1
|
Honghirun A, Thongdon-a R, Aeksiri N, Ratanasut K, Inyawilert W, Kaneko G, Khieokhajonkhet A. Effect of Vietnamese coriander Powder on Growth, Body Composition, Hematology, and Immune-Related Gene Expression in Nile Tilapia. Vet Med Int 2025; 2025:1253764. [PMID: 40224247 PMCID: PMC11986921 DOI: 10.1155/vmi/1253764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/28/2025] [Indexed: 04/15/2025] Open
Abstract
Dietary supplementation of plant herbs into aquafeed is recommended for intensive and sustainable aquaculture practices. This study has investigated the effect of Persicaria odorata (PO) leaf powder on growth, feed utilization, whole-body composition, hematology, and immune-related gene expression in Nile tilapia (Oreochromis niloticus). Fish (∼7.77 ± 0.01 g/fish) were randomly allocated into four treatment groups, each with three replicates. They were fed with dietary supplementation of PO at concentrations of 0, 15, 30, and 50 g/kg (termed PO0-PO50) for 10 weeks. Results indicated that the final body weight, weight gain, and specific growth rate were significantly higher at all PO supplementation levels compared to the control, with the highest value in the PO30 group. Similarly, the protein efficiency ratio and protein productive value in all PO groups were significantly higher than those of the control group. Red blood cells, white blood cells, and hemoglobin levels showed quadratic increases in the PO groups. In addition, total protein, globulin, and high-density lipoprotein cholesterol were linearly and quadratically increased with increasing PO levels, but alanine aminotransferase activity was linearly and quadratically decreased. Furthermore, dietary PO supplementation linearly decreased triglyceride and lipoprotein cholesterol levels, with the lowest levels found in the PO15 group. The expression of genes related to immunity showed that dietary supplementation of PO significantly increased the expression of proinflammatory factors (IL-1β and TNF-α), anti-inflammatory (IL-10 and TGF-β), and HSP70. In addition, glucose and cortisol levels decreased in all PO-supplemented groups, with the lowest levels found in the PO50 and PO30 groups, respectively. These findings showed that a dietary intervention with PO could improve growth, feed utilization, hematological parameters, upregulating genes related to immunity, and decreasing stress markers in Nile tilapia. Consequently, the utilization of PO at a dosage of 30 g/kg could contribute to the sustainable development of the aquaculture sector.
Collapse
Affiliation(s)
- Apisara Honghirun
- Department of Fisheries, Rajamangala University of Technology Lanna Phitsanulok, Phitsanulok, Thailand
| | - Rungrawee Thongdon-a
- Department of Fisheries, Rajamangala University of Technology Lanna Phitsanulok, Phitsanulok, Thailand
| | - Niran Aeksiri
- Center for Agriculture Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Kumrop Ratanasut
- Center for Agriculture Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Wilasinee Inyawilert
- Center for Agriculture Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, Texas, USA
| | | |
Collapse
|
2
|
Wu Z, Zhang Q, Wang X, Li A. Alterations and resilience of intestinal microbiota to increased water temperature are accompanied by the recovery of immune function in Nile tilapia. Sci Rep 2025; 15:5094. [PMID: 39934152 PMCID: PMC11814331 DOI: 10.1038/s41598-025-87980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
In the context of ongoing global warming, fish, as aquatic ectotherms, are highly vulnerable to increased water temperature caused by climate change and extreme heatwaves because of their inability to maintain their body temperature. After prolonged coevolution, the intestinal microbiota has become an integral part of fish and plays a pivotal role in immunity and metabolism. To date, however, little is known about the effects of increased water temperature on the intestinal microbiota of fish, particularly the intestinal mucosa-associated microbiota. Here, we investigated the variation patterns of the intestinal microbiota and immune status in Nile tilapia (Oreochromis niloticus; 125.02 ± 4.55 g) under increased water temperature. The results showed that the microbial diversity, structure, dominant microbes, and predicted function of fish intestinal microbiota were resilient to low-level warming (increasing by 2 °C) but not to high-level warming (increasing by 8 °C) and that fish immune parameters (serum lysozyme content and bactericidal activity) recovered simultaneously. Notably, along with compromised immune function, short-term warming (7 days) drove a significant increase in the microbial richness and diversity of fish intestinal mucosae, in which the overgrowth of opportunistic pathogens such as Romboutsia ilealis, Escherichia-Shigella, Fusobacterium, Streptococcus, Acinetobacter, and Enterobacter inhibited the colonization of potential probiotics such as Cetobacterium, ultimately resulting in a significant reduction in metabolic pathways and a significant increase in the potentially pathogenic phenotype. After long-term warming (37 days), the above alterations disappeared in low-level warming but remained in high-level warming. Critically, long-term warming disrupted the network complexity and stability of the intestinal mucosa- and digesta-associated microbiota to different extents. Collectively, this study revealed that the alterations and resilience of intestinal microbiota to increased water temperature coincided with the recovery of immune function in fish. Our findings extend the understanding of how the intestinal microbiota in aquatic ectotherms respond to increased water temperature, providing important implications for harnessing the potential benefits of host-associated microorganisms to enhance their resilience to climate change.
