1
|
Andersen LK, Thompson NF, Abernathy JW, Ahmed RO, Ali A, Al-Tobasei R, Beck BH, Calla B, Delomas TA, Dunham RA, Elsik CG, Fuller SA, García JC, Gavery MR, Hollenbeck CM, Johnson KM, Kunselman E, Legacki EL, Liu S, Liu Z, Martin B, Matt JL, May SA, Older CE, Overturf K, Palti Y, Peatman EJ, Peterson BC, Phelps MP, Plough LV, Polinski MP, Proestou DA, Purcell CM, Quiniou SMA, Raymo G, Rexroad CE, Riley KL, Roberts SB, Roy LA, Salem M, Simpson K, Waldbieser GC, Wang H, Waters CD, Reading BJ. Advancing genetic improvement in the omics era: status and priorities for United States aquaculture. BMC Genomics 2025; 26:155. [PMID: 39962419 PMCID: PMC11834649 DOI: 10.1186/s12864-025-11247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The innovations of the "Omics Era" have ushered in significant advancements in genetic improvement of agriculturally important animal species through transforming genetics, genomics and breeding strategies. These advancements were often coordinated, in part, by support provided over 30 years through the 1993-2023 National Research Support Project 8 (NRSP8, National Animal Genome Research Program, NAGRP) and affiliate projects focused on enabling genomic discoveries in livestock, poultry, and aquaculture species. These significant and parallel advances demand strategic planning of future research priorities. This paper, as an output from the May 2023 Aquaculture Genomics, Genetics, and Breeding Workshop, provides an updated status of genomic resources for United States aquaculture species, highlighting major achievements and emerging priorities. MAIN TEXT Finfish and shellfish genome and omics resources enhance our understanding of genetic architecture and heritability of performance and production traits. The 2023 Workshop identified present aims for aquaculture genomics/omics research to build on this progress: (1) advancing reference genome assembly quality; (2) integrating multi-omics data to enhance analysis of production and performance traits; (3) developing resources for the collection and integration of phenomics data; (4) creating pathways for applying and integrating genomics information across animal industries; and (5) providing training, extension, and outreach to support the application of genome to phenome. Research focuses should emphasize phenomics data collection, artificial intelligence, identifying causative relationships between genotypes and phenotypes, establishing pathways to apply genomic information and tools across aquaculture industries, and an expansion of training programs for the next-generation workforce to facilitate integration of genomic sciences into aquaculture operations to enhance productivity, competitiveness, and sustainability. CONCLUSION This collective vision of applying genomics to aquaculture breeding with focus on the highlighted priorities is intended to facilitate the continued advancement of the United States aquaculture genomics, genetics and breeding research community and industries. Critical challenges ahead include the practical application of genomic tools and analytical frameworks beyond academic and research communities that require collaborative partnerships between academia, government, and industry. The scope of this review encompasses the use of omics tools and applications in the study of aquatic animals cultivated for human consumption in aquaculture settings throughout their life-cycle.
