1
|
Gao T, Wang Q, Sun H, Liu Y, Li J, He Y. Physiological Adaptation of Fenneropenaeus chinensis in Response to Saline-Alkaline Stress Revealed by a Combined Proteomics and Metabolomics Method. BIOLOGY 2024; 13:488. [PMID: 39056683 PMCID: PMC11274245 DOI: 10.3390/biology13070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
The rapid development of the mariculture industry has been hindered by limited coastal aquaculture space. To utilize the abundant inland saline-alkaline water, we studied the physiological effects of high carbonate alkalinity stress and high pH stress on Fenneropenaeus chinensis. The study employed quantitative proteomics by tandem mass tag (TMT) and non-targeted metabolomics analysis using a liquid chromatograph mass spectrometer (LC-MS) to understand the physiological and biochemical adaptive mechanisms of the hepatopancreas of F. chinensis in response to saline-alkaline stress at the molecular level. We designed two stress groups as follows: a high carbonate alkalinity (CA) group and a combined high carbonate alkalinity and high pH (CP) group. The study found that the protein and metabolic profiles of the two stress groups were changed, and the CP group, which was exposed to dual stresses, incurred more severe damage to the hepatopancreas compared to that of the CA group. After exposure to CA and CP, the hepatopancreas of F. chinensis showed significant alterations in 455 proteins and 50 metabolites, and 1988 proteins and 272 metabolites, respectively. In addition, F. chinensis upregulated the level of energy metabolism in the hepatopancreas to defend against osmotic imbalance caused by CA or CP stress, which was demonstrated by the significant upregulation of important proteins and metabolites in glycolysis, pyruvate metabolism, TCA cycle, and fatty acid oxidation. Additionally, pattern recognition receptors, the phenol oxidase system, and various immune-related metabolic enzymes and metabolites were also affected. The immune homeostasis of F. chinensis was affected by the alteration of the antioxidant system following exposure to CA or CP. These findings provide valuable information for F. chinensis saline-alkaline water cultivation practices.
Collapse
Affiliation(s)
- Tian Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (T.G.); (H.S.); (Y.L.)
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Huarui Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (T.G.); (H.S.); (Y.L.)
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; (T.G.); (H.S.); (Y.L.)
| | - Jitao Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yuying He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| |
Collapse
|
2
|
Guan C, Li Y, Wang Q, Wang J, Tian C, He Y, Li Z. Genome-wide identification of ATG genes and their expression profiles under biotic and abiotic stresses in Fenneropenaeus chinensis. BMC Genomics 2024; 25:625. [PMID: 38902611 PMCID: PMC11188248 DOI: 10.1186/s12864-024-10529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Autophagy is a conserved catabolic process in eukaryotes that contributes to cell survival in response to multiple stresses and is important for organism fitness. Extensive research has shown that autophagy plays a pivotal role in both viral infection and replication processes. Despite the increasing research dedicated to autophagy, investigations into shrimp autophagy are relatively scarce. RESULTS Based on three different methods, a total of 20 members of the ATGs were identified from F. chinensis, all of which contained an autophagy domain. These genes were divided into 18 subfamilies based on their different C-terminal domains, and were found to be located on 16 chromosomes. Quantitative real-time PCR (qRT-PCR) results showed that ATG genes were extensively distributed in all the tested tissues, with the highest expression levels were detected in muscle and eyestalk. To clarify the comprehensive roles of ATG genes upon biotic and abiotic stresses, we examined their expression patterns. The expression levels of multiple ATGs showed an initial increase followed by a decrease, with the highest expression levels observed at 6 h and/or 24 h after WSSV injection. The expression levels of three genes (ATG1, ATG3, and ATG4B) gradually increased until 60 h after injection. Under low-salt conditions, 12 ATG genes were significantly induced, and their transcription abundance peaked at 96 h after treatment. CONCLUSIONS These results suggested that ATG genes may have significant roles in responding to various environmental stressors. Overall, this study provides a thorough characterization and expression analysis of ATG genes in F. chinensis, laying a strong foundation for further functional studies and promising potential in innate immunity.
