1
|
Shao S, Li Z, Zhu Y, Li Y, Li Y, Wu L, Rensing C, Cai P, Wang C, Zhang J, Li Q. Green manure ( Ophiopogon japonicus) cover promotes tea plant growth by regulating soil carbon cycling. Front Microbiol 2024; 15:1439267. [PMID: 39364171 PMCID: PMC11447704 DOI: 10.3389/fmicb.2024.1439267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction In mountainous tea plantations, which are the primary mode of tea cultivation in China, issues such as soil erosion and declining soil fertility are particularly severe. Although green manure cover is an effective agricultural measure for restoring soil fertility, its application in mountainous tea plantations has been relatively understudied. Methods This study investigated the effects of continuous green manure cover using the slope-protecting plant Ophiopogon japonicus on tea plant growth and soil microbial community structure. We implemented three treatments: 1 year of green manure coverage, 2 years of coverage, and a control, to study their effects on tea plant growth, soil physicochemical properties, and soil bacterial and fungal communities. Results Results demonstrate that green manure coverage significantly promote the growth of tea plants, enhanced organic matter and pH levels in soil, and various enzyme activities, including peroxidases and cellulases. Further functional prediction results indicate that green manure coverage markedly promoted several carbon cycling functions in soil microbes, including xylanolysis, cellulolysis, degradation of aromatic compounds, and saprotrophic processes. LEfSe analysis indicated that under green manure cover, the soil tends to enrich more beneficial microbial communities with degradation functions, such as Sphingomonas, Sinomonas, and Haliangium (bacteria), and Penicillium, Apiotrichum, and Talaromyce (fungi). In addition. Random forest and structural equation models indicated that carbon cycling, as a significant differentiating factor, has a significant promoting effect on tea plant growth. Discussion In the management practices of mountainous tea plantations, further utilizing slope-protecting plants as green manure can significantly influence the soil microbial community structure and function, enriching microbes involved in the degradation of organic matter and aromatic compounds, thereby positively impacting tea tree growth and soil nutrient levels.
Collapse
Affiliation(s)
- Shuaibo Shao
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongwei Li
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanqi Zhu
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yi Li
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuanping Li
- College of Tea and Food, Wuyi University, Wuyishan, China
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pumo Cai
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Caihao Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianmin Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qisong Li
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
2
|
Chen C, Liang CS, Wang T, Shen JL, Ling F, Jiang HF, Li PF, Wang GX. Antiviral, antioxidant, and anti-inflammatory activities of rhein against white spot syndrome virus infection in red swamp crayfish ( Procambarus clarkii). Microbiol Spectr 2023; 11:e0104723. [PMID: 37855526 PMCID: PMC10714825 DOI: 10.1128/spectrum.01047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Aquaculture is essential for ensuring global food security by providing a significant source of animal protein. However, the spread of the white spot syndrome virus (WSSV) has resulted in considerable economic losses in crustacean industries. In this study, we evaluated the antiviral activity of rhein, the primary bioactive component of Rheum palmatum L., against WSSV infection, and many pathological aspects of WSSV were also described for the first time. Our mechanistic studies indicated that rhein effectively arrested the replication of WSSV in crayfish by modulating innate immunity to inhibit viral gene transcription. Furthermore, we observed that rhein attenuated WSSV-induced oxidative and inflammatory stresses by regulating the expression of antioxidant and anti-inflammatory-related genes while enhancing innate immunity by reducing total protein levels and increasing phosphatase activity. Our findings suggest that rhein holds great promise as a potent antiviral agent for the prevention and treatment of WSSV in aquaculture.
