1
|
Campos-Sánchez JC, Serna-Duque JA, Guardiola FA, Cuesta A, Esteban MÁ. Bioinformatic and gene expression analysis of the somatostatin/cortistatin gene family in the gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2025; 160:110201. [PMID: 39956500 DOI: 10.1016/j.fsi.2025.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Somatostatin (SST) and cortistatin (CST) are neuromodulators with distinct expression patterns and functions. While SST and CST have been extensively studied in mammalian central nervous system (CNS) and immune system, their roles in teleost fish remain poorly explored due to evolutionary emergence of multiple SST paralogous genes. This study aimed to identify SST isoforms in gilthead seabream (Sparus aurata) and assess their transcriptional levels. Phylogeny and synteny analyses reclassified the six SST genes and proteins as SST1, SST3, SST3-like, SST4, SST5, and SST6. The protein sequences showed high conservation, except for an additional region upstream of the SST3-like protein's leader region. Evolutionary differences were mainly due to specific amino acid residue changes in the mature peptide. Genetic analyses revealed constitutive expression of five genes (sst1, sst3, sst5, sst4 and sst6) in all studied organs, except for sst3 in the heart, liver, and blood. The highest expression of sst1, sst3, sst4 and sst6 genes occurred in the brain's forebrain, while sst5 was most expressed in the heart. However, sst4 exhibited very low basal expression across all analysed tissues. In vitro, λ-carrageenan and cantharidin upregulated sst6 transcription in head kidney leucocytes (HKLs), indicating a potential anti-inflammatory role similar to mammalian CST. Additionally, sst5 expression was downregulated during the innate cell-mediated cytotoxic response, suggesting a regulatory role. These findings provide insights into the SST/CST gene family in gilthead seabream, necessitating gene and protein reclassification, and underscore their significant neuroendocrine and immune system functions, relevant for teleost research.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Campos-Sánchez JC, Esteban MÁ, Guardiola FA. Evaluating serum proteinogram methodologies for the diagnosis of inflammation in fish: Acute and chronic patterns in gilthead seabream (Sparus aurata) injected with λ-carrageenan. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110084. [PMID: 39647548 DOI: 10.1016/j.fsi.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Proteinogram is a semiquantitative method specially used in clinic to separate the serum proteins from patients for use in the diagnosis of diseases. However, this methodology has only been applied very recently with this approach in farmed fish. Thus, the aim of this study was to explore the changes in the serum proteinogram of gilthead seabream (Sparus aurata), after triggering an acute or chronic sterile inflammation. For this, two experiments were carried out: i) Acute inflammation experiment: seabream specimens were injected intramuscularly with 50 μL of λ-carrageenan (0.5 mg fish-1) or buffer (control) and blood samples were collected at 3, 6 and 24 h post-injection; ii) Chronic inflammation experiment: specimens were injected at 0, 7 and 14 days with 500, 250 and 250 μL of λ-carrageenan, respectively (20 mg fish-1) or buffer, and blood samples were collected at 15 days post-injection. In both cases, serum was obtained and processed by electropherograms and HPLC-mass spectrometry. Results of electropherograms of control fish revealed four major proteins of 19.5, 76.3, 104.4, and 156.7 kDa in the serum. These four proteins were correlated with apolipoprotein A-II (II (the counterpart of mammalian albumin, Apo fraction), serotransferrin (β fraction), inter-α-trypsin inhibitor heavy chain H3-like (α1 fraction) and α-2-macroglobulin-like (α2 fraction) according to the results obtained with HPLC-mass spectrometry. In a statistical view (p < 0.05), no variations were detected in the four major serum protein bands between the control and the acutely inflamed groups. However, in chronically inflamed fish, the Apo fraction decreased statistically compared to the control group. In contrast, the α1 and α2 fractions were statistically increased in the serum of fish sampled 15 days after λ-carrageenan injection, compared to those found in the control fish. α1 and α2 protein fractions are recognized indicators of inflammation in mammals. Consequently, our study presents a novel method for assessing both acute and chronic λ-carrageenan-induced sterile inflammation in gilthead seabream, which could be applicable to other marine species for diagnostic purposes.