337 PMCID: PMC10688370 DOI: 10.1128/jvi.01226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.
Collapse
Affiliation(s)
- Xian-Yu Meng
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Qi Jiang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Xue-Dong Yu
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Ke
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Kim SY, Kwak JS, Jung W, Kim MS, Kim KH. Compensatory mutations in the matrix protein of viral hemorrhagic septicemia virus (VHSV) genotype IVa in response to artificial mutation of two amino acids (D62A E181A). Virus Res 2023; 326:199067. [PMID: 36754291 DOI: 10.1016/j.virusres.2023.199067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
The matrix (M) protein of rhabdoviruses locates between the inner line of the viral envelope and the nucleocapsids core and plays an important role in viral replication. In the present study, we aimed to rescue a mutant of VHSV genotype IVa that has artificial mutations in the M protein (M-D62A E181A). However, most rescued recombinant viruses unexpectedly showed non-targeted secondary mutations in the M protein. Therefore, this study was conducted to know whether the targeted artificial mutation can lead to specific non-targeted secondary mutations in the M protein and whether the secondary mutations are compensatory for the targeted artificial mutations. Experiments were conducted to rescue three kinds of M protein mutants (rVHSV-M-D62A, -E181A, and -D62A E181A), and rVHSV-M-E181A and rVHSV-M-D62A E181A without the secondary mutations were rescued only from IRF-9 gene-knockout EPC cells. Recombinant VHSVs having only targeted mutation(s) (rVHSV-M-D62A, -E181A, and -D62A E181A) showed slower CPE progression and retarded growth compared to rVHSV-wild. Although the sites of secondary mutations were changed in every transfection experiment to generate recombinant VHSVs, the positions of the secondary mutations were not random. Some amino acid residues in the M protein showed more frequent mutations than others, and the changed amino acid residues were always the same. EPC cells infected with rVHSV-M-D62A E181A showed significantly higher type I interferon response and NF-κB activity, and the inhibitory activity against type I interferon response and NF-κB activity in other recombinant VHSVs having secondary mutations in M gene were similar to those of rVHSV-wild. In conclusion, the present results showed that VHSV actively responded to the artificial mutation of M protein through the secondary mutations, and those secondary mutations occurred when the artificial mutations were deleterious to viral replication and protein stability. Furthermore, most secondary mutations in recombinant viruses compensated for the deleterious effect of the engineered mutations.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Norway
| | - Wonyeong Jung
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
4
|
Li J, Xia D, Zhang M, Zhang Y, Liu X, Sun J, Xu B, Yang J, Wang N, Shi W, Guan X, Liu M. Infectious hematopoietic necrosis virus (IHNV) nucleoprotein amino acid residues affect viral virulence and immunogenicity in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 130:572-581. [PMID: 35988711 DOI: 10.1016/j.fsi.2022.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/10/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
This study compared the N protein sequences of genotype J with other genotypes of IHNV to select amino acid residues that may be related to the change in viral virulence. The recombinant viruses containing different mutation sites were rescued by alanine scanning mutagenesis and the reverse genetic system. The nine recombinant virus strains obtained in this work were named rIHNV-N85, rIHNV-N102, rIHNV-N146, rIHNV-N380, rIHNV-N85-102-146, rIHNV-N85-102-380, rIHNV-N85-146-380, rIHNV-N102-146-380, and rIHNV-N85-102-146-380. Pathogenicity and immunity assays were performed to determine the role of virulence sites. The result of the pathogenicity test showed that the survival rates of rIHNV-N85, rIHNV-N102, rIHNV-N85-102-146, and rIHNV-N85-102-380 groups were 52.5%, 55%, 67.5%, and 57.5%, while the survival rate of wild-type (wt) IHNV HLJ-09 group was only 10%. The replication ability of recombinant viruses with substitutions at positions 85 and 102 was significantly inhibited in vivo and in vitro. The qRT-PCR result indicated that the cytokines of IFN1, IL-8, and IL-1β expression levels were increased in rIHNV-N85, rIHNV-N102, rIHNV-N85-102-146, and rIHNV-N85-102-380 groups. In addition, these four recombinant viruses could cause the rainbow trout to produce anti-IHNV-specific antibodies immunoglobulin M (IgM) earlier, confirming that 85 and 102 amino acid residues of N protein affected the virulence and immunogenicity of IHNV. All these results suggest that mutations of the N protein virulence sites reduce virulence while retaining immunogenicity. This also provides a new idea for studying the virulence mechanism of rhabdoviruses and preparing attenuated vaccines.
Collapse
Affiliation(s)
- Jiahui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dong Xia
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mengmeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanru Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xuefei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinhui Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoxing Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jiawei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China.