Collapse
Affiliation(s)
- Cheng Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chang-Shuai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing-Lei Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hai-Feng Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Zhang Y, Gao J, Cao L, Du J, Xu G, Xu P. Microcystin-LR-induced autophagy via miR-282-5p/PIK3R1 pathway in Eriocheir sinensis hepatopancreas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115661. [PMID: 37948941 DOI: 10.1016/j.ecoenv.2023.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
4
|
Liu H, Feng Y, Yang M, Huang Y, Li M, Geng Y, Ouyang P, Chen D, Yang S, Yin L, Li L, Huang X. Starvation induces hepatopancreas atrophy in Chinese mitten crab (Eriocheir sinensis) by inhibiting angiogenesis. BMC Genomics 2023; 24:612. [PMID: 37828424 PMCID: PMC10571328 DOI: 10.1186/s12864-023-09620-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The hepatopancreas of crustaceans serves as a significant organ for both the synthesis and secretion of digestive enzymes, as well as energy storage. In the event of food shortage, the hepatopancreas can provide energy for survival. To investigate the potential regulatory mechanisms of the hepatopancreas in response to starvation in Eriocheir Sinensis, transcriptome analysis, histological study and qRT-PCR were performed. RESULTS The results showed that starvation caused a decrease in the hepatopancreas index of E. sinensis, which had certain effects on the tissue structure, metabolism and angiogenesis in the hepatopancreas. In addition, WGCNA and linear regression analysis showed that the genes significantly related to the hepatopancreas index were mainly enriched in the angiogenesis pathway, in which AKT signaling played an important role. Starvation may inhibit AKT signaling pathway by reducing the expression of TGFBI, HSP27, HHEX, and EsPVF1, thereby hindering angiogenesis, promoting apoptosis, and leading to hepatopancreas atrophy. CONCLUSION These results indicate that AKT plays an important role in the angiogenesis pathway and apoptosis of the starvation induced hepatopancreas index reduction, which is beneficial to further understand the effect of starvation stress on hepatopancreas of Chinese mitten crab.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Feng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, Sichuan, 611130, China
| | - Ma Yang
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Ya Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Minghao Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, Sichuan, 611130, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, Sichuan, 611130, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, Sichuan, 611130, China
| | - Liangyu Li
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
5
|
Jia R, Dai X, Li Y, Yang X, Min X, Quan D, Liu P, Huang X, Ge J, Ren Q. Duox mediated ROS production inhibited WSSV replication in Eriocheir sinensis under short-term nitrite stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106575. [PMID: 37196508 DOI: 10.1016/j.aquatox.2023.106575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Nitrite stress and white spot syndrome virus (WSSV) infection are major problems threatening the sustainable and healthy development of Eriocheir sinensis. Some studies have found that nitrite stress can lead to the production of reactive oxygen species (ROS), whereas synthetic ROS plays a vital role in the signaling pathway. However, whether nitrite stress influences the infection of crabs by WSSV remains unclear. NADPH oxidases, including NOX1-5 and Duox1-2, are important for ROS production. In the present study, a novel Duox gene (designated as EsDuox) was identified from E. sinensis. The studies found that nitrite stress could increase the expression of EsDuox during WSSV infection and decrease the transcription of the WSSV envelope protein VP28. Moreover, nitrite stress could increase the production of ROS, and the synthesis of ROS relied on EsDuox. These results indicated a potential "nitrite stress-Duox activation-ROS production" pathway that plays a negative role in WSSV infection in E. sinensis. Further studies found that nitrite stress and EsDuox could promote the expression of EsDorsal transcriptional factor and antimicrobial peptides (AMPs) during WSSV infection. Moreover, the synthesis of AMPs was positively regulated by EsDorsal in the process of WSSV infection under nitrite stress. Furthermore, EsDorsal played an inhibitory role in the replication of WSSV under nitrite stress. Our study reveals a new pathway for "nitrite stress-Duox activation-ROS production-Dorsal activation-AMP synthesis" that is involved in the defense against WSSV infection in E. sinensis during short-term nitrite stress.
Collapse
Affiliation(s)
- Rui Jia
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yanfang Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xintong Yang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiuwen Min
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Derun Quan
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Peng Liu
- Nanjing Forestry University, Nanjing 210037, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu 210017, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
6
|
Ding Z. Current Disease Threats for Cultivated Crab Eriocheir sinensis in China. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/3305963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The Chinese mitten crab, Eriocheir sinensis, is a commercially important crustacean in China due to its great commercial value and compatibility in a variety of aquaculture systems. However, increases in its production have been accompanied by the emergence of various diseases affecting yield, profit, and trading potential. In this study, we review the pathogenic agents associated with E. sinensis since the start of its commercial culture. The history of crab cultivation implies that increased pathogen transfer can occur as E. sinensis aquaculture grows because polyculture of E. sinensis with other aquaculture species is a prevalent practice. With this in mind, a special focus of this review is placed on pathogens that were initially discovered in other crustacean species but have since been demonstrated to infect and cause disease in E. sinensis. We expect that this review will not only offer recommendations for disease management in the E. sinensis aquaculture sector but will also advance other crustacean cultivation.