Collapse
Affiliation(s)
- Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiehao Wang
- Icongene (Wuhan) Gene Technology Co., Ltd, Wuhan, 430074, China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Okon EM, Oyesiji AA, Okeleye ED, Kanonuhwa M, Khalifa NE, Eissa ESH, Mathew RT, Eissa MEH, Alqahtani MA, Abdelnour SA. The Escalating threat of climate change-driven diseases in fish: Evidence from a global perspective - A literature review. ENVIRONMENTAL RESEARCH 2024; 263:120184. [PMID: 39426450 DOI: 10.1016/j.envres.2024.120184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Climate change has brought significant alterations to the aquatic environment, leading to the rapid spread of infectious fish diseases with increasing water temperatures. It is crucial to understand how aquatic pathogens will impact fish in the context of climate change. This study aimed to assess the effects of climate change on fish diseases globally. Data from 104 papers published between 2003 and 2022 were analyzed to identify recent trends in the field. The majority of the studies (54%) focused on parasites, particularly proliferative kidney disease, while 22% examined bacteria. The United States accounted for 19% of the studies, followed by Canada at 14%, covering a wide range of fish species. More research was published on farmed fish (54%) than wild fish (30%), with a higher emphasis on freshwater species (62%) compared to marine species (34%). Most published studies (64%) focused on the local environment rather than the farm level (7%). The findings highlight temperature as a significant threat to global aquaculture and fisheries, impacting the progression of fish diseases. These impacts could be exacerbated by factors such as pH, salinity, and ocean acidification, posing challenges to fish health. Therefore, there is a pressing need for enhanced research and management strategies to address these issues effectively in the future.
Collapse
Affiliation(s)
- Ekemini Moses Okon
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, Spain
| | - Adeola Ayotope Oyesiji
- Faculty of Sciences, Ghent University, Ghent, Belgium; Department of Biological Sciences, Fisheries Ecology and Aquaculture, Universitetet I Bergen, Norway
| | - Ezekiel Damilola Okeleye
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Aquaculture and Fisheries Group, Wageningen University, Netherlands
| | - Mercy Kanonuhwa
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Aquaculture and Fisheries Group, Wageningen University, Netherlands
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Fuka, Matrouh, 51744, Egypt
| | - El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, Egypt.
| | - Roshmon Thomas Mathew
- Fish Resources Research Center, King Faisal University, Hofuf-420, Al-Ahsa, 31982, Saudi Arabia
| | - Moaheda E H Eissa
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Mohammed A Alqahtani
- Department of Biology, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Xu FF, Deng ZY, Sheng JJ, Zhu B. The HSP70 and IL-1β of Nile tilapia as molecular adjuvants can enhance the immune protection of DNA vaccine against Streptococcus agalactiae infection. JOURNAL OF FISH DISEASES 2024; 47:e14002. [PMID: 39075840 DOI: 10.1111/jfd.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Globally, streptococcal disease caused by Streptococcus agalactiae is known for its high mortality rate, which severely limits the development of the tilapia breeding industry. As a third-generation vaccine, DNA vaccines have shown great application prospects in the prevention and control of aquatic diseases, but their low immunogenicity limits their development. The combination of DNA vaccines and molecular adjuvants proved to be an effective method for inducing protective immunity. This study constructed recombinant plasmids encoding tilapia HSP70 and IL-1β genes (pcHSP70 and pcIL-1β) to verify their effectiveness as molecular adjuvants for S. agalactiae DNA vaccine (pcSIP) in the immunized tilapia model. The results revealed that serum-specific IgM production, enzyme activities, and immune-related gene expression in tilapia immunized with pcSIP plus pcHSP70 or pcIL-1β were significantly higher than those in tilapia immunized with pcSIP alone. It is worth noting that combination with molecular adjuvants improved the immune protection of DNA vaccines, with a relative percentage survival (RPS) of 51.72% (pcSIP plus pcHSP70) and 44.83% (pcSIP plus pcIL-1β), respectively, compared with that of pcSIP alone (24.14%). Thus, our study indicated that HSP70 and IL-1β in tilapia are promising molecular adjuvants of the DNA vaccine in controlling S. agalactiae infection.
Collapse
Affiliation(s)
- Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhu-Yang Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun-Jie Sheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Hu T, Wang Y, Wang Y, Cui H, Zhang J, Chen H, Wu B, Hao S, Chu CC, Wu Y, Zeng W. Production and evaluation of three kinds of vaccines against largemouth bass virus, and DNA vaccines show great application prospects. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109841. [PMID: 39173984 DOI: 10.1016/j.fsi.2024.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Largemouth bass virus (LMBV) infections has resulted in high mortality and economic losses to the global largemouth bass industry and has seriously restricted the healthy development of the bass aquaculture industry. There are currently no antiviral therapies available for the control of this disease. In this study, we developed three types of vaccine against LMBV; whole virus inactivated vaccine (I), a subunit vaccine composed of the major viral capsid protein MCP (S) as well as an MCP DNA vaccine(D), These were employed using differing immunization and booster strategies spaced 2 weeks apart as follows: II, SS, DD and DS. We found that all vaccine groups induced humoral and cellular immune responses and protected largemouth bass from a lethal LMBV challenge to varying degrees and DD produced the best overall effect. Specifically, the levels of specific IgM in serum in all immunized groups were elevated and significantly higher than those in the control group. Moreover, the expression of humoral immunity (CD4 and IgM) and cellular immunity (MHCI-α) as well as cytokines (IL-1β) was increased, and the activity of immunity-related enzymes ACP, AKP, LZM, and T-SOD in the serum was significantly enhanced. In addition, the relative percent survival of fish following an LMBV lethal challenge 4 weeks after the initial immunizations were high for each group: DD(89.5 %),DS(63.2 %),SS(50 %) and II (44.7 %). These results indicated that the MCP DNA vaccine is the most suitable and promising vaccine candidate for the effective control of LMBV disease.
