1
|
Sun J, Liu J, Xue M, Zhao T, Song J, Zhang W, Chang Y, Zhan Y. Dynamic molecular responses of the sea urchin Strongylocentrotus intermedius to pathogen infection: Insights from a serial comparative transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110176. [PMID: 39914794 DOI: 10.1016/j.fsi.2025.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
To explore the dynamic molecular responses to pathogen infection in sea urchins, the sea urchin Strongylocentrotus intermedius were infected by a causative pathogen strain of sea urchin black peristomial membrane disease. Specimens were collected at 0, 6, 12, 24, 48, 72, and 96 h post-infection (hpi), and comparative transcriptome analysis were performed. The results showed that 1) a total of 771, 1437, 3477, 8417, 1566, and 2171 differentially expressed genes (DEGs) were identified at 6, 12, 24, 48, 72, and 96 hpi compared with the 0 hpi (as the control), respectively. 2) The number of upregulated DEGs was higher than that of downregulated DEGs at each time point after infection. The largest number of DEGs was obtained at 48 hpi. 3) Among identified DEGs, percent cellular process, binding, and metabolic process related DEGs account for 57.9 %, 49.9 %, and 45.5 %, respectively. Main Rho-GTPase family members (RhoA, Rac1, and Cdc42) exhibited a general upregulated expression trend during the examined infection process, the same as Caspase family members (Casp3, Casp6 and Casp7). 4) Cell cycle and apoptosis pathways are the most affected pathways, the DEG enrichment level of which remained in the top 30 (cell cycle pathways) and top 50 (apoptosis pathways) throughout the whole examined infection process. To sum up, all findings from this study will not only deepen our understanding of the dynamic molecular expression mechanisms of sea urchins in response to pathogen infection, but also provide new clues for elutriating the profound mechanisms of serial gene expression in innate immunity.
Collapse
Affiliation(s)
- Jingxian Sun
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, PR China
| | - Jinming Liu
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Mingyu Xue
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, PR China
| | - Jian Song
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, PR China.
| | - Yaoyao Zhan
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
2
|
Gao X, Zhu Y, Qian Q, Chen A, Qin L, Tang X, Jiang Q, Zhang X. The Immune Defense Response and Immune-Related Genes Expression in Macrobrachium nipponense Infected with Decapod Iridescent Virus 1 (DIV1). Animals (Basel) 2024; 14:2864. [PMID: 39409813 PMCID: PMC11475833 DOI: 10.3390/ani14192864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Macrobrachium nipponense is a significant cultivated species in China. However, decapod iridescent virus 1 (DIV1), as a newly discovered crustacean-lethal virus, has resulted in significant financial losses for the M. nipponense industry. In order to examine the immunological response of M. nipponense to DIV1, we conducted transcriptome analysis of the hepatopancreas from M. nipponense infected with DIV1 using RNA-seq. RNA sequencing analysis identified a combined total of 41,712 assembled unigenes, and 7014 genes that showed differential expression were identified in the group infected with DIV1, compared to the control group. Among these DEGs, 3952 were found to be up-regulated, while 3062 were down-regulated; many well-characterized DEGs were involved in innate immune defense, particularly involving the C-type lectin receptor signaling pathway, complement and coagulation cascades, phagosome, lysosome and PPAR signaling pathway. Moreover, the expression levels of well-known immune-related genes (dorsal, wnt6, lectin, caspase, integrin, hsp70) in the hepatopancreas and hemolymph were investigated by Quantitative real-time PCR (qRT-PCR), and the findings demonstrated a significant increase in gene expression in the hepatopancreas and hemolymph at various time points after infection. The results acquired in this study offered further comprehensive understanding of the immunological response of M. nipponense to DIV1 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.G.); (Y.Z.); (Q.Q.); (A.C.); (L.Q.); (X.T.); (Q.J.)
| |
Collapse
|
3
|
Pholchamat S, Vialle R, Luang-In V, Phadee P, Wang B, Wang T, Secombes CJ, Wangkahart E. Evaluation of the efficacy of MONTANIDE™ GR01, a new adjuvant for feed-based vaccines, on the immune response and protection against Streptococcus agalactiae in oral vaccinated Nile tilapia (Oreochromis niloticus) under laboratory and on-farm conditions. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109567. [PMID: 38641215 DOI: 10.1016/j.fsi.2024.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.