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
5
|
Sun J, Zhang M, Zhao D, Yang J, Shi Y, Xu B, Liu X, Guan X, Shi W, Liu M. Immunological Effects of Recombinant Lactobacillus casei Expressing IHNV G Protein and Rainbow Trout (Oncorhynchus mykiss) Chemokine CK6 as an Oral Vaccine. Front Immunol 2022; 13:927443. [PMID: 35784302 PMCID: PMC9245430 DOI: 10.3389/fimmu.2022.927443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
IHNV is a virus that infects salmonids and causes serious economic damage to the salmonid farming industry. There is no specific treatment for the disease caused by this pathogen and the main preventive measure is vaccination, but this is only possible for small groups of individuals. Therefore, it is important to investigate new oral vaccines to prevent IHNV. In this study, the CK6 chemokine protein of rainbow trout and the truncated G protein of IHNV were used to construct a secretory expression recombinant L.casei vaccine for rainbow trout. The results showed that the levels of IgM and IgT antibodies in rainbow trout reached the highest level on the 15th day after the secondary immunization, and the antibodies exhibited high inhibitory activity against viral infection. Furthermore, the expression of relevant cytokines in different tissues was detected and found to be significantly higher in the oral vaccine group than in the control group. It was also found that pPG-612-CK6-G/L.casei 393 could stimulate splenic lymphocyte proliferation and improve mucosal immunity with significant differences between the immunized and control groups. When infected with IHNV, the protection rate of pPG-612-CK6-G/L.casei 393 was 66.67% higher than that of the control group. We found that pPG-612-CK6-G/L.casei 393 expressed and secreted the rainbow trout chemokine CK6 protein and IHNV truncated G protein, retaining the original immunogenicity of rainbow trout while enhancing their survival rate. This indicates that recombinant L.casei provides a theoretical basis and rationale for the development of an oral vaccine against IHNV and has important practical implications for the protection of rainbow trout from IHNV infection.
Collapse
|
6
|
Kim SS, Kim KI, Yoo HK, Han YS, Jegal ME, Byun SG, Lim HJ, Park JS, Kim YJ. Differential virulence of infectious hematopoietic necrosis virus (IHNV) isolated from salmonid fish in Gangwon Province, Korea. FISH & SHELLFISH IMMUNOLOGY 2021; 119:490-498. [PMID: 34715327 DOI: 10.1016/j.fsi.2021.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/01/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The present study investigated the virulence and expression of innate immunity genes in isolates of infectious hematopoietic necrosis virus (IHNV) in Gangwon province, South Korea, by challenging rainbow trout, Atlantic salmon, and coho salmon. Eight IHNV isolates were used to infect RTG-2 cells for viral replication using plaque assays. Three isolates with the highest replication rates, the RtPc0314g and RtPc0314c isolates of the JRt-Shizuoka type and the RtPc0816g isolate of the JRt-Nagano type, were experimentally infected into the fish. In rainbow trout, both RtPc0314c and RtPc0314g isolates showed 100% cumulative mortality while the RtPc0816g isolate showed 60% cumulative mortality for 14 days. In contrast, all three isolates showed <60% cumulative mortality in Atlantic salmon and coho salmon. The expression of G genes in the kidney was higher than that in the spleen-infected fish, with the highest expression observed in the kidneys of rainbow trout. The relative expression levels of innate immunity genes were higher in rainbow trout than in Atlantic salmon and coho salmon. The expression level of immunoglobulin M increased until day 7, and the expression of type I interferon was higher in the spleen than in other tissues. The expression of Mx-1 was higher in the kidney and liver than other tissues. These results indicate that IHNV isolates from Gangwon province show host-specific virulence in rainbow trout and that their virulence and replication were higher in JRt-Shizuoka type than in JRt-Nagano type isolates.
Collapse
Affiliation(s)
- So-Sun Kim
- East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung-si, 25435, Republic of Korea; Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Kwang-Il Kim
- Department of Aquatic Life Medicine, Pukyoung National University, Busan, 48513, Republic of Korea
| | - Hae-Kyun Yoo
- East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung-si, 25435, Republic of Korea
| | - Yu-Seon Han
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Myeong-Eun Jegal
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Soon-Gyu Byun
- East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung-si, 25435, Republic of Korea
| | - Hyun-Jeong Lim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong, Republic of Korea
| | - Jang-Su Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Yung-Jin Kim
- Department of Molecular Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
The Role of Exosome and the ESCRT Pathway on Enveloped Virus Infection. Int J Mol Sci 2021; 22:ijms22169060. [PMID: 34445766 PMCID: PMC8396519 DOI: 10.3390/ijms22169060] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) system consists of peripheral membrane protein complexes ESCRT-0, -I, -II, -III VPS4-VTA1, and ALIX homodimer. This system plays an important role in the degradation of non-essential or dangerous plasma membrane proteins, the biogenesis of lysosomes and yeast vacuoles, the budding of most enveloped viruses, and promoting membrane shedding of cytokinesis. Recent results show that exosomes and the ESCRT pathway play important roles in virus infection. This review mainly focuses on the roles of exosomes and the ESCRT pathway in virus assembly, budding, and infection of enveloped viruses. The elaboration of the mechanism of exosomes and the ESCRT pathway in some enveloped viruses provides important implications for the further study of the infection mechanism of other enveloped viruses.
Collapse
|
8
|
Louboutin L, Cabon J, Vigouroux E, Morin T, Danion M. Comparative analysis of the course of infection and the immune response in rainbow trout (Oncorhynchus mykiss) infected with the 5 genotypes of infectious hematopoietic necrosis virus. Virology 2021; 552:20-31. [DOI: 10.1016/j.virol.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022]
|