Collapse
Affiliation(s)
- Tianmei Hu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yaoda Wang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yuhui Wang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Hongye Cui
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Jiping Zhang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Haiyue Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Baozhou Wu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Shuguang Hao
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Chien Chi Chu
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China
| | - Yali Wu
- Foshan Institute of Agricultural Sciences, Foshan, 528145, Guangdong, PR China
| | - Weiwei Zeng
- School of Life Science and Engineering, Foshan University, Foshan, 528225, PR China.
| |
Collapse
|
6
|
Xu Z, Zhang M, Zhang T, Cui H, Li H, Wang X, Zhao X, Chen X, Cheng H, Xu J, Ding Z. Immunoprotective efficacy evaluation of OmpTS subunit vaccine against Aeromonas hydrophila infection in Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109665. [PMID: 38830521 DOI: 10.1016/j.fsi.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Bacterial septicemia in freshwater fish is mainly caused by Aeromonas hydrophila infection, which affects the development of aquaculture industry. In the context of sustainable aquaculture, subunit vaccines are of great values because they play positive roles in reducing the overuse of antibiotics and protecting aquatic animals against bacterial infection. In this study, the recombinant outer membrane protein OmpTS of A. hydrophila were used as subunit vaccine to immunize Megalobrama amblycephala, and its immunoprotective effect and host immune responses were evaluated. The survival rates of the vaccinated groups after bacterial infection were significantly higher than that of the control group, especially of the OmpTS high-dose vaccinated group. The better protective effects of vaccinated groups might be attributed to the increased levels of serum IgM-specific antibody titer, the reduced relative abundance of A. hydrophila in various tissues, the increased number of immune-positive cells with different epitopes, the up-regulated expression levels of immune-related genes, and the enhanced activities of antibacterial enzymes. In conclusion, OmpTS subunit vaccine could strongly induce host immune responses in M. amblycephala, thereby enhancing both cellular and humoral immunity, which exhibited excellent and effective immunoprotective efficacy.
Collapse
Affiliation(s)
- Zehua Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ting Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hujun Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hongping Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
7
|
Cao Y, Liu J, Liu G, Du H, Liu T, Liu T, Li P, Yu Q, Wang G, Wang E. A nanocarrier immersion vaccine encoding surface immunogenic protein confers cross-immunoprotection against Streptococcus agalactiae and Streptococcus iniae infection in tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109267. [PMID: 38043875 DOI: 10.1016/j.fsi.2023.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Streptococcosis is a highly contagious aquatic bacterial disease that poses a significant threat to tilapia. Vaccination is a well-known effective measure to prevent and control fish bacterial diseases. Among the various immunization methods, immersion vaccination is simple and can be widely used in aquaculture. Besides, nanocarrier delivery technology has been reported as an effective solution to improve the immune effect of immersion vaccine. In this study, the surface immunogenic protein (Sip) was proved to be conserved and potential to provide cross-immunoprotection for both Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae) by multiple sequences alignment and Western blotting analysis. On this basis, we expressed and obtained the recombinant protein rSip and connected it with functionalized carbon nanotubes (CNT) to construct the nanocarrier vaccine system CNT-rSip. After immersion immunization, the immune effect of CNT-rSip against above two streptococcus infections was evaluated in tilapia based on some aspects including the serum specific antibody level, non-specific enzyme activities, immune-related genes expression and relative percent survival (RPS) after bacteria challenge. The results showed that compared with control group, CNT-rSip significantly (P < 0.05) increased the serum antibody levels, related enzyme activities including acid phosphatase, alkaline phosphatase, lysozyme and total antioxidant capacity activities, as well as the expression levels of immune-related genes from 2 to 4 weeks post immunization (wpi), and all these indexes peaked at 3 wpi. Besides, the above indexes of CNT-rSip were higher than those of rSip group with different extend during the experiment. Furthermore, the challenge test indicated that CNT-rSip provided cross-immunoprotection against S. agalactiae and S. iniae infection with RPS of 75 % and 72.41 %, respectively, which were much higher than those of other groups. Our study indicated that the nanocarrier immersion vaccine CNT-rSip could significantly improve the antibody titer and confer cross-immuneprotection against S. agalactiae and S. iniae infection in tilapia.
Collapse
Affiliation(s)
- Ye Cao
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoyang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Du
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqiang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China.
| | - Gaoxue Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Erlong Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Liu J, Liu G, Cao Y, Du H, Liu T, Liu M, Li P, He Y, Wang G, Yu Q, Wang E. BNC-rSS, a bivalent subunit nanovaccine affords the cross-protection against Streptococcus agalactiae and Streptococcus iniae infection in tilapia. Int J Biol Macromol 2023; 253:126670. [PMID: 37660857 DOI: 10.1016/j.ijbiomac.2023.126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Streptococcal disease has severely restricted the development of global tilapia industry, which is mainly caused by Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae). Vaccination has been proved to be a potential strategy to control it. In this study, a multi-epitope subunit vaccine Sip-Srr (SS) was prepared based on the B-cell antigenic epitopes prediction and multiple sequence alignment analysis of Sip and Srr sequences. Furthermore, the BNC-rSS nanocarrier vaccine system was constructed by connecting the rSS protein with modified bacterial nanocellulose (BNCs) and characterized by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope, the immersion immune effect against S. agalactiae and S. iniae infection was evaluated. The results showed that compared with the control group, BNC-rSS significantly enhanced serum antibody production, related enzyme activities and immune-related genes expression. It was noteworthy that BNC-rSS vaccine improved immune protection of tilapia, with survival rates of 66.67 % (S. agalactiae) and 60.00 % (S. iniae), respectively, compared with those of rSS vaccine (30 % and 33.33 %, respectively). Our study indicated that the BNC-rSS nanovaccine could elicit robust immune responses in tilapia by immersion immunization, and had the potential to offer cross-protection against S. agalactiae and S. iniae infection in tilapia.