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Campos-Sánchez JC, Esteban MÁ. Effects of dietary astaxanthin on immune status and lipid metabolism in gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109731. [PMID: 38944253 DOI: 10.1016/j.fsi.2024.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Astaxanthin (AX) is a carotenoid known to have one of the highest documented antioxidant capacities and has attracted considerable scientific and commercial interest. The incorporation of AX into aquaculture practices has been associated with improved pigmentation, modulation of the immune and endocrine systems, stress reduction, reproductive efficiency and general fish health. This study describes the effects of dietary AX (0, control, 20, 100 and 500 mg kg-1 AX per kg of diet) for 15 and 30 days on growth performance, immune and antioxidant status, histology and gene expression in gilthead seabream (Sparus aurata). Fish fed diets enriched with 500 mg kg-1 of AX for 15 days decreased in skin mucus peroxidase activity while at 30 days of trial, fish fed a diet supplemented with 20 mg kg-1 AX increased the peroxidase activity in serum. In addition, bactericidal activity against Vibrio harveyi increased in the skin mucus of fish fed any of the AX supplemented diets. Regarding antioxidant activities in the liver, catalase and glutathione reductase were decreased and increased, respectively, in fish fed a diet supplemented with 500 mg kg-1 of AX. Finally, although the expression of up to 21 inflammatory and lipid metabolism-related genes was analysed in visceral adipose tissue, only the expression of the interleukin 6 (il6) gene was up-regulated in fish fed a diet supplemented with 20 mg kg-1 of AX. The present results provide a detailed insight into the potent antioxidant properties of AX and its possible modulatory effects on the immune status and lipid metabolism of seabream, which may be of interest to the aquaculture sector.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Campos-Sánchez JC, Guardiola FA, Esteban MÁ. In vitro immune-depression and anti-inflammatory activities of cantharidin on gilthead seabream (Sparus aurata) leucocytes activated by λ-carrageenan. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109470. [PMID: 38442766 DOI: 10.1016/j.fsi.2024.109470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Cantharidin is a natural compound with known therapeutic applications in humans. The aim of this study was to investigate the in vitro effects of cantharidin on gilthead seabream (Sparus aurata) head kidney leucocytes (HKL) stimulated with λ-carrageenan. HKLs were incubated for 24 h with cantharidin (0, 2.5 and 5 μg mL-1) and λ-carrageenan (0 and 1000 μg mL-1). The results showed that HKL viability only decreased by 15.2% after incubated with 5 μg mL-1 of cantharidin and λ-carrageenan. Cantharidin increased the peroxidase activity of HKLs only when incubated in combination with λ-carrageenan. Besides this, cantharidin inhibited the respiratory burst and phagocytic activities. Furthermore, cantharidin induced morphological changes in HKLs (apoptotic and vacuolization signs) that were enhanced when incubated with λ-carrageenan. Considering the analysis of the selected gene expression studied in HKLs [NF-κB subunits (rela, relb, crel, nfkb1, nfkb2), proinflammatory cytokines (il1b, tnfa), anti-inflammatory cytokines (il10, tgfb) and caspases (casp1, casp3, casp8, casp9)], although λ-carrageenan up-regulated the expression of the proinflammatory gene il1b, λ-carrageenan and cantharidin down-regulated its expression in HKLs. In addition, cantharidin up-regulated casp3 and casp9 expression. The casp3 and casp9 gene expression was down-regulated while casp1 gene expression was up-regulated in HKLs incubated with both cantharidin and λ-carrageenan. All the effects of cantharidin are related to its inhibitory effect on protein phosphatases, which induce apoptosis at long exposure times, and minimize the effects of λ-carrageenan. The present results provide detailed insight into the immune-depressive and anti-inflammatory properties of cantharidin on immune cells, which could be of interest to the aquaculture sector.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