Collapse
Affiliation(s)
- Sirinya Pholchamat
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Regis Vialle
- SEPPIC, Paris La Défense, 50 boulevard National, CS 90020, 92257, La Garenne Colombes, Cedex, France
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Panarat Phadee
- Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
4
|
Khoklang A, Kersanté P, Nontasan S, Sutthi N, Pakdeenarong N, Wang T, Wangkahart E. Insights into the functional properties of a natural free amino acid mix: Effect on growth performance, nutrient metabolism, and immune response in a carnivorous fish, Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109232. [PMID: 37984611 DOI: 10.1016/j.fsi.2023.109232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Dietary supplements containing a functional feed additive have been shown to be beneficial to fish and shellfish aquaculture. However, the functional properties of aquafeed formulations have rarely been reported in fish. This study aimed to investigate the effects of natural free amino acid mix (FAAM) supplementation as a functional solution on the growth performance and nutrient utilization in a carnivorous fish, Asian seabass (Lates calcarifer). Five isonitrogenous and isolipidic diets were prepared with graded supplementation levels of FAAM at 0 % (control group), 0.25 %, 0.50 %, 0.75 %, and 1.0 %, denoted as FAAM0, FAAM0.25, FAAM0.5, FAAM0.75, and FAAM1.0, respectively. The experimental fish were fed different dietary FAAM supplementations to apparent satiation twice daily for eight weeks. Significant improvements were observed in the growth performance of fish among the five groups (P < 0.05). Fish fed with FAAM0.75 displayed significantly increased activities of lysozyme, myeloperoxidase, catalase, and glutathione peroxidase (P < 0.05). The activities of digestive enzymes, including amylase, protease, and lipase, were enhanced by the supplementation of FAAM in the feed (P < 0.05), especially for the groups that contained more than 0.5 % FAAM in the feed. Furthermore, the morphological profile of the intestinal tract, including the mucosal fold height, width, thickness, and goblet cell, increased in fish fed with FAAM at 1.0 % (P < 0.05). Moreover, FAAM supplementation in diets not only modulated the expression of immune-related genes (glutathione peroxidase (GPx), complement (C)3, C4, and C-reactive protein) in the liver but also positively impacted the growth-ralated genes, including growth hormone (GH), GH receptor (GHR), insulin-like growth factor I (IGF-I), and IGF-II. In addition, the amounts of monounsaturated fatty acids (mainly oleic acid (C18:1n9c)) and polyunsaturated fatty acids-especially γ-linolenic acid (C18:3 n6) and α-linolenic acid (C18:3n3)-increased in fish fed with diets containing FAAMs (P < 0.05). Interestingly, the diets supplemented with FAAMs also had a positive effect on the economic indices in terms of revenue-to-cost ratios. These findings provide a scientific basis for the application of FAAMs as a functional solution that can be used in feed formulations for Asian seabass.
Collapse
Affiliation(s)
- Aniwat Khoklang
- Master of Science Program in Agriculture, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand
| | | | - Supap Nontasan
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand; Faculty of Tourism and Hotel Management, Mahasarakham University, Talad Sub-district, Muang, Maha Sarakham, 44000, Thailand
| | - Nantaporn Sutthi
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Noppakun Pakdeenarong
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
5
|
Xu X, Yin P, Zhang Y, Yang H. The immune response of fairy shrimp Branchinella kugenumaensis against Edwardsiella anguillarum infections by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109260. [PMID: 38043874 DOI: 10.1016/j.fsi.2023.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
To explore the immune defense mechanisms of the ancient crustacean fairy shrimp (B.kugenumaensis) and uncover antibacterial-related gene resources, the present study analyzed the pathological changes in B. kugenumaensis infected with E. anguillarum. Differential gene expression changes between the infected and uninfected groups were investigated through comparative transcriptome sequencing to elucidate the molecular responses to the infection. Under transmission electron microscopy, the intestinal mucosal structure of B. kugenumaensis was damaged, the microvilli disappeared, the number of mitochondria and endoplasmic reticulum increased, mitochondria vacuolated and arranged disordered. The transcriptome data indicated that a total of 250,520,580 clean reads were assembled into 66,502 unigenes, with an average length of 789 bp and an N50 length of 1326 bp. Following bacterial infection, approximately 2678 differentially expressed genes (DEGs) were identified, with 1732 genes upregulated and 946 genes downregulated. The detected DEGs related to immune responses, particularly involving apoptosis, lysosome, autophagy, phagosome, and MAPK signaling pathways. Moreover, 9 immunity-related genes with different expressions were confirmed by using real-time quantitative PCR (RT-qPCR). This study first reports the pathogenicity of E. anguillarum on B. kugenumaensis and speculates that immune effectors such as lysozyme and lectin, as well as apoptosis, lysosome, and the MAPK signaling pathway, play crucial roles in the innate immunity of fairy shrimp. These findings deepen our understanding of fairy shrimp immune regulatory mechanisms and provide a theoretical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Peng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Zhan F, Zhou S, Shi F, Li Q, Lin L, Qin Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes in response to Staphylococcus aureus infection. FISH & SHELLFISH IMMUNOLOGY 2023:108927. [PMID: 37406892 DOI: 10.1016/j.fsi.2023.108927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The aquaculture industry has suffered significant financial losses as a result of disease outbreaks. In particular, disease outbreaks have become a major problem that can seriously affect the sustainable development of the Macrobrachium rosenbergii aquaculture industry. It is crucial to determine the defense mechanism of the host after pathogenic invasion in order to provide effective defense measures after disease outbreaks. Shrimp, like other invertebrates, primarily depend on their innate immune systems to defend against pathogens, and recognize and resist pathogens through humoral and cellular immune responses. In this investigation, we used RNA-seq technology to investigate the transcriptome of hemocytes from M. rosenbergii induced by Staphylococcus aureus. Our main targets were immune pathways and genes related to innate immunity. RNA-seq identified 209,069 and 204,775 unigenes in the control and experimental groups, respectively. In addition, we identified 547 and 1734 differentially expressed genes (DEGs) following S. aureus challenge after 6 and 12 h (h), respectively. GO and KEGG enrichment analysis revealed that the DEGs were significantly enriched in several biological signalling pathways, including NOD-like receptor, PI3K-Akt, Toll and Imd, IL-17, TGF-beta, RIG-I-like receptor, cAMP, apoptosis, and C-type lectin receptor. Sixteen DEGs were chosen at random for qPCR verification; these results concurred with those from sequencing. Our findings revealed that immune-related genes play an important role in antibacterial activities and have specific functions for gram-positive bacteria. These results provide more data for the prevention of M. rosenbergii diseases and offer a basis for the better prevention of diseases.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shichun Zhou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
7
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
8
|
Are Antarctic aquatic invertebrates hitchhiking on your footwear? J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2023.126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|