1
|
Zhao L, Huang J, Li Y, Wu S. LncRNA transcriptome analysis of rainbow trout ( Oncorhynchus mykiss) skin infected with IHNV reveals that lncRNA SARL/miR-205-z/ SOCS3 axis negatively regulates antiviral immunity mechanisms. Virulence 2025; 16:2486990. [PMID: 40287819 PMCID: PMC12036486 DOI: 10.1080/21505594.2025.2486990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are new gene regulators involved in various biological processes. However, the regulatory effect of lncRNA on the rainbow trout (Oncorhynchus mykiss) antiviral immune response has not been reported. Here, we measured lncRNA profiles at 48 hpi compared to the control group, expression levels of lncRNA, miRNA, and gene, and lncRNA SARL/miR-205-z/SOCS3 functions after rainbow trout skin infected with infectious haematopoietic necrosis virus (IHNV) by RNA-seq, qRT-PCR, and overexpression and inhibition assays. Transcriptome analysis identified twelve upregulated and four downregulated DElncRNAs. Twelve key immune-related competing endogenous RNA (ceRNA) networks were identified, and the target genes were enriched in the TLR, RLR, NLR, and p53 signalling pathways. Expression patterns suggested that changes in lncRNA SARL, miR-205-z, and SOCS3 expression presented a ceRNA regulatory relationship. Further studies demonstrated that the lncRNA SARL was a ceRNA of SOCS3 by sponging miR-205-z in vitro, thereby playing a negative regulatory role in the antiviral immune response of rainbow trout. We also found that miR-205-z was a positive regulator of rainbow trout liver cell proliferation, and this effect could be reversed by SOCS3. In vivo, SOCS3 expression significantly increased after antagomiR-205-z injection. Furthermore, SOCS3 overexpression significantly promoted the replication of IHNV. This study provides fundamental data for disease resistance breeding and targeted drug therapy in rainbow trout.
Collapse
Affiliation(s)
- Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Zhao L, Huang J, Fu X, Li Y, Wu S. IHNV induced miR-19-3p modulates immune response of rainbow trout (Oncorhynchus mykiss) by targeting DHX58-dependent RLR signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110200. [PMID: 39954832 DOI: 10.1016/j.fsi.2025.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
miR-19-3p has been implicated in various pathological and physiological processes, including immune response, inflammation, oncogenesis and cell damage. However, its function in rainbow trout (Oncorhynchus mykiss) has not been well elucidated. In this study, the expression patterns of miR-19-3p and target gene DExH-Box helicase 58 (DHX58) in rainbow trout infected with infectious hematopoietic necrosis virus (IHNV) were detected, and regulatory mechanism and function of miR-19-3p were investigated by overexpression and inhibition experiment in vitro and in vivo. Expression patterns showed that miR-19-3p and DHX58 displayed significant time-dependent changes in IHNV-infected rainbow trout intestines, skins, gills, and liver cells, and their expression were negatively correlated at multiple time points. In vitro, the targeting relationship between miR-19-3p and DHX58 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay, and overexpression of miR-19-3p significantly suppressed the expression of DHX58 and downstream genes interferon regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7), interferon (IFN), myxovirus 1 (MX1), interferon-stimulated gene 15 (ISG15), nuclear factor kappa-B (NF-κB), and interleukin-1 beta (IL-1β), whereas the expression levels of DHX58 and downstream genes were significantly increased after transfecting miR-19-3p inhibitor. In vivo, agomiR-19-3p significantly inhibited the expression of DHX58, and then reduced the expression levels of IRF3, IRF7, IFN, MX1, NF-κB, IL-1β, tumor necrosis factor-α (TNFα), and ISG15. Additionally, overexpression of miR-19-3p significantly increased IHNV copies and cell proliferation number, and suppressed apoptosis, while the opposite results were obtained after miR-19-3p repressing. This study confirmed that miR-19-3p regulates rainbow trout antiviral immune by DHX58-mediated interferon pathway in vitro and in vivo, which provides potential for using miRNAs as anti-viral target drugs.