Collapse
Affiliation(s)
| | | | | | - Ridwan O Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Bernarda Calla
- USDA-ARS Pacific Shellfish Research Unit, Newport, OR, USA
| | - Thomas A Delomas
- USDA-ARS National Cold Water Marine Aquaculture Center, Kingston, RI, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | | | - S Adam Fuller
- USDA-ARS Harry K Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Julio C García
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Mackenzie R Gavery
- Environmental and Fishery Sciences Division, NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Christopher M Hollenbeck
- Texas A&M AgriLife Research, College Station, TX, USA
- Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kevin M Johnson
- California Sea Grant, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Erin L Legacki
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Sixin Liu
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Zhanjiang Liu
- Department of Biology, Tennessee Technological University, Cookeville, TN, USA
| | - Brittany Martin
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Joseph L Matt
- Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Samuel A May
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Caitlin E Older
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, MS, USA
| | - Ken Overturf
- USDA-ARS Small Grains and Potato Germplasm Research, Hagerman, ID, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | | | - Brian C Peterson
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | | | - Louis V Plough
- USDA-ARS Pacific Shellfish Research Unit, Newport, OR, USA
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Mark P Polinski
- USDA-ARS National Cold Water Marine Aquaculture Center, Orono, ME, USA
| | - Dina A Proestou
- USDA-ARS National Cold Water Marine Aquaculture Center, Kingston, RI, USA
| | | | | | - Guglielmo Raymo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Kenneth L Riley
- Office of Aquaculture, NOAA Fisheries, Silver Spring, MD, USA
| | | | - Luke A Roy
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Alabama Fish Farming Center, Greensboro, AL, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Kelly Simpson
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | | | - Charles D Waters
- NOAA Alaska Fisheries Science Center Auke Bay Laboratories, Juneau, AK, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Kim SH, Kim HJ, Bathige SDNK, Kim S, Park KI. Strain-specific virulence of Perkinsus marinus and related species in Eastern oysters: A comprehensive analysis of immune responses and mortality. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110112. [PMID: 39778635 DOI: 10.1016/j.fsi.2025.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
In this study, we investigated the variability in virulence among different strains of Perkinsus marinus and other Perkinsus species in Eastern oysters (Crassostrea virginica), examining the immune responses and mortality rates of oysters exposed to different Perkinsus isolates. Compared with the other assessed strains, P. marinus strain ATCC 50787 was found to induce significantly (P < 0.05) higher levels of reactive oxygen species, nitric oxide, and necrosis in oyster hemocytes. Perkinsus chesapeaki (ATCC PRA-65) elicited strong immune responses and high mortality in Eastern oysters at rates similar to those induced by the most virulent P. marinus strain. In contrast, P. olseni and P. honshuensis induced low levels of immune response and mortality. In vivo survival assays confirmed that strains inducing high immune responses in vitro also caused high mortalities in oysters. Our findings in this study highlight the importance of considering strain-specific virulence when studying Perkinsus infections in oysters. These findings have implications for understanding host-parasite interactions and managing Perkinsus-related diseases in oyster populations, particularly from the perspectives of aquaculture and conservation.
Collapse
Affiliation(s)
- Seung-Hyeon Kim
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Hyoun Joong Kim
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, Gunsan, 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan, 54150, Republic of Korea
| | - S D N K Bathige
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Soohwan Kim
- Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan, 54150, Republic of Korea
| | - Kyung-Il Park
- Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, Gunsan, 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan, 54150, Republic of Korea.
| |
Collapse
|
3
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
4
|
Proestou DA, Sullivan ME, Lundgren KM, Ben-Horin T, Witkop EM, Hart KM. Understanding Crassostrea virginica tolerance of Perkinsus marinus through global gene expression analysis. Front Genet 2023; 14:1054558. [PMID: 36741318 PMCID: PMC9892467 DOI: 10.3389/fgene.2023.1054558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Disease tolerance, a host's ability to limit damage from a given parasite burden, is quantified by the relationship between pathogen load and host survival or reproduction. Dermo disease, caused by the protozoan parasite P. marinus, negatively impacts survival in both wild and cultured eastern oyster (C. virginica) populations. Resistance to P. marinus has been the focus of previous studies, but tolerance also has important consequences for disease management in cultured and wild populations. In this study we measured dermo tolerance and evaluated global expression patterns of two sensitive and two tolerant eastern oyster families experimentally challenged with distinct doses of P. marinus (0, 106, 107, and 108 parasite spores per gram wet weight, n = 3-5 individuals per family per dose). Weighted Gene Correlation Network Analysis (WGCNA) identified several modules correlated with increasing parasite dose/infection intensity, as well as phenotype. Modules positively correlated with dose included transcripts and enriched GO terms related to hemocyte activation and cell cycle activity. Additionally, these modules included G-protein coupled receptor, toll-like receptor, and tumor necrosis factor pathways, which are important for immune effector molecule and apoptosis activation. Increased metabolic activity was also positively correlated with treatment. The module negatively correlated with infection intensity was enriched with GO terms associated with normal cellular activity and growth, indicating a trade-off with increased immune response. The module positively correlated with the tolerant phenotype was enriched for transcripts associated with "programmed cell death" and contained a large number of tripartite motif-containing proteins. Differential expression analysis was also performed on the 108 dosed group using the most sensitive family as the comparison reference. Results were consistent with the network analysis, but signals for "programmed cell death" and serine protease inhibitors were stronger in one tolerant family than the other, suggesting that there are multiple avenues for disease tolerance. These results provide new insight for defining dermo response traits and have important implications for applying selective breeding for disease management.