Collapse
Affiliation(s)
- Chenhui Guan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Yalun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Jiajia Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Caijuan Tian
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Bio-technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, PR China
| | - Yuying He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| | - Zhaoxia Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Wang Z, Li J, Zhao P, Yu Z, Yang L, Ding X, Lv H, Yi S, Sheng Q, Zhang L, Zhou F, Wang H. Integrated microbiome and metabolome analyses reveal the effects of low pH on intestinal health and homeostasis of crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106903. [PMID: 38503037 DOI: 10.1016/j.aquatox.2024.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Low pH (LpH) poses a significant challenge to the health, immune response, and growth of aquatic animals worldwide. Crayfish (Procambarus clarkii) is a globally farmed freshwater species with a remarkable adaptability to various environmental stressors. However, the effects of LpH stress on the microbiota and host metabolism in crayfish intestines remain poorly understood. In this study, integrated analyses of antioxidant enzyme activity, histopathological damage, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) were performed to investigate the physiology, histopathology, microbiota, and metabolite changes in crayfish intestines exposed to LpH treatment. The results showed that LpH stress induced obvious changes in superoxide dismutase and catalase activities and histopathological alterations in crayfish intestines. Furthermore, 16S rRNA gene sequencing analysis revealed that exposure to LpH caused significant alterations in the diversity and composition of the crayfish intestinal microbiota at the phylum and genus levels. At the genus level, 14 genera including Bacilloplasma, Citrobacter, Shewanella, Vibrio, RsaHf231, Erysipelatoclostridium, Anaerorhabdus, Dysgonomonas, Flavobacterium, Tyzzerella, Brachymonas, Muribaculaceae, Propionivibrio, and Comamonas, exhibited significant differences in their relative abundances. The LC-MS analysis revealed 859 differentially expressed metabolites in crayfish intestines in response to LpH, including 363 and 496 upregulated and downregulated metabolites, respectively. These identified metabolites exhibited significant enrichment in 24 Kyoto Encyclopedia of Genes and Genomes pathways (p < 0.05), including seven and 17 upregulated and downregulated pathways, respectively. These pathways are mainly associated with energy and amino acid metabolism. Correlation analysis revealed a strong correlation between the metabolites and intestinal microbiota of crayfish during LpH treatment. These findings suggest that LpH may induce significant oxidative stress, intestinal tissue damage, disruption of intestinal microbiota homeostasis, and alterations in the metabolism in crayfish. These findings provide valuable insights into how the microbial and metabolic processes of crayfish intestines respond to LpH stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zaihang Yu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - ShaoKui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiang Sheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China.
| | - Hua Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China; Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
4
|
Ding R, Yang R, Fu Z, Zhao W, Li M, Yu G, Ma Z, Zong H. Changes in pH and Nitrite Nitrogen Induces an Imbalance in the Oxidative Defenses of the Spotted Babylon ( Babylonia areolata). Antioxidants (Basel) 2023; 12:1659. [PMID: 37759962 PMCID: PMC10526028 DOI: 10.3390/antiox12091659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In order to reveal the acute toxicity and physiological changes of the spotted babylon (Babylonia areolata) in response to environmental manipulation, the spotted babylon was exposed to three pH levels (7.0, 8.0 and 9.0) of seawater and four concentrations of nitrite nitrogen (0.02, 2.7, 13.5 and 27 mg/L). The activities of six immunoenzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP) and peroxidase (POD), were measured. The levels of pH and nitrite nitrogen concentrations significantly impacted immunoenzyme activity over time. After the acute stress of pH and nitrite nitrogen, the spotted babylon appeared to be unresponsive to external stimuli, exhibited decreased vigor, slowly climbed the wall, sank to the tank and could not stand upright. As time elapsed, with the extension of time, the spotted babylon showed a trend of increasing and then decreasing ACP, AKP, CAT and SOD activities in order to adapt to the mutated environment and improve its immunity. In contrast, POD and GSH-PX activities showed a decrease followed by an increase with time. This study explored the tolerance range of the spotted babylon to pH, nitrite nitrogen, and time, proving that external stimuli activate the body's immune response. The body's immune function has a specific range of adaptation to the environment over time. Once the body's immune system was insufficient to adapt to this range, the immune system collapsed and the snail gradually died off. This study has discovered the suitable pH and nitrite nitrogen ranges for the culture of the spotted babylon, and provides useful information on the response of the snail's immune system.