Collapse
Affiliation(s)
- Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xujuan Fu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; College of Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Sun T, Huang J, Li Y, Wu S, Zhao L, Kang Y. MicroRNA-203-3p participates in antiviral immune response by negatively regulating TRAF3 in the rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110157. [PMID: 39864565 DOI: 10.1016/j.fsi.2025.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
MicroRNAs (miRNAs) are highly conserved endogenous non-coding RNAs that play a crucial role in fish immune response by regulating gene expression at the post-transcriptional level. In recent years, the viral diseases caused by infectious hematopoietic necrosis virus (IHNV) have caused significant economic losses in rainbow trout (Oncorhynchus mykiss) aquaculture, whereas the immune regulatory mechanisms of miRNAs involved in rainbow trout resistance to IHNV infection remains largely undefined. In this study, we analyzed the structural characteristics of Oncorhynchus mykiss tumor necrosis factor receptor-associated factor 3 (OmTRAF3) by bioinformatics software and explored the molecular mechanism of miR-203-3p in rainbow trout resistance to IHNV by regulating OmTRAF3 in vivo and in vitro. The open reading frame (ORF) of OmTRAF3 gene was 1731 bp and encoded 576 amino acids including an N-terminal RING finger domain, two zinc finger domains, a coiled-coil domain, and a C-terminal MATH domain. The expression pattern analysis showed that the expression of miR-203-3p and OmTRAF3 in immune-related tissues (head kidney, spleen, and liver) and liver cells of rainbow trout infected with IHNV varied with certain regularity and had opposite trends at key time points, and a targeting relationship between miR-203-3p and OmTRAF3 was confirmed using a dual luciferase reporter gene assay. Further, we found that in vivo and in vitro overexpression of miR-203-3p significantly reduced the expression of OmTRAF3, downstream immune-related genes (OmTANK, OmIKKε, OmIFN1, and OmISG15) and promoted IHNV copy number replication, while silencing of miR-203-3p yielded opposite results. More importantly, OmTRAF3 and downstream genes as well as IHNV copy number changed accordingly with the silencing of OmTRAF3. The above results revealed that miR-203-3p participates in the immune response against IHNV by targeting OmTRAF3, and provides a theoretical basis for the screening of antiviral drugs in rainbow trout.
Collapse
Affiliation(s)
- Tongzhen Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
4
|
Wu XQ, Wan JW, Yang ZN, Liu HJ, Chang Y, Peng SB, Niu XT, Kong YD, Li M, Chen XM, Wang GQ. Protection of glutamine: The NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction affects oxidative stress, inflammation and apoptosis in snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110131. [PMID: 39826630 DOI: 10.1016/j.fsi.2025.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Lipopolysaccharide (LPS) destroys intestinal mechanical barrier and causes apoptosis by triggering oxidative stress and inflammatory responses. Glutamine (Gln) can maintain normal intestinal function under various stressed or pathological conditions. Thereby, this study aims to evaluate the protection of glutamine on intestinal health of snakehead (Channa argus), specifically regarding the NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction affecting oxidative stress, inflammation and apoptosis. In this work, a model of intestinal tight junction injury in intestine of snakehead was constructed by injecting 4 mg/mL LPS into anus for 96 h. Before constructing the model, fish were treated with different levels of alanyl-glutamine (Ala-Gln) (0 %, 0.3 %, 0.6 %, 0.9 %, 1.2 % and 1.5 %) for 56 days. Microstructure and ultra microstructure showed that LPS-induced obvious intestinal damage and tight connection destruction, while Gln effectively alleviated these phenomena. In addition, results also showed that Gln can effectively inhibit LPS-induced damage to intestinal tight junction (zo-1, occludin, claudin5, claudin1, nf-κb p65, mlck and mlc2), alleviate oxidative stress (nrf2, sod, gsh, gpx and cat), ameliorate intestinal inflammation (tnf-α, il-1β, il-8, tlr5 and tlr2), thereby reduce apoptosis (p38mapk, caspase9, caspase8, caspase3 and bax). Crucially, the above results were related to NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction. In conclusion, Gln has a good protective effect on LPS-induced intestinal injury in northern snakehead, providing a new perspective for regulating fish intestinal health.