Collapse
Affiliation(s)
- Dina A. Proestou
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Mary E. Sullivan
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Kathryn Markey Lundgren
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Tal Ben-Horin
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, United States
| | - Erin M. Witkop
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, United States
| | - Keegan M. Hart
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| |
Collapse
|
5
|
Witkop EM, Wikfors GH, Proestou DA, Lundgren KM, Sullivan M, Gomez-Chiarri M. Perkinsus marinus suppresses in vitro eastern oyster apoptosis via IAP-dependent and caspase-independent pathways involving TNFR, NF-kB, and oxidative pathway crosstalk. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104339. [PMID: 34998862 DOI: 10.1016/j.dci.2022.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The protozoan parasite Perkinsus marinus causes Dermo disease in eastern oysters, Crassostrea virginica, and can suppress apoptosis of infected hemocytes using incompletely understood mechanisms. This study challenged hemocytes in vitro with P. marinus for 1 h in the presence or absence of caspase inhibitor Z-VAD-FMK or Inhibitor of Apoptosis protein (IAP) inhibitor GDC-0152. Hemocytes exposure to P. marinus significantly reduced granulocyte apoptosis, and pre-incubation with Z-VAD-FMK did not affect P. marinus-induced apoptosis suppression. Hemocyte pre-incubation with GDC-0152 prior to P. marinus challenge further reduced apoptosis of granulocytes with engulfed parasite, but not mitochondrial permeabilization. This suggests P. marinus-induced apoptosis suppression may be caspase-independent, affect an IAP-involved pathway, and occur downstream of mitochondrial permeabilization. P. marinus challenge stimulated hemocyte differential expression of oxidation-reduction, TNFR, and NF-kB pathways. WGCNA analysis of P. marinus expression in response to hemocyte exposure revealed correlated protease, kinase, and hydrolase expression that could contribute to P. marinus-induced apoptosis suppression.
Collapse
Affiliation(s)
- Erin M Witkop
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, 120 Flagg Rd, Kingston, RI, USA
| | - Gary H Wikfors
- NOAA Northeast Fisheries Science Center Milford Laboratory, 212 Rogers Ave, Milford, CT, USA
| | - Dina A Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics Program, 120 Flagg Rd, Kingston, RI, USA
| | | | - Mary Sullivan
- USDA ARS NEA NCWMAC Shellfish Genetics Program, 120 Flagg Rd, Kingston, RI, USA
| | - Marta Gomez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, 120 Flagg Rd, Kingston, RI, USA.
| |
Collapse
|
6
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
7
|
Chan J, Wang L, Li L, Mu K, Bushek D, Xu Y, Guo X, Zhang G, Zhang L. Transcriptomic Response to Perkinsus marinus in Two Crassostrea Oysters Reveals Evolutionary Dynamics of Host-Parasite Interactions. Front Genet 2021; 12:795706. [PMID: 34925467 PMCID: PMC8678459 DOI: 10.3389/fgene.2021.795706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Infectious disease outbreaks are causing widespread declines of marine invertebrates including corals, sea stars, shrimps, and molluscs. Dermo is a lethal infectious disease of the eastern oyster Crassostrea virginica caused by the protist Perkinsus marinus. The Pacific oyster Crassostrea gigas is resistant to Dermo due to differences in the host-parasite interaction that is not well understood. We compared transcriptomic responses to P. marinus challenge in the two oysters at early and late infection stages. Dynamic and orchestrated regulation of large sets of innate immune response genes were observed in both species with remarkably similar patterns for most orthologs, although responses in C. virginica were stronger, suggesting strong or over-reacting immune response could be a cause of host mortality. Between the two species, several key immune response gene families differed in their expansion, sequence variation and/or transcriptional response to P. marinus, reflecting evolutionary divergence in host-parasite interaction. Of note, significant upregulation of inhibitors of apoptosis (IAPs) was observed in resistant C. gigas but not in susceptible C. virginica, suggesting upregulation of IAPs is an active defense mechanism, not a passive response orchestrated by P. marinus. Compared with C. gigas, C. virginica exhibited greater expansion of toll-like receptors (TLRs) and positive selection in P. marinus responsive TLRs. The C1q domain containing proteins (C1qDCs) with the galactose-binding lectin domain that is involved in P. marinus recognition, were only present and significantly upregulated in C. virginica. These results point to previously undescribed differences in host defense genes between the two oyster species that may account for the difference in susceptibility, providing an expanded portrait of the evolutionary dynamics of host-parasite interaction in lophotrochozoans that lack adaptive immunity. Our findings suggest that C. virginica and P. marinus have a history of coevolution and the recent outbreaks may be due to increased virulence of the parasite.