Collapse
Affiliation(s)
- Jia Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoyang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Cao
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Du
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqiang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan 641000, China
| | - Gaoxue Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China.
| | - Erlong Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Awate S, Mubarka S, Huber RG. Whole Genomic Characterization of Streptococcus iniae Isolates from Barramundi ( Lates calcarifer) and Preliminary Evidence of Cross-Protective Immunization. Vaccines (Basel) 2023; 11:1443. [PMID: 37766120 PMCID: PMC10537698 DOI: 10.3390/vaccines11091443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Lates calcarifer, also known as Barramundi or Asian seabass, is a highly productive and fast-growing species that is well suited to large-scale aquaculture due to its attractive harvestable yields (premium fish). This fish has been envisioned as having the potential to be the "Salmon of Tropics". Cultivating Lates calcarifer in aquaculture poses challenges, as the dense populations that make such aquaculture commercially viable facilitate the rapid spread of infectious diseases, which in turn significantly impact yield. Hence, the immunization of juveniles is necessary, and the development of new immunization agents enhances the efficiency of aquaculture and improves food security. In our study, we characterize seven novel strains of the bacterial pathogen Streptococcus iniae that were collected from commercial fish farms in Singapore and Australia. We find that the capsular operon in our strains is highly conserved and identify a number of major surface antigens previously described in Streptococcus. A genome analysis indicates that the present strains are closely related but form distinct strains within the S. iniae species. We then proceed to demonstrate that inoculation with the inactivated strain P3SAB cross-protects Lates calcarifer against S. iniae infections in vivo from a variety of strains found in both Singapore and Australia.
Collapse
Affiliation(s)
- Sunita Awate
- UVAXX Pte Ltd., 203 Henderson Industrial Road, #12-01, Singapore 159546, Singapore;
| | - Salma Mubarka
- UVAXX Pte Ltd., 203 Henderson Industrial Road, #12-01, Singapore 159546, Singapore;
| | - Roland G. Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix #07-01, 30 Biopolis Street, Singapore 138671, Singapore
| |
Collapse
|
10
|
Cao Y, Liu J, Liu G, Du H, Liu T, Wang G, Wang Q, Zhou Y, Wang E. Exploring the Immunoprotective Potential of a Nanocarrier Immersion Vaccine Encoding Sip against Streptococcus Infection in Tilapia ( Oreochromis niloticus). Vaccines (Basel) 2023; 11:1262. [PMID: 37515077 PMCID: PMC10383804 DOI: 10.3390/vaccines11071262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Tilapia, as one of the fish widely cultured around the world, is suffering severe impact from the streptococcus disease with the deterioration of the breeding environment and the increasing of breeding density, which brings serious economic loss to tilapia farming. In this study, the surface immunogenic protein (Sip) of Streptococcus agalactiae (S. agalactiae) was selected as the potential candidate antigen and connected with bacterial nano cellulose (BNC) to construct the nanocarrier subunit vaccine (BNC-rSip), and the immersion immune effects against S. agalactiae and Streptococcus iniae (S. iniae) in Nile tilapia were evaluated on the basis of the serum antibody level, non-specific enzyme activity, the immune-related gene expression and relative percent survival (RPS). The results indicated that Sip possessed the expected immunogenicity according to the immunoinformatic analysis. Compared with the rSip group, BNC-rSip significantly induced serum antibody production and improved the innate immunity level of tilapia. After challenge, the RPS of BNC-rSip groups were 78.95% (S. agalactiae) and 67.86% (S. iniae), which were both higher than those of rSip groups,31.58% (S. agalactiae) and 35.71% (S. iniae), respectively. Our study indicated that BNC-rSip can induce protective immunity for tilapia through immersion immunization and may be an ideal candidate vaccine for controlling tilapia streptococcal disease.
Collapse
Affiliation(s)
- Ye Cao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jia Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gaoyang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Du
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tianqiang Liu
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gaoxue Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ya Zhou
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Erlong Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
11
|
Wangkahart E, Thongsrisuk A, Vialle R, Pholchamat S, Sunthamala P, Phudkliang J, Srisapoome P, Wang T, Secombes CJ. Comparative study of the effects of Montanide™ ISA 763A VG and ISA 763B VG adjuvants on the immune response against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108563. [PMID: 36717067 DOI: 10.1016/j.fsi.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Streptococcus agalactiae is regarded as a major bacterial pathogen of farmed fish, with outbreaks in Nile tilapia causing significant losses. Vaccination is considered the most suitable method for disease control in aquaculture, with the potential to prevent such outbreaks if highly efficacious vaccines are available for use. Several vaccines have been produced to protect against S. agalactiae infection in tilapia, including inactivated vaccines, live attenuated vaccines, and subunit vaccines, with variable levels of protection seen. Two commercial adjuvants, Montanide™ ISA 763A VG and ISA 763B VG, have been developed recently and designed to improve the safety and efficacy of oil-based emulsions delivered by intraperitoneal injection. In particular, their mode of action may help identify and stimulate particular immunological pathways linked to the intended protective response, which is an important tool for future vaccine development. Therefore, this study aimed to characterize the potential of two adjuvanted-bacterial vaccines against S. agalactiae (SAIV) comparatively, to determine their usefulness for improving protection and to analyse the immune mechanisms involved. Nile tilapia were divided into four groups: 1) fish injected with PBS as a control, 2) fish injected with the SAIV alone, 3) fish injected with the SAIV + Montanide™ ISA 763A VG, and 4) fish injected with the SAIV + Montanide™ ISA 763B VG. Following immunization selected innate immune parameters were analysed, including serum lysozyme, myeloperoxidase, and bactericidal activity, with significantly increased levels seen after immunization. Cytokines associated with innate and adaptive immunity were also studied, with expression levels of several genes showing significant up-regulation, indicating good induction of cell-mediated immune responses. Additionally, the specific IgM antibody response against S. agalactiae was determined and found to be significantly induced post-vaccination, with higher levels seen in the presence of the adjuvants. In comparison to the protection seen with the unadjuvanted vaccine (61.29% RPS), both Montanide™ ISA 763A VG and Montanide™ ISA 763B VG improved the RPS, to 77.42% and 74.19% respectively. In conclusion, Montanide™ ISA 763A VG and Montanide™ ISA 763B VG have shown potential for use as adjuvants for fish vaccines against streptococcosis, as evidenced by the enhanced immunoprotection seen when given in combination with the SAIV vaccine employed in this study.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| | - Areerat Thongsrisuk