Collapse
Affiliation(s)
- Xue-Qin Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ji-Wu Wan
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Zhi-Nan Yang
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Hong-Jian Liu
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Yue Chang
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Si-Bo Peng
- Jilin Academy of Fishery Sciences, Changchun, 130033, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-di Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Lei W, Yiming S, Qiang P, Xin C, Peng G, Baofeng Z. Unleashing the Neurotherapeutic Potential: The Crucial Role of miR-206-3p in Facilitating Hsp90aa1-Mediated Central Nervous System Injuries During Heat Stroke. Mol Neurobiol 2025; 62:1433-1450. [PMID: 38995443 DOI: 10.1007/s12035-024-04342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
This study aims to explore the molecular mechanisms of miR-206-3p in regulating Hsp90aa1 and its involvement in the central nervous system (CNS) injury in heat stroke. Weighted gene co-expression network analysis (WGCNA) was performed on the GSE64778 dataset of heat stroke to identify module genes most closely associated with disease characteristics. Through the selection of key genes and predicting upstream miRNAs using RNAInter and miRWalk databases, the regulatory relationship between miR-206-3p and Hsp90aa1 was determined. Through in vitro experiments, various methods, including bioinformatics analysis, dual-luciferase reporter gene assay, RIP experiment, and RNA pull-down experiment, were utilized to validate this regulatory relationship. Furthermore, functional experiments, including CCK-8 assay to test neuron cell viability and flow cytometry to assess neuron apoptosis levels, confirmed the role of miR-206-3p. Transmission electron microscopy, real-time quantitative PCR, DCFH-DA staining, and ATP assay were employed to verify neuronal mitochondrial damage. Heat stroke rat models were constructed, and mNSS scoring and cresyl violet staining were utilized to assess neural functional impairment. Biochemical experiments were conducted to evaluate inflammation, brain water content, and histopathological changes in brain tissue using H&E staining. TUNEL staining was applied to detect neuronal apoptosis in brain tissue. RT-qPCR and Western blot were performed to measure gene and protein expression levels, further validating the regulatory relationship in vivo. Bioinformatics analysis indicated that miR-206-3p regulation of Hsp90aa1 may be involved in CNS injury in heat stroke. In vivo, animal experiments demonstrated that miR-206-3p and Hsp90aa1 co-localized in neurons of the rat hippocampal CA3 region, and with prolonged heat stress, the expression of miR-206-3p gradually increased while the expression of Hsp90aa1 gradually decreased. Further in vitro cellular mechanism validation and functional experiments confirmed that miR-206-3p could inhibit neuronal cell viability and promote apoptosis and mitochondrial damage by targeting Hsp90aa1. In vivo, experiments confirmed that miR-206-3p promotes CNS injury in heat stroke. This study revealed the regulatory relationship between miR-206-3p and Hsp90aa1, suggesting that miR-206-3p could regulate the expression of Hsp90aa1, inhibit neuronal cell viability, and promote apoptosis, thereby contributing to CNS injury in heat stroke.
Collapse
Affiliation(s)
- Wang Lei
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Shen Yiming
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Peng Qiang
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Chu Xin
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Gu Peng
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Zhu Baofeng
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Martínez-López N, Pereiro P, Saco A, Lama R, Figueras A, Novoa B. Characterization of a fish-specific immunoglobulin-like domain-containing protein (Igldcp) in zebrafish (Danio rerio) induced after nodavirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105285. [PMID: 39515405 DOI: 10.1016/j.dci.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs). In vitro overexpression of igldcp decreased RGNNV replication, whereas in vivo knockdown of this gene had the opposite effect, resulting in increased larval mortality. RNA-Seq analyses of larvae overexpressing igldcp in the absence or presence of infection with RGNNV showed that the main processes affected by Igldcp could be directly involved in the regulation of various cellular processes associated with the modulation of the immune system.