Collapse
Affiliation(s)
- Jiulin Chan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Kang Mu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - David Bushek
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
| | - Yue Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| |
Collapse
|
8
|
Sirovy KA, Johnson KM, Casas SM, La Peyre JF, Kelly MW. Lack of genotype-by-environment interaction suggests limited potential for evolutionary changes in plasticity in the eastern oyster, Crassostrea virginica. Mol Ecol 2021; 30:5721-5734. [PMID: 34462983 DOI: 10.1111/mec.16156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Eastern oysters in the northern Gulf of Mexico are facing rapid environmental changes and can respond to this change via plasticity or evolution. Plasticity can act as an immediate buffer against environmental change, but this buffering could impact the organism's ability to evolve in subsequent generations. While plasticity and evolution are not mutually exclusive, the relative contribution and interaction between them remains unclear. In this study, we investigate the roles of plastic and evolved responses to environmental variation and Perkinsus marinus infection in Crassostrea virginica by using a common garden experiment with 80 oysters from six families outplanted at two field sites naturally differing in salinity. We use growth data, P. marinus infection intensities, 3' RNA sequencing (TagSeq) and low-coverage whole-genome sequencing to identify the effect of genotype, environment and genotype-by-environment interaction on the oyster's response to site. As one of first studies to characterize the joint effects of genotype and environment on transcriptomic and morphological profiles in a natural setting, we demonstrate that C. virginica has a highly plastic response to environment and that this response is parallel among genotypes. We also find that genes responding to genotype have distinct and opposing profiles compared to genes responding to environment with regard to expression levels, Ka/Ks ratios and nucleotide diversity. Our findings suggest that C. virginica may be able to buffer the immediate impacts of future environmental changes by altering gene expression and physiology, but the lack of genetic variation in plasticity suggests limited capacity for evolved responses.
Collapse
Affiliation(s)
- Kyle A Sirovy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kevin M Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sandra M Casas
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Jerome F La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
9
|
Potts RWA, Gutierrez AP, Penaloza CS, Regan T, Bean TP, Houston RD. Potential of genomic technologies to improve disease resistance in molluscan aquaculture. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200168. [PMID: 33813884 PMCID: PMC8059958 DOI: 10.1098/rstb.2020.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Molluscan aquaculture is a major contributor to global seafood production, but is hampered by infectious disease outbreaks that can cause serious economic losses. Selective breeding has been widely used to improve disease resistance in major agricultural and aquaculture species, and has clear potential in molluscs, albeit its commercial application remains at a formative stage. Advances in genomic technologies, especially the development of cost-efficient genomic selection, have the potential to accelerate genetic improvement. However, tailored approaches are required owing to the distinctive reproductive and life cycle characteristics of molluscan species. Transgenesis and genome editing, in particular CRISPR/Cas systems, have been successfully trialled in molluscs and may further understanding and improvement of genetic resistance to disease through targeted changes to the host genome. Whole-organism genome editing is achievable on a much greater scale compared to other farmed species, making genome-wide CRISPR screening approaches plausible. This review discusses the current state and future potential of selective breeding, genomic tools and genome editing approaches to understand and improve host resistance to infectious disease in molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Robert W. A. Potts
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Alejandro P. Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Carolina S. Penaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|