5
|
Campos-Sánchez JC, Serna-Duque JA, Alburquerque C, Guardiola FA, Esteban MÁ. Participation of Hepcidins in the Inflammatory Response Triggered by λ-Carrageenin in Gilthead Seabream (Sparus aurata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:261-275. [PMID: 38353762 PMCID: PMC11043163 DOI: 10.1007/s10126-024-10293-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/26/2024] [Indexed: 04/25/2024]
Abstract
The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen Alburquerque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
6
|
The Distinctive Forehead Cleft of the Risso's Dolphin ( Grampus griseus) Hardly Affects Biosonar Beam Formation. Animals (Basel) 2022; 12:ani12243472. [PMID: 36552392 PMCID: PMC9774579 DOI: 10.3390/ani12243472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The Risso's dolphin (Grampus griseus) has a distinctive vertical crease (or cleft) along the anterior surface of the forehead. Previous studies have speculated that the cleft may contribute to biosonar beam formation. To explore this, we constructed 2D finite element models based on computer tomography data of the head of a naturally deceased Risso's dolphin. The simulated acoustic near-field signals, far-field signals, and transmission beam patterns were compared to corresponding measurements from a live, echolocating Risso's dolphin. To investigate the effect of the cleft, we filled the cleft with neighboring soft tissues in our model, creating a hypothetical "cleftless" forehead, as found in other odontocetes. We compared the acoustic pressure field and the beam pattern between the clefted and cleftless cases. Our results suggest that the cleft plays an insignificant role in forehead biosonar sound propagation and far-field beam formation. Furthermore, the cleft was not responsible for the bimodal click spectrum recorded and reported from this species.
Collapse
|
7
|
Campos-Sánchez JC, Gonzalez-Silvera D, Gong X, Broughton R, Guardiola FA, Betancor MB, Esteban MÁ. Implication of adipocytes from subcutaneous adipose tissue and fatty acids in skin inflammation caused by λ-carrageenin in gilthead seabream (Sparusaurata). FISH & SHELLFISH IMMUNOLOGY 2022; 131:160-171. [PMID: 36210005 DOI: 10.1016/j.fsi.2022.09.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The role of subcutaneous adipose tissue adipocytes and the effects of fatty acids on carrageenan-induced skin inflammation in gilthead seabream (Sparus aurata) were studied. Fish were injected intramuscularly with phosphate-buffered saline (control) or λ-carrageenin (1%), and skin samples collected at the injection site at 3 and 6 h post-injection (p.i.) were processed for histological study. In addition, the presence and levels of lipid classes, fatty acid methyl esters (FAME) and eicosanoids were evaluated in the skin samples obtained from the injected areas. Histological results indicated an increase in adipocyte area in fish sampled at 3 h p.i. with λ-carrageenin compared to fish in the control group. Furthermore, the frequency of adipocytes between 4500 and 5000 μm2 was increased at 6 h in the λ-carrageenin group compared to the control group. Analysis of lipid classes found that fish injected with λ-carrageenan showed increased free fatty acid (FFA) and sphingomyelin content at 3 and 6 h, respectively, compared to the control group. An increase in saturated fatty acids (SFA), n-6 polyunsaturated fatty acids (PUFA), and a decrease in the values of monounsaturated fatty acids (MUFA), n-3 PUFA and minor fatty acids were observed in fish skin at 6 h after λ-carrageenin injection, with respect to the values obtained in the control group. Regarding the analysis of eicosanoids, an increase in hydroxyeicosatetraenoic acid (5-HETE) was detected in the skin of fish at 6 h post-carrageenin injection compared to the control group. The presented results indicate the contribution of adipocytes and fatty acids in the development and regulation of the inflammatory response triggered by λ-carrageenin in gilthead seabream skin.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Daniel Gonzalez-Silvera
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Xu Gong
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Richard Broughton
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|