Collapse
Affiliation(s)
| | | | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
7
|
Sun T, Huang J, Li Y, Wu S, Zhao L, Kang Y. Identification and characterization of circular RNAs in the skin of rainbow trout (Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101277. [PMID: 38943979 DOI: 10.1016/j.cbd.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an economically significant freshwater-farmed fish worldwide, and the frequent outbreaks of infectious hematopoietic necrosis (IHN) in recent years have gravely compromised the healthy growth of the rainbow trout aquaculture industry. Fish skin is an essential immune barrier against the invasion of external pathogens, but it is poorly known about the role of circRNAs in rainbow trout skin. Therefore, we examined the expression profiles of circRNAs in rainbow trout skin following IHNV infection using RNA-seq. A total of 6607 circRNAs were identified, of which 34 circRNAs were differentially expressed (DE) and these DE circRNA source genes were related to immune-related pathways such as Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, Cytokine-cytokine receptor interaction, ubiquitin mediated proteolysis, and ferroptosis. We used qRT-PCR, Sanger sequencing, and subcellular localization to validate the chosen DE circRNAs, confirming their localization and expression patterns in rainbow trout skin. Further, 12 DE circRNAs were selected to construct the circRNA-miRNA-mRNA regulatory network, finding one miRNA could connect one or more circRNAs and mRNAs, and some miRNAs were reported to be associated with antiviral immunity. The functional prediction findings revealed that novel_circ_002779 and novel_circ_004118 may act as sponges for miR-205-z and miR-155-y to regulate the expression of target genes TLR8 and PIK3R1, respectively, and participated in the antiviral immune responses in rainbow trout. These results shed light on the immunological mechanism of circRNAs in rainbow trout skin and offer fundamental information for further research on the innate immune system and breeding rainbow trout resistant to disease.
Collapse
Affiliation(s)
- Tongzhen Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Pan Y, Liu Z, Quan J, Gu W, Wang J, Zhao G, Lu J, Wang J. Purified Astragalus Polysaccharide Combined with Inactivated Vaccine Markedly Prevents Infectious Haematopoietic Necrosis Virus Infection in Rainbow Trout ( Oncorhynchus mykiss). ACS Biomater Sci Eng 2024; 10:6938-6953. [PMID: 39375226 DOI: 10.1021/acsbiomaterials.4c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Rainbow trout (Oncorhynchus mykiss) is experiencing a catastrophic pandemic. In recent years, infectious hematopoietic necrosis virus (IHNV) has spread nationwide, resulting in significant mortality. Currently, there are no available treatments or vaccines for IHNV in China. Here, the Astragalus extract was purified and characterized. Then, we developed an inactivated IHNV vaccine with purified Astragalus polysaccharide (P-APS) as an adjuvant. Safety assays showed that IHNV was successfully inactivated. After a serious IHNV challenge, the cumulative mortality rates were 76.0, 38.0, and 22.1% in control, vaccine, and P-APS + vaccine groups, respectively. P-APS + vaccine was effective at reducing head kidney damage and apoptosis after IHNV challenge by histopathological and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. The P-APS + vaccine group showed better results in enhancing specific antibodies (IgM) and immune enzyme activities (C3, LZM, GOT, and GPT). RNA-seq revealed that many immune-related pathways were significantly enriched. TLR2, TLR7, C3, IFN-γ, IgM, MHC1, MHC2, MX1, and VIG1 were identified as core genes based on RNA-seq and PPI networks. Mechanistic investigations showed that P-APS + vaccine activates the immune pathway by upregulating the expression of these genes. P-ASP+vaccine induced effective innate and adaptive immune responses that were stronger than single vaccines after vaccination and IHNV challenged. Our findings will provide a promising vaccine candidate against IHNV.
Collapse
Affiliation(s)
- Yucai Pan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Junwei Wang
- Shandong Wanzefeng Ocean Development Group Co., Ltd, Rizhao 276800, China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhao Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianfu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Wu XQ, Chen XM, Pan YY, Sun C, Tian JX, Qian AD, Niu XT, Kong YD, Li M, Wang GQ. Changes of intestinal barrier in the process of intestinal inflammation induced by Aeromonas hydrophila in snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109775. [PMID: 39019126 DOI: 10.1016/j.fsi.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Bacterial intestinal inflammation frequently occurs in cultured fish. Nevertheless, research on intestinal barrier dysfunction in the process of intestinal inflammation is deficient. In this study, we explored the changes of intestinal inflammation induced by Aeromonas hydrophila (A. hydrophila) in snakehead and the relationship between intestinal barrier and inflammation. Snakehead [(13.05 ± 2.39) g] were infected via anus with A. hydrophila. Specimens were collected for analysis at 0, 1, 3, 7 and 21 d post-injection. The results showed that with the increase of exposure time, the hindgut underwent stages of normal function, damage, damage deterioration, repair and recovery. Relative to 0 d, the levels of IL-1β and TNF-α in serum, and the expression of nod1, tlr1, tlr5, nf-κb, tnf-α and il-1β in intestine were significantly increased, and showed an upward then downward pattern over time. However, the expression of tlr2 and il-10 were markedly decreased, and showed the opposite trend. In addition, with the development of intestinal inflammation, the diversity and richness of species, and the levels of phylum and genus in intestine were obviously altered. The levels of trypsin, LPS, AMS, T-SOD, CAT, GPx, AKP, LZM and C3 in intestine were markedly reduced, and displayed a trend of first decreasing and then rebounding. The ultrastructure observation showed that the microvilli and tight junction structure of intestinal epithelial cells experienced normal function initially, then damage, and finally recovery over time. The expression of claudin-3 and zo-1 in intestine were significantly decreased, and showed a trend of first decreasing and then rebounding. Conversely, the expression of mhc-i, igm, igt and pigr in intestine were markedly increased, and displayed a trend of increasing first and then decreasing. The above results revealed the changes in intestinal barrier during the occurrence and development of intestinal inflammation, which provided a theoretical basis for explaining the relationship between the two.