Collapse
Affiliation(s)
- Zhengfeng Ding
- Institute of Aquatic Biology and Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Sciences and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing 210013, China
| |
Collapse
|
7
|
Wang Q, Xu Z, Wang Y, Huo G, Zhang X, Li J, Hua C, Li S, Zhou F. Transcriptomics Analysis of the Toxicological Impact of Enrofloxacin in an Aquatic Environment on the Chinese Mitten Crab ( Eriocheir sinensis). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1836. [PMID: 36767205 PMCID: PMC9915228 DOI: 10.3390/ijerph20031836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Enrofloxacin is an important antimicrobial drug that is widely used in aquaculture. Enrofloxacin residues can have negative effects on aquatic environments and animals. The toxicological effects of different concentrations of enrofloxacin residues in cultured water on Chinese mitten crabs (Eriocheir sinensis) were compared. A histological analysis of the E. sinensis hepatopancreas demonstrated that the hepatopancreas was damaged by the different enrofloxacin residue concentrations. The hepatopancreas transcriptome results revealed that 1245 genes were upregulated and that 1298 genes were downregulated in the low-concentration enrofloxacin residue group. In the high-concentration enrofloxacin residue group, 380 genes were upregulated, and 529 genes were downregulated. The enrofloxacin residues led to differentially expressed genes related to the immune system and metabolic processes in the hepatopancreas of the Chinese mitten crab, such as the genes for alkaline phosphatase, NF-kappa B inhibitor alpha, alpha-amylase, and beta-galactosidase-like. The gene ontology terms "biological process" and "molecular function" were enriched in the carboxylic acid metabolic process, DNA replication, the synthesis of RNA primers, the transmembrane transporter activity, the hydrolase activity, and the oxidoreductase activity. A Kyoto Encyclopedia of Genes and Genomes pathway analysis determined that the immune and metabolic signal transduction pathways were significantly enriched. Furthermore, the nonspecific immune enzyme (alkaline phosphatase) and the metabolic enzyme system played a role in the enrofloxacin metabolism in the E. sinensis hepatopancreas. These findings helped us to further understand the basis of the toxicological effects of enrofloxacin residues on river crabs and provided valuable information for the better utilization of enrofloxacin in aquatic water environments.
Collapse
Affiliation(s)
- Qiaona Wang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ziling Xu
- School of Life Science, Nanjing Normal University, Nanjing 210023, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ying Wang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Guangming Huo
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianmei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chun Hua
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Shengjie Li
- School of Life Science, Nanjing Normal University, Nanjing 210023, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
8
|
First Discovery of Beta-Sitosterol as a Novel Antiviral Agent against White Spot Syndrome Virus. Int J Mol Sci 2022; 23:ijms231810448. [PMID: 36142360 PMCID: PMC9499679 DOI: 10.3390/ijms231810448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
The outbreak of white spot syndrome (WSS) is a looming challenge, due to dramatic losses to the crustacean aquaculture industry. However, at present, there are no prophylactic or therapeutic means to control this infectious viral disease. Here, we screened fifteen medicinal plants for their inhibitory activity on the white spot syndrome virus (WSSV), using red swamp crayfish (Procambarus clarkii) as a model species. The results showed that the crude extracts of Pinellia ternata (Thunb.) Breit. had the highest inhibitory effect (91.59%, 100 mg/kg) on WSSV proliferation, and its main component, beta-sitosterol, showed a much higher activity (95.79%, 50 mg/kg). Further, beta-sitosterol potently reduced (p < 0.01) viral loads and viral gene transcription levels in a concentration-dependent fashion, and significantly promoted the survival rate of WSSV-challenged crayfish (57.14%, 50 mg/kg). The co-incubation assay indicated that beta-sitosterol did not influence the infectivity of WSSV particles. Both pre- and post-treatment of beta-sitosterol exerted a significant inhibitory effect (p < 0.01) on the viral load in vivo. Mechanistically, beta-sitosterol not only interfered with the expression of viral genes (immediate early gene 1, ie1; DNA polymerase, DNApol) that are important in initiating WSSV transcription, but it also attenuated the hijacking of innate immune signaling pathways (Toll, IMD, and JAK/STAT pathways) by viral genes to block WSSV replication. Moreover, the expression of several antiviral immune, antioxidant, pro-inflammatory, and apoptosis-related genes changed significantly in beta-sitosterol-treated crayfish. Beta-sitosterol is a potent WSSV inhibitor and has the potential to be developed as an effective anti-WSSV agent against a WSS outbreak in crustacean aquaculture.