Collapse
Affiliation(s)
- Ruixia Ding
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wang Zhao
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Humin Zong
- National Marine Environmental Center, Dalian 116023, China
| |
Collapse
|
5
|
Tian J, Yang Y, Du X, Xu W, Zhu B, Huang Y, Ye Y, Zhao Y, Li Y. Effects of dietary soluble β-1,3-glucan on the growth performance, antioxidant status, and immune response of the river prawn (Macrobrachium nipponense). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108848. [PMID: 37230308 DOI: 10.1016/j.fsi.2023.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
The effects of dietary β-1,3-glucan on the growth performance, body composition, hepatopancreas tissue structure, antioxidant activities, and immune response of the river prawn (Macrobrachium nipponense) were investigated. In total, 900 juvenile prawns were fed one of five diets with different contents of β-1,3-glucan (0%, 0.1%, 0.2%, and 1.0%) or 0.2% curdlan for 6 weeks. The growth rate, weight gain rate, specific growth rate, specific weight gain rate, condition factor, and hepatosomatic index of juvenile prawns fed 0.2% β-1,3-glucan were significantly higher than those fed 0% β-1,3-glucan and 0.2% curdlan (p < 0.05). The whole-body crude lipid content of prawns supplemented with curdlan and β-1,3-glucan was significantly higher than that of the control group (p < 0.05). The antioxidant and immune enzyme activities of superoxide dismutase (SOD), total antioxidant capacity (T-AOC), catalase (CAT), lysozyme (LZM), phenoloxidase (PO), acid phosphatase (ACP), and alkaline phosphatase (AKP) in the hepatopancreas of juvenile prawns fed 0.2% β-1,3-glucan were significantly higher than those of the control and 0.2% curdlan groups (p < 0.05), and tended to increase and then decrease with increasing dietary β-1,3-glucan. The highest malondialdehyde (MDA) content was observed in juvenile prawns without β-1,3-glucan supplementation. The results of real-time quantitative PCR indicated that dietary β-1,3-glucan promoted expression of antioxidant and immune-related genes. Binomial fit analysis of weight gain rate and specific weight gain rate showed that the optimum β-1,3-glucan requirement of juvenile prawns was 0.550%-0.553%. We found that suitable dietary β-1,3-glucan improved juvenile prawns growth performance, antioxidant capacity, and non-specific immunity, which provide reference for shrimp healthy culture.
Collapse
Affiliation(s)
- Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenyue Xu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yizhou Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| |
Collapse
|
6
|
Li BB, Fan JQ, Hong QM, Yan ZY, Yang XJ, Lu KC, Chen GL, Li M, Huang W, Chen YH. Transcriptome analysis endoplasmic reticulum-stress response in Litopenaeus vannamei hemocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 124:421-429. [PMID: 35429624 DOI: 10.1016/j.fsi.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Numerous studies have proved that endoplasmic reticulum (ER)-stress is an important cause of aquatic animal diseases. Therefore, for effectively preventing and controlling aquatic animal diseases, a systematic and in-depth understanding of the environmental stress response in aquatic animals is necessary. In present study, the influence of ER-stress in Litopenaeus vannamei was investigated using Illumina HiSeq based RNA-Seq. Comparing to the cDNA library of hemocytes treated with DMSO in L. vannamei, 286 unigenes were significantly upregulated and 473 unigenes were significantly down-regulated in the Thapsigargin treated group. KEGG analysis indicated that the differentially expressed genes (DEGs) are mainly related to ER-stress, immune as well as metabolism. Besides the classical ER-stress response pathways, the regulation of cell cycle and DNA replication are also important measures of ER-stress response. It has been suggested that the influence of ER-stress on immune genes might be an important factor in environmental stress inducing shrimp disease. Our investigation exhibited that immune-related DEG Prophenoloxidase activating enzyme 2 (LvPPAE2) roled in anti-pathogen immunity of shrimp. This study provides a solid foundation for uncovering the environmental adaptation response and especially its relationship with L. vannamei immune system.
Collapse
Affiliation(s)
- Bin-Bin Li
- Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Jin-Quan Fan
- Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Qian-Ming Hong
- Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Ze-Yu Yan
- Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Xin-Jun Yang
- Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Ke-Cheng Lu
- Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Guo-Liang Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Ming Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Wen Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Yi-Hong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE), College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China.
| |
Collapse
|