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Regis Vialle
- SEPPIC, Paris La Défense, 50 Boulevard National, CS 90020, 92257, La Garenne Colombes Cedex, France
| | - Sirinya Pholchamat
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Phitcharat Sunthamala
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Janjira Phudkliang
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Jatujak, Bangkok, 10900, Thailand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
12
|
Irshath AA, Rajan AP, Vimal S, Prabhakaran VS, Ganesan R. Bacterial Pathogenesis in Various Fish Diseases: Recent Advances and Specific Challenges in Vaccine Development. Vaccines (Basel) 2023; 11:vaccines11020470. [PMID: 36851346 PMCID: PMC9968037 DOI: 10.3390/vaccines11020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Aquaculture is a fast-growing food sector but is plagued by a plethora of bacterial pathogens that infect fish. The rearing of fish at high population densities in aquaculture facilities makes them highly susceptible to disease outbreaks, which can cause significant economic loss. Thus, immunity development in fish through vaccination against various pathogens of economically important aquaculture species has been extensively studied and has been largely accepted as a reliable method for preventing infections. Vaccination studies in aquaculture systems are strategically associated with the economically and environmentally sustainable management of aquaculture production worldwide. Historically, most licensed fish vaccines have been developed as inactivated pathogens combined with adjuvants and provided via immersion or injection. In comparison, live vaccines can simulate a whole pathogenic illness and elicit a strong immune response, making them better suited for oral or immersion-based therapy methods to control diseases. Advanced approaches in vaccine development involve targeting specific pathogenic components, including the use of recombinant genes and proteins. Vaccines produced using these techniques, some of which are currently commercially available, appear to elicit and promote higher levels of immunity than conventional fish vaccines. These technological advancements are promising for developing sustainable production processes for commercially important aquatic species. In this review, we explore the multitude of studies on fish bacterial pathogens undertaken in the last decade as well as the recent advances in vaccine development for aquaculture.
Collapse
Affiliation(s)
- Aadil Ahmed Irshath
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Anand Prem Rajan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
- Correspondence: (A.P.R.); (R.G.)
| | - Sugumar Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 600 077, Tamilnadu, India
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamilnadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
- Correspondence: (A.P.R.); (R.G.)
| |
Collapse
|
13
|
Immune Activation Following Vaccination of Streptococcus iniae Bacterin in Asian Seabass ( Lates calcarifer, Bloch 1790). Vaccines (Basel) 2023; 11:vaccines11020351. [PMID: 36851232 PMCID: PMC9963699 DOI: 10.3390/vaccines11020351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Juvenile Asian seabass (Lates calcarifer) (body weight 10 ± 0.7 g) were intraperitoneally injected with 1012 CFU fish-1 of formalin-killed Streptococcus iniae. The protective efficacy of the vaccine on survival and infection rate was assessed upon challenge at 4, 8, 12, 20, and 28 weeks post-vaccination. The results revealed that the challenged vaccinated fish showed no mortality at all time points, and the control fish presented 10-43.33% mortality. The infection rate at 2 weeks post-challenge was 0-13.33% in the vaccinated fish and 30-82.35% in the control group. At 8 weeks post-vaccination, the vaccinated fish showed comparable ELISA antibody levels with the control; however, the antibody levels of the vaccinated fish increased significantly after the challenge (p < 0.05), suggesting the presence of an adaptive response. Innate immune genes, including MHC I, MHC II, IL-1β, IL-4/13B, and IL-10, were significantly upregulated at 12 h post-challenge in the vaccinated fish but not in the control. In summary, vaccination with S. iniae bacterin provided substantial protection by stimulating the innate and specific immune responses of Asian seabass against S. iniae infection.
Collapse
|
14
|
Rizkiantino R, Pasaribu FH, Soejoedono RD, Arnafia W, Reisinta D, Yadiansyah RI, Halalludin B, Ardini Y, Khanaria G, Wibawan IWT. Chicken Enterococcus faecalis-induced immunoglobulin Y as a prophylactic and therapeutic agent against streptococcosis in red tilapia ( Oreochromis hybrid). Vet World 2023; 16:175-186. [PMID: 36855368 PMCID: PMC9967709 DOI: 10.14202/vetworld.2023.175-186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/30/2023] Open
Abstract
Background and Aim Streptococcosis is a common bacterial disease in red tilapia, in which Enterococcus faecalis infection has not been widely reported. This study aimed to evaluate the efficacy of pellets that contain chicken E. faecalis-induced immunoglobulin Y (IgY) to treat and prevent streptococcosis in red tilapia. Materials and Methods We conducted a 28-day study for immunoprophylaxis and immunotherapy, each using four groups with two replications: Healthy control fish (KS), non-IgY pellets (PA and TA), pellets with 25% egg yolk containing E. faecalis-induced IgY (PB and TB), and pellets with 50% egg yolk containing E. faecalis-induced IgY(PC and TC). Indirect enzyme-linked immunosorbent assay was performed on prototype pellets produced with an IgY suspension at 1.63 mg/mL as the standard optical density curve. For the immunoprophylaxis study, pellets of 3% of the average body weight of the experimental fish (0.50 g per fish per day) were given daily until day 14 before the challenge test with E. faecalis (2.1 × 109 Colony-forming unit/mL peroral) on day 15. The data from the observation period on days 15-28 were analyzed. For the immunotherapy study, pellets of 3% of the average body weight (0.50 g per fish per day) were given daily for 21 days (days 8-28) 7 day spost-infection. The data from the immunotherapy study were collected during the observation period on days 8-28. Statistical analysis was performed on non-specific immune variables: Total leukocytes, monocytes, lymphocytes, neutrophils, phagocytic activity, and macrophage capacity; and the semi-quantitative distribution of melanomacrophage centers (MMCs) in the lymphoid organs, such as spleen and liver. Photomacrographic data were analyzed descriptively and qualitatively by comparing the healing process and clinical signs found between experiments in the immunotherapy study. Results The pellet with 50% egg yolk with an IgY at 2.43 mg/g pellet, 3% of body weight once daily, was the best formula on experimental fish. The administration of this formulation can also increase non-specific immunity and the distribution of MMCs in the spleen and liver with a survival rate of 55% for 14 days of challenge period in the immunoprophylaxis study and 70% for 21 days of therapy period in the immunotherapy study. Conclusion Immunoglobulin Y can be a prophylactic and therapeutic agent against streptococcal infections caused E. faecalis in red tilapia with an optimum dosage of 2.43 mg/g pellet.