Collapse
|
9
|
Nie X, Dai X, Zhao Y, Xu H, Han Z, Jia R, Ren Q, Huang X. Identification of three novel Spätzle genes in Eriocheir sinensis and their roles during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:168-180. [PMID: 35921935 DOI: 10.1016/j.fsi.2022.07.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Proteins of Spätzle family play an essential role in innate immunity in invertebrates by activating the Toll pathway to induce the expression of antimicrobial peptides. However, little is known about the function of Spätzle in in the immune response of the Chinese mitten crab. In the present study, three novel Spätzle genes (named as EsSpz1, EsSpz2, and EsSpz3) were identified from Eriocheir sinensis. The genome structure of EsSpz1 contains two exons and an intron. Three Spätzle proteins all contain a Pfam Spaetzle domain. In the evolution, EsSpz1-3 cluster with other Spätzle proteins from crustaceans. EsSpz1-3 were widely distributed in multiple immune tissues. The expression levels of EsSpz1-3 in the intestine were remarkably upregulated after white spot syndrome virus (WSSV) challenge. The knockdown of EsSpz1-3 remarkably decreased the expressions of crustins and anti-lipopolysaccharide factors during WSSV infection. Moreover, EsSpz1-3 silencing remarkably increased the expression of WSSV envelope protein VP28. These findings suggest that new-found EsSpz1-3 in E. sinensis could promote the synthesis of antimicrobial peptides and inhibit the expression of VP28 during WSSV infection. Our study indicates that EsSpz1-3 in E. sinensis may participate in the innate immune defenses against WSSV by inducing the expression of antimicrobial peptides. This study provides new knowledge for the function of Spätzle in the antiviral immune defense in crustacean.
Collapse
Affiliation(s)
- Ximei Nie
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yuqi Zhao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Hao Xu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhengxiao Han
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Rui Jia
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
10
|
Zhang T, Liu X, Yang X, Liu F, Yang H, Li X, Feng H, Wu X, Jiang G, Shen H, Dong J. Rapid On-Site Detection Method for White Spot Syndrome Virus Using Recombinase Polymerase Amplification Combined With Lateral Flow Test Strip Technology. Front Cell Infect Microbiol 2022; 12:889775. [PMID: 35909952 PMCID: PMC9334525 DOI: 10.3389/fcimb.2022.889775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The white spot syndrome virus is the most destructive virus threatening the shrimp industry worldwide, causing hundreds of millions of dollars in economic losses each year. There is currently no specific medicine to treat it. Therefore, rapid and accurate detection of WSSV is of great significance for controlling its spread and reducing economic losses. Traditional detection methods, such as polymerase chain reaction (PCR) and quantitative fluorescent PCR, rely on laboratory equipment and are not suitable for field testing. In this study, recombinase polymerase amplification (RPA) combined with a lateral flow strip (LFS) was developed. This method targets the entire genome and designs primers and probes accordingly. The detection can be completed in 30 min at 37°C, and the detection limit of each reaction is 20 copies, which is much more sensitive than other detection methods. The RPA-LFS method is highly specific to the white spot syndrome virus and has no cross-reactivity with other common shrimp viruses or pathogens. In total, 100 field samples were tested and compared to the real-time PCR method. Both methods detected 8 positive results, and the positive detection rate was 100%. The method was fast, simple, specific, and sensitive. It does not rely on laboratory equipment and has broad application prospects for in-field detection, especially in remote areas with underdeveloped medical equipment.