Collapse
Affiliation(s)
- Xue-Qin Wu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yi-Yu Pan
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chuang Sun
- Fisheries Technology Extension Station of Baicheng, Jilin Province, Baicheng, 137000, China
| | - Jia-Xin Tian
- College of Life Sciences, Tonghua Normal University, Tonghua, 134002, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-di Kong
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
10
|
Ye Y, Huang J, Li S, Li Y, Zhao Y. Effects of Dietary Melatonin on Antioxidant Capacity, Immune Defense, and Intestinal Microbiota in Red Swamp Crayfish (Procambarus clarkii). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:623-638. [PMID: 38814375 DOI: 10.1007/s10126-024-10326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The aim of this study was to investigate the effects of melatonin (MT) feed supplementation on the antioxidant capacity, immune defense, and intestinal flora in Procambarus clarkii (P. clarkii). Six groups of P. clarkii were fed test feeds containing different levels of MT: 0 mg/kg (control), 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg for a duration of 2 months. The specific growth rate, hepatosomatic index, and condition factor were recorded highest in the test group of shrimp fed an MT concentration of 165.1 mg/kg. Compared to the control group, the rate of apoptosis was lower in hepatopancreas cells of P. clarkii supplemented with high concentrations of MT. Analyses of antioxidant capacity and immune-response-related enzymes in the hepatopancreas indicated that dietary supplementation of MT significantly augmented both the antioxidant system and immune responses. Dietary MT supplementation significantly increased the expression levels of antioxidant-immunity-related genes and decreased the expression levels of genes linked to apoptosis. Dietary MT was associated with an elevation in the abundance of the Firmicutes and a reduction in the abundance of the Proteobacteria in the intestines; besides, resulting in an increase in the abundance of beneficial bacteria, such as Lactobacilli. The broken-line model indicated that the suitable MT concentration was 154.09-157.09 mg/kg. MT supplementation enhanced the growth performance of P. clarkii, exerting a positive influence on the intestinal microbiota, and bolstered both immune response and disease resistance. Thus, this study offered novel perspectives regarding the application of dietary MT supplementation within the aquaculture field.
Collapse
Affiliation(s)
- Yucong Ye
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jiarong Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, 63 Chifeng Rd, Shanghai, 200092, China.