Collapse
Affiliation(s)
- Rifky Rizkiantino
- Division of Medical Microbiology, Department of Infectious Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia,Department of Central Laboratory, Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Indonesia
| | - Fachriyan Hasmi Pasaribu
- Division of Medical Microbiology, Department of Infectious Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Retno Damajanti Soejoedono
- Division of Medical Microbiology, Department of Infectious Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Wyanda Arnafia
- Division of Research and Development, Tekad Mandiri Citra Co., Bandung, Indonesia
| | - Dinda Reisinta
- Division of Research and Development, Tekad Mandiri Citra Co., Bandung, Indonesia
| | - Rifaldi Iqbal Yadiansyah
- Undergraduate Program of Applied Biology, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, Indonesia
| | - Beni Halalludin
- Department of Central Laboratory, Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Indonesia
| | - Yunita Ardini
- Department of Central Laboratory, Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Indonesia
| | - Granita Khanaria
- Department of Central Laboratory, Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Indonesia
| | - I Wayan Teguh Wibawan
- Division of Medical Microbiology, Department of Infectious Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia,Corresponding author: I Wayan Teguh Wibawan, e-mail: Co-authors: RR: , FHP: , RDS: , WA: , DR: , RIY: , BH: , YA: , GK:
| |
Collapse
|
15
|
Effect of an Oral Bivalent Vaccine on Immune Response and Immune Gene Profiling in Vaccinated Red Tilapia ( Oreochromis spp.) during Infections with Streptococcus iniae and Aeromonas hydrophila. BIOLOGY 2022; 11:biology11091268. [PMID: 36138746 PMCID: PMC9495387 DOI: 10.3390/biology11091268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 02/02/2023]
Abstract
Streptococcosis and aeromonasis inflicted by Streptococcus iniae and Aeromonas hydrophila, respectively, have affected tilapia industries worldwide. In this study, we investigated antibody responses and explored the mechanisms of protection rendered by an oral bivalent vaccine in red tilapia following challenges with S. iniae and A. hydrophila. The results of specific IgM antibody response revealed that the IgM titers against S. iniae and A. hydrophila in the bivalent incorporated (BI) vaccine group were significantly higher (p < 0.05) than those in the bivalent spray (BS) vaccine fish and unvaccinated control fish throughout the experiment. Real-time qPCR results also showed that the gene expression of CD4, MHC-I, MHC-II, IgT, C-type lysozyme, IL-1β, TNF-α, and TGF-β remained significantly higher (p < 0.05) than that of the controls between 24 and 72 h post-infection (hpi) in both mucosal (hindgut) and systemic (spleen and head−kidney) organs of BI vaccinated fish. Furthermore, the highest relative expression of the TGF-β, C-type lysozyme, and IgT genes in the BI vaccinated group was observed in the challenged fish’s spleen (8.8-fold), head kidney (4.4-fold), and hindgut (19.7-fold) tissues, respectively. The present study suggests that the bivalent incorporated (BI) vaccine could effectively improve the immune function and activate both humoral and cell-mediated immunities in vaccinated red tilapia following the bacterial challenges.
Collapse
|
16
|
Association between influenza vaccination and mortality due to COVID-19. VACUNAS (ENGLISH EDITION) 2022. [PMCID: PMC9247262 DOI: 10.1016/j.vacune.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background It has recently been suggested that influenza vaccination may be a factor associated with decreased COVID-19 mortality. Methods An age-matched case–control study based on hospital cases. We included subjects aged 18 years and older with a diagnosis of moderate to severe COVID-19. Infection was corroborated by RT-PCR test for SARS-COV-2. Deceased subjects were considered cases, controls were patients discharged due to improvement of acute symptoms. We used bivariate analysis to determine factors associated with death from COVID-19, and calculated odds ratios and 95% confidence intervals. Results A total of 560 patients were included in the study, 214 (38.2%) were considered cases and 346 (61.7%) controls. A significant difference was observed with the presence of type 2 diabetes mellitus [54% vs. 39.3% between cases and controls, respectively (P = 0.04)] and having received influenza vaccination (P = 0.02). Type 2 diabetes mellitus was associated with higher COVID-19 mortality [OR 1.8 (95% CI 1.2–2.5) P = 0.01], whereas having been immunised against influenza in 2019 was associated with lower mortality in this group of patients [OR 0.6 (95% CI 0.4–0.9) P = 0.02]. Conclusions Influenza vaccination in the previous year appears to be associated with lower mortality from COVID-19; whereas type 2 diabetes mellitus is confirmed as a condition associated with higher mortality.