Collapse
Affiliation(s)
- Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xia Liu
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang City, Lianyungang, China
| | - Xiaohan Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xinyu Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Ge Jiang
- Marine Fisheries Research Institute of Jiangsu, Nantong, China
- *Correspondence: Jingquan Dong, ; Hui Shen, ; Ge Jiang,
| | - Hui Shen
- Marine Fisheries Research Institute of Jiangsu, Nantong, China
- *Correspondence: Jingquan Dong, ; Hui Shen, ; Ge Jiang,
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Jingquan Dong, ; Hui Shen, ; Ge Jiang,
| |
Collapse
|
11
|
Huang AG, He WH, Zhang FL, Wei CS, Wang YH. Natural component geniposide enhances survival rate of crayfish Procambarus clarkii infected with white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2022; 126:96-103. [PMID: 35613670 DOI: 10.1016/j.fsi.2022.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
White Spot Disease (WSD), caused by white spot syndrome virus (WSSV), is an acute and highly lethal viral disease of shrimp. Currently, there are no commercially available drugs to control WSD. It is urgent and necessary to find anti-WSSV drugs. Natural compounds are an important source of antiviral drug discovery. In this study, the anti-WSSV activity of natural compound geniposide (GP) was investigated in crayfish Procambarus clarkii. Results showed that GP had a concentration-dependent inhibitory effect on WSSV replication in crayfish at 24 h, and highest inhibition was more than 98%. In addition, GP significantly inhibited the expression of WSSV immediate-early gene ie1, early gene DNApol, late gene VP28. The mortality of WSSV-infected crayfish in control groups was 100%, while it reduced by 70.0% when treated with 50 mg/kg GP. Co-incubation, pre-treatment and post-treatment experiments showed that GP could prevent and treat WSSV infection in crayfish by significantly inhibiting WSSV multiplication. Mechanistically, the syntheses of WSSV structural proteins VP19, VP24, VP26 and VP28 were significantly inhibited by GP in S2 cells. Furthermore, GP could also suppress WSSV replication by blocking the expression of antiviral immunity-related factor STAT to reduce ie1 transcription. Moreover, GP possessed anti-inflammatory and anti-oxidative activity in crayfish. Overall, GP has the potential to be developed as a preventive or therapeutic agent against WSSV infection.
Collapse
Affiliation(s)
- Ai-Guo Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wei-Hao He
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Fa-Li Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Chao-Shuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
12
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|
13
|
Efficacy of the Nourishing Yin and Clearing Heat Therapy Based on Traditional Chinese Medicine in the Prevention and Treatment of Radiotherapy-Induced Oral Mucositis in Nasopharyngeal Carcinomas: A Systematic Review and Meta-Analysis of Thirty Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4436361. [PMID: 35529930 PMCID: PMC9068295 DOI: 10.1155/2022/4436361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to evaluate the efficacy of nourishing Yin and clearing heat therapy (NYCH therapy) based on traditional Chinese medicine (TCM) in the treatment of radiotherapy-induced oral mucositis (RTOM) in nasopharyngeal carcinomas (NPCs). A total of eight online databases were searched from inception to September 2021 for randomized controlled trials (RCTs). The control group was treated with Western medicine (WM) alone, whereas the experimental group was treated with a combined NYCH and WM therapy. A total of 30 RCTs involving 2562 participants were ultimately included. NYCH therapy combined with conventional WM delayed the onset time (days) of RTOM (MD = 10.80, p < 0.001), and at that time, a higher cumulative radiotherapy dose (Gy) (MD = 5.72, p < 0.001) was completed in the experimental group. The combination regimen also reduced the incidence of severe oral mucositis (Grade III–IV) (RR = 0.25, p < 0.001). In addition, the treatment efficacy of the experimental group was significantly better than that of the control group (RR = 1.31, p < 0.001). Compared with the patients in the control group, the experimental group had lower xerostomia scores (MD = -1.07, p < 0.001) and more saliva (MD = 0.36, p < 0.001). NYCH combined with WM improved the efficacy of treating RTOM in NPC. This study provides a sufficient basis for conducting further large RCTs to prove the efficacy of NYCH.
Collapse
|