| | - Yunlong Zhao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
11
|
Wu S, Huang J, Li Y. Antiviral effect of miR-206 in rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109552. [PMID: 38599364 DOI: 10.1016/j.fsi.2024.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Infectious hematopoietic necrosis (IHN), caused by IHN virus, is a highly contagious and lethal disease that seriously hampers the development of rainbow trout (Oncorhynchus mykiss) aquaculture. However, the immune response mechanism of rainbow trout underlying IHNV infection remains largely unknown. MicroRNAs act as post-transcriptional regulators of gene expression and perform a crucial role in fish immune response. Herein, the regulatory mechanism and function of miR-206 in rainbow trout resistance to IHNV were investigated by overexpression and silencing. The expression analysis showed that miR-206 and its potential target receptor-interacting serine/threonine-protein kinase 2 (RIP2) exhibited significant time-dependent changes in headkidney, spleen and rainbow trout primary liver cells infected with IHNV and their expression displayed a negative correlation. In vitro, the interaction between miR-206 and RIP2 was verified by luciferase reporter assay, and miR-206 silencing in rainbow trout primary liver cells markedly increased RIP2 and interferon (IFN) expression but significantly decreased IHNV copies, and opposite results were obtained after miR-206 overexpression or RIP2 knockdown. In vivo, overexpressed miR-206 with agomiR resulted in a decrease in the expression of RIP2 and IFN in liver, headkidney and spleen. This study revealed the key role of miR-206 in anti-IHNV, which provided potential for anti-viral drug screening in rainbow trout.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
12
|
Luo J, Tan Y, Zhao S, Ren Q, Guan G, Luo J, Yin H, Liu G. Role of Recognition MicroRNAs in Hemaphysalis longicornis and Theileria orientalis Interactions. Pathogens 2024; 13:288. [PMID: 38668243 PMCID: PMC11054001 DOI: 10.3390/pathogens13040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Ticks are an important type of pathogen transmission vector, and pathogens not only cause serious harm to livestock but can also infect humans. Because of the roles that ticks play in disease transmission, reducing tick pathogen infectivity has become increasingly important and requires the identification and characterization of these pathogens and their interaction mechanisms. In this study, we determined the miRNA expression profile of Hemaphysalis longicornis infected with Theileria orientalis, predicted the target genes of miRNAs involved in this infection process, and investigated the role of miRNA target recognition during host-pathogen interactions. The results showed that longipain is a target gene of miR-5309, which was differentially expressed at different developmental stages and in various tissues in the control group. However, the miR-5309 level was reduced in the infection group. Analysis of the interaction between miRNA and the target gene showed that miR-5309 negatively regulated the expression of the longipain protein during the infection of H. longicornis with T. orientalis. To verify this inference, we compared longipain with the blocking agent orientalis. In this study, the expression of longipain was upregulated by the inhibition of miR-5309 in ticks, and the ability of the antibody produced by the tick-derived protein to attenuate T. orientalis infection was verified through animal immunity and antigen-antibody binding tests. The results showed that expression of the longipain + GST fusion protein caused the cattle to produce antibodies that could be successfully captured by ticks, and cellular immunity was subsequently activated in the ticks, resulting in a subtractive effect on T. orientalis infection. This research provides ideas for the control of ticks and tickborne diseases and a research basis for studying the mechanism underlying the interaction between ticks and pathogens.
Collapse
Affiliation(s)
- Jin Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (Y.T.); (S.Z.); (Q.R.); (G.G.); (J.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Tan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (Y.T.); (S.Z.); (Q.R.); (G.G.); (J.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuaiyang Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (Y.T.); (S.Z.); (Q.R.); (G.G.); (J.L.)
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (Y.T.); (S.Z.); (Q.R.); (G.G.); (J.L.)
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (Y.T.); (S.Z.); (Q.R.); (G.G.); (J.L.)
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (Y.T.); (S.Z.); (Q.R.); (G.G.); (J.L.)
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (Y.T.); (S.Z.); (Q.R.); (G.G.); (J.L.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China; (Y.T.); (S.Z.); (Q.R.); (G.G.); (J.L.)
| |
Collapse
|
13
|
Ren Y, Chen J, Fu S, Bu W, Xue H. Changes in the gut bacterial community affect miRNA profiles in Riptortus pedestris under different rearing conditions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101135. [PMID: 37688974 DOI: 10.1016/j.cbd.2023.101135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Insects possess complex and dynamic gut microbial system, which contributes to host nutrient absorption, reproduction, energy metabolism, and protection against stress. However, there are limited data on interactions of host-gut bacterial microbiota through miRNA (microRNA) regulation in a significant pest, Riptortus pedestris. Here, we performed the 16S rRNA amplicon sequencing and small RNA sequencing from the R. pedestris gut under three environmental conditions and antibiotic treatment, suggesting that we obtained a large amount of reads by assembly, filtration and quality control. The 16S rRNA amplicon sequencing results showed that the abundance and diversity of gut bacterial microbiota were significantly changed between antibiotic treatment and other groups, and they are involved in metabolism and biosynthesis-related function based on functional prediction. Furthermore, we identified different numbers of differentially expressed unigenes (DEGs) and differentially expressed miRNAs (DEMs) based on high-quality mappable reads, which were enriched in various immune-related pathways, including Toll-like receptor, RIG-I-like receptor, NOD-like receptor, JAK/STAT, PI3K/Akt, NF-κB, MAPK signaling pathways, and so forth, using GO and KEGG enrichment analysis. Later on, the identified miRNAs and their target genes in the R. pedestris gut were predicted and randomly selected to construct an interaction network. Finally, our study indicated that alterations in the gut bacterial microbiota are significantly positively or negatively associated with DEMs of the Toll/Imd signaling pathway with Pearson correlation analysis. Taken together, the results of our study lay the foundation for further deeply understanding the interactions between the gut microbiota and immune responses in R. pedestris through miRNA regulation, and provide the new basis for pest management in hemipteran pests.