Collapse
|
17
|
Arce-Salinas CA, Esquivel-Torruco YN, Bejarano-Juvera AA, Bustamante-Flores AK, Aguilar-Martínez N, Azcorra-López JG, Cabañas-Espinosa B, Luna-Rivera EM, Hernández-Alarcón A, Reyna Figueroa J. Asociación entre la vacunación contra influenza y la mortalidad por COVID-19. VACUNAS 2022; 23:113-118. [PMID: 34751213 PMCID: PMC8566694 DOI: 10.1016/j.vacun.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Affiliation(s)
- C A Arce-Salinas
- Servicio de Medicina Interna, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - Y N Esquivel-Torruco
- Servicio de Pediatría, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - A A Bejarano-Juvera
- Servicio de Pediatría, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - A K Bustamante-Flores
- Servicio de Pediatría, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - N Aguilar-Martínez
- Servicio de Pediatría, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - J G Azcorra-López
- Servicio de Pediatría, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - B Cabañas-Espinosa
- Servicio de Pediatría, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - E M Luna-Rivera
- Departamento de Enseñanza e Investigación, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - A Hernández-Alarcón
- Servicio de Consulta Externa, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| | - J Reyna Figueroa
- Departamento de Enseñanza e Investigación, Hospital Central Sur Petróleos Mexicanos, Ciudad de México, México
| |
Collapse
|
18
|
Monir MS, Yusoff MSM, Zulperi ZM, Hassim HA, Zamri-Saad M, Amal MNA, Salleh A, Mohamad A, Yie LJ, Ina-Salwany MY. Immuno-protective efficiency of feed-based whole-cell inactivated bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus). FISH & SHELLFISH IMMUNOLOGY 2021; 113:162-175. [PMID: 33857622 DOI: 10.1016/j.fsi.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Streptococcosis and motile aeromonad septicemia (MAS) are well-known diseases in tilapia culture, which cause mass mortality with significant economic losses. The development of feed-based bivalent vaccines in controlling these diseases has been initiated, however, the mechanisms of immunities and cross-protection in fish remain unclear. This study was conducted to assess the immuno-protective as well as the cross-protective efficacy of a newly developed feed-based bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia. A total of five groups of fish were vaccinated orally through two different techniques; bivalent vaccine (inactivated Streptococcus iniae and Aeromonas hydrophila) sprayed on feed pellets (BS group); bivalent vaccine (inactivated S. iniae and A. hydrophila) incorporated in feed (BI group); monovalent inactivated S. iniae and A. hydrophila vaccine separately incorporated into feed as monovalent S. iniae (MS group) and monovalent A. hydrophila (MA group); and control group (without vaccine). The feed-based vaccine was delivered orally at 5% of body weight for five consecutive days. The booster doses were given in the same manner on weeks 2 and 6. Serum and skin mucus samples were collected to assess the IgM responses using indirect ELISA. The first administration of the feed-based vaccine stimulated the IgM levels that lasted until week 3, while the second booster ensured that the IgM levels remained high for a period of 16 weeks in the BI, MS and MA groups. The BI group developed a strong and significantly (P < 0.05) higher systemic and mucosal IgM responses against both S. iniae and A. hydrophila and also cross-protective antigen S. agalactiae and A. veronii compared to the BS and control groups. Quantitative real-time PCR results also showed that the relative expressions of IL-8, INF-γ and IgM in the BI immunized fish spleen, head kidney and hindgut exhibited various significant (P < 0.05) rising trends following both the vaccination and the challenge phase. On weeks 10, all fish were challenged through the intraperitoneal route, where relative percent survivals (RPS) of 82.22 ± 3.85% when challenged with S. iniae, 77.78 ± 3.85% when challenged with A. hydrophila and 77.78 ± 3.85% when co-challenged with both S. iniae and A. hydrophila were observed in the BI group, which were significantly higher (P < 0.05) compared to the other groups. The BI group also showed significantly (P < 0.05) higher partial cross-protections following challenges with S. agalactiae (RPS at 60.00 ± 6.67%) and A. veronii (RPS at 57.78 ± 7.70%). This study demonstrated that immunization with feed-based BI vaccine elicited immune responses that were capable of protecting red hybrid tilapia against streptococcosis and MAS.
Collapse
Affiliation(s)
- Md Shirajum Monir
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Md Sabri Mohd Yusoff
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Zarirah Mohamed Zulperi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Zamri-Saad
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohammad Noor Azmai Amal
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Annas Salleh
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Aslah Mohamad
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Lee Jing Yie
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Md Yasin Ina-Salwany
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Ye T, Mu C, Chen J, Pan G, Wang X. The role of UhpA in regulating the virulence gene expression in Edwardsiella piscicida. JOURNAL OF FISH DISEASES 2021; 44:585-590. [PMID: 33245815 DOI: 10.1111/jfd.13298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella piscicida (E. piscicida) is an important fish pathogen. However, the mechanism of Glu6P transport regulatory protein UhpA how to affect the virulence gene expression in E. piscicida is still unclear. The results in this study showed that the metabolism-related gene expression of cysteine synthase (orf 1134) and sulphate transporter (ychM) in the uhpA mutant strain ΔuhpA was 0.76-fold and 0.68-fold lower than the ones in the wild strains (p < .05). The gene expression of ethA and ethB in the ΔuhpA strain was 0.80-fold and 0.72-fold lower than the ones in the wild strains (p < .05). However, the gene expression of fliC and flgN in the ΔuhpA was 1.51-fold and 1.21-fold higher than the ones in the wild strains (p < .05). The gene expression of T3SS (esrB and esrC) and T6SS (evpB and evpC) in the ΔuhpA was 1.27-fold, 1.13-fold, 1.28-fold and 1.23-fold higher than the ones in the wild strains (p < .05). This suggested that the uhpA gene could regulate the key virulence gene expression, and the uhpA gene was associated with the pathogenicity of E. piscicida in fish.