Collapse
Affiliation(s)
- Yipeng Ren
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Siying Fu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
14
|
Sun T, Huang J, Zhu L, Wu S, Zhao L, Kang Y. Integrative mRNA-miRNA interaction analysis associated with the immune response in the head kidney of rainbow trout (Oncorhynchus mykiss) after infectious hematopoietic necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109140. [PMID: 37797868 DOI: 10.1016/j.fsi.2023.109140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important cold-water fish widely cultivated in China. The frequent occurrence of viral diseases caused by infectious hematopoietic necrosis virus (IHNV) seriously restricted the healthy development of the rainbow trout farming industry. However, the immune defense mechanism induced by IHNV in rainbow trout has not been fully elucidated. In the present study, we detected mRNA and miRNA expression profiles in rainbow trout head kidney after IHNV infection using RNA-seq and identified key immune-related genes and miRNAs. The results showed that a total of 7486 genes and 277 miRNAs were differentially expressed, and numerous differentially expressed genes (DEGs) enriched in the immune-related pathways such as Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathway were significantly up-regulated, including LGP2, MDA5, TRIM25, IRF3, IRF7, TLR3, TLR7, TLR8, MYD88, and IFN1. Integration analysis identified six miRNAs (miR-141-y, miR-200-y, miR-144-y, miR-2188-y, miR-725-y, and miR-203-y) that target at least six key immune-related genes (TRIM25, LGP2, TLR3, TLR7, IRF3, and IRF7). Further, we verified selected immune-related mRNAs and miRNAs through qRT-PCR and confirmed the reliability of the RNA-seq results. These findings improve our understanding of the immune mechanism of rainbow trout infected with IHNV and provide basic data for future breeding for disease resistance in rainbow trout.
Collapse
Affiliation(s)
- Tongzhen Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Lirui Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
15
|
Gong Z, Guo C, Wang J, Chen S, Hu G. Establishment and identification of a skin cell line from Chinese tongue sole (Cynoglossus semilaevis) and analysis of the changes in its transcriptome upon LPS stimulation. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109119. [PMID: 37774902 DOI: 10.1016/j.fsi.2023.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
The Chinese tongue sole (Cynoglossus semilaevis) holds significant economic importance within the fishing industry along the eastern coasts of China. In recent years, the frequent outbreaks of bacterial diseases have become a common concern as the aquaculture scale expands. The majority of the diseased fish exhibit symptoms such as skin congestion, damage and skin ulceration. As the skin serves as the first line of defense against bacterial infections, establishing a skin cell line for immunological research on Chinese tongue sole's response to bacterial infection is of utmost importance. In this study, a cell line named CSS (derived from the skin of the Chinese tongue sole) was successfully established. The cells have demonstrated stability during passages and exhibit a multipolar fibroblast-like morphology. They were cultured in L-15 medium with 20% serum and have been successfully passed through 60 passages over a period of 20 months. The identification of the mitochondrial CO1 gene confirmed that the cell originated from Chinese tongue sole. The karyotype detection revealed that the cell had a chromosome number of 2n = 42. After being stored in liquid nitrogen for 15 months, the cells can maintain more than 75% viability upon recovery. After transfecting with cy3-labeled scramble siRNA and pEGFP-N3 plasmid, clear fluorescence was observed in the transfected cells. We observed that lipopolysaccharide (LPS) from Escherichia coli significantly upregulate the gene expression of various immune-related pathways at 2 h in the CSS cell line. Additionally, the differentially expressed genes showed a higher enrichment in immune-related pathways at 2 and 6 h after stimulation compared to the 24 h point. Moreover, we identified 347 genes that exhibited a gradual increase in expression during the 0-24 h stimulation period. These genes were primarily enriched in pathways related to Autophagy, GABAergic synapse, Apelin signaling and Ferroptosis. In general, the CSS cell line established in this study exhibits stable growth and can serve as a valuable tool for in vitro studies of immunology and other basic biologies of Chinese tongue sole.