Collapse
Affiliation(s)
- Tingqi Ye
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Cuimin Mu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Jiakang Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Guangchen Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
20
|
Chen J, Mu C, Ye T, Sun Y, Luo Q, Wang X. The UhpA mutant of Edwardsiella piscicida enhanced its motility and the colonization in the intestine of tilapia. FISH & SHELLFISH IMMUNOLOGY 2020; 104:587-591. [PMID: 32470511 DOI: 10.1016/j.fsi.2020.05.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella piscicida (E. piscicida) is a significant bacterial pathogen of cultured fish, which infected fish meanly through the intestine. Glucose 6-phosphate (Glu6P) in the intestine is nutritious to the pathogen, Meanwhile, Glu6P was found using as a virulent regulating signal for bacteria. The UhpA, one of the Glu6P transport system regulatory proteins could down-regulate the uhpC/uhpB/uhpA system and decrease its pathogenicity. However, the motility and the colonization of E. piscicida affected by UhpA were still unclear. In this study, the motility and the colonization of E. piscicida were monitored. The result demonstrated that the motility of EIB202 was significantly stronger than that of in ΔuhpA according to fractions 4, 8 and 9. However, the motility of ΔuhpA was significantly stronger than that of EIB202 according to the total number at the whole experiment. Although, there was no difference in the number of bacteria in the posterior intestine of tilapia after infected with E. piscicida EIB202 and ΔuhpA. The number of bacteria in the anterior and the middle intestine of fish infected with ΔuhpA were significantly higher than that of in fish infected with EIB202 at the whole experiment (P < 0.05). Interestingly, both E. piscicida strains colonized in the anterior intestine than that of in the middle and posterior intestines of tilapia. Besides, the gene expression of IL-1β and TNF-α in the head-kidney of fish infected with ΔuhpA showed significantly higher (p < 0.05) than fish infected with EIB202 during the whole experimental period. Most importantly, the survival rate of E. piscicida EIB202 and ΔuhpA were 57% and 37% respectively. All results indicate that the uhpA gene mutant in E. piscicida could enhance its motility and the colonization in the intestine of tilapia, this illustrates the mechanism of UhpA decreases the pathogenesis of E. piscicida in fish.
Collapse
Affiliation(s)
- Jiakang Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Cuimin Mu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Tingqi Ye
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Yongcan Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Qian Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 272000, PR China; Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China.
| |
Collapse
|
21
|
Sun Y, Chen J, Liu J, Huang J, Ye T, Wang X. The role of uhpA in Edwardsiella piscicida and the inflammatory cytokine response in tilapia. FISH & SHELLFISH IMMUNOLOGY 2020; 101:192-197. [PMID: 32200072 DOI: 10.1016/j.fsi.2020.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Edwardsiella piscicida (E. piscicida) is an important zoonotic pathogen that infects fish by colonizing the intestines. The intestine provides nutrition including Glucose 6-phosphate (Glu6P) and a competitive environment for the microbiota. Although the transport system regulatory protein gene uhpA has been reported in E. piscicida genomes, whether the uhpA gene is involved in the pathogenicity of E. piscicida remains largely unknown. Therefore, the uhpA gene mutants strain E. piscicida ΔuhpA was constructed to elucidate the functions of Glu6P and the uhpA gene in E. piscicida. The results demonstrated that Glu6P significantly increased the gene expression of uhpC/uhpB/uhpA than without adding Glu6P in the culture. The gene expression of uhpC and uhpB was down regulated in the mutant strain than that of in the wild type strain. E. piscicida ΔuhpA exhibited an increase in virulence compared to that of E. piscicida EIB202 [LD50 value: (3.98 × 106 CFU/fish) and LD50 value: (1.45 × 107 CFU/fish) respectively]. Besides, although TNF-α did not show significant differences (p > 0.05) in the spleen of tilapia infected with ΔuhpA and EIB202 in the whole observed period, the gene expression of IL-1β and TGF-β in the spleen of tilapia infected with ΔuhpA showed significantly higher (p < 0.05) than that of in tilapia infected with EIB202. Meanwhile, the gene expression of IL-1β and TGF-β in spleen of tilapia infected with ΔuhpA showed significantly higher (p < 0.05) than that of in fish infected with EIB202 when zebrafish used as the control in the whole observed period. All these results suggested that Glu6P up-regulated the gene expression of uhpC/uhpB/uhpA; most important, the uhpA gene deletion in E. piscicida down-regulated the gene expression of uhpC and uhpB, enhanced its pathogenicity and its role in inducing the inflammatory cytokine responses in tilapia.
Collapse
Affiliation(s)
- Yongcan Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jiakang Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinyu Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinjing Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Tingqi Ye
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 272000, PR China.
| |
Collapse
|
22
|
LuxS/AI-2 Quorum Sensing System in Edwardsiella piscicida Promotes Biofilm Formation and Pathogenicity. Infect Immun 2020; 88:IAI.00907-19. [PMID: 32071069 DOI: 10.1128/iai.00907-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
LuxS/AI-2 is an important quorum sensing system which affects the growth, biofilm formation, virulence, and metabolism of bacteria. LuxS is encoded by the luxS gene, but how this gene is associated with a diverse array of physiological activities in Edwardsiella piscicida (E. piscicida) is not known. Here, we constructed an luxS gene mutant strain, the △luxS strain, to identify how LuxS/AI-2 affects pathogenicity. The results showed that LuxS was not found in the luxS gene mutant strain, and this gene deletion decreased E. piscicida growth compared to that of the wild-type strain. Meanwhile, the wild-type strain significantly increased penetration and motility in mucin compared to levels with the △luxS strain. The 50% lethal dose (LD50) of the E. piscicida △luxS strain for zebrafish was significantly higher than that of the wild-type strain, which suggested that the luxS gene deletion could attenuate the strain's virulence. The AI-2 activities of EIB202 were 56-fold higher than those in the △luxS strain, suggesting that the luxS gene promotes AI-2 production. Transcriptome results demonstrated that between cells infected with the △luxS strain and those infected with the wild-type strain 46 genes were significantly differentially regulated, which included 34 upregulated genes and 12 downregulated genes. Among these genes, the largest number were closely related to cell immunity and signaling systems. In addition, the biofilm formation ability of EIB202 was significantly higher than that of the △luxS strain. The supernatant of EIB202 increased the biofilm formation ability of the △luxS strain, which suggested that the luxS gene and its product LuxS enhanced biofilm formation in E. piscicida All results indicate that the LuxS/AI-2 quorum sensing system in E. piscicida promotes its pathogenicity through increasing a diverse array of physiological activities.
Collapse
|