Collapse
Affiliation(s)
- Zhihong Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Chenfei Guo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Jiacheng Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
16
|
Wang YX, Xu SF, Wang YW, Jiang YX, Qin QW, Wei SN. Curcumin Alleviates Singapore Grouper Iridovirus-Induced Intestine Injury in Orange-Spotted Grouper ( Epinephelus coioides). Antioxidants (Basel) 2023; 12:1584. [PMID: 37627579 PMCID: PMC10452002 DOI: 10.3390/antiox12081584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Singapore grouper iridovirus (SGIV) is a new ranavirus species in the Iridoviridae family, whose high lethality and rapid spread have resulted in enormous economic losses for the aquaculture industry. Curcumin, a polyphenolic compound, has been proven to possess multiple biological activities, including antibacterial, antioxidant, and antiviral properties. This study was conducted to determine whether curcumin protected orange-spotted grouper (Epinephelus coioides) from SGIV-induced intestinal damage by affecting the inflammatory response, cell apoptosis, oxidative stress, and intestinal microbiota. Random distribution of healthy orange-spotted groupers (8.0 ± 1.0 cm and 9.0 ± 1.0 g) into six experimental groups (each group with 90 groupers): Control, DMSO, curcumin, SGIV, DMSO + SGIV, and curcumin + SGIV. The fish administered gavage received DMSO dilution solution or 640 mg/L curcumin every day for 15 days and then were injected intraperitoneally with SGIV 24 h after the last gavage. When more than half of the groupers in the SGIV group perished, samples from each group were collected for intestinal health evaluation. Our results showed that curcumin significantly alleviated intestine damage and repaired intestinal barrier dysfunction, which was identified by decreased intestine permeability and serum diamine oxidase (DAO) activity and increased expressions of tight junction proteins during SGIV infection. Moreover, curcumin treatment suppressed intestinal cells apoptosis and inflammatory response caused by SGIV and protected intestinal cells from oxidative injury by enhancing the activity of antioxidant enzymes, which was related to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Moreover, we found that curcumin treatment restored the disruption of the intestinal microbiota caused by SGIV infection. Our study provided a theoretical basis for the functional development of curcumin in aquaculture by highlighting the protective effect of curcumin against SGIV-induced intestinal injury.
Collapse
Affiliation(s)
- Yue-Xuan Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.-X.W.); (S.-F.X.); (Y.-W.W.); (Y.-X.J.)
| | - Sui-Feng Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.-X.W.); (S.-F.X.); (Y.-W.W.); (Y.-X.J.)
| | - Ye-Wen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.-X.W.); (S.-F.X.); (Y.-W.W.); (Y.-X.J.)
| | - Yun-Xiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.-X.W.); (S.-F.X.); (Y.-W.W.); (Y.-X.J.)
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.-X.W.); (S.-F.X.); (Y.-W.W.); (Y.-X.J.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 528478, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Shi-Na Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.-X.W.); (S.-F.X.); (Y.-W.W.); (Y.-X.J.)
| |
Collapse
|
17
|
Zhao L, Huang J, Li Y, Wu S, Kang Y. Comprehensive analysis of immune parameters, mRNA and miRNA profiles, and immune genes expression in the gill of rainbow trout infected with infectious hematopoietic necrosis virus (IHNV). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108546. [PMID: 36646338 DOI: 10.1016/j.fsi.2023.108546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is a species of cold-water fish with important economic values, widely cultivated worldwide. However, the outbreak of infectious hematopoietic necrosis virus (IHNV) caused the large-scale death of rainbow trout and seriously restricted the development of the trout farming industry. In this study, the changes of immune parameters in different periods (6-, 12-, 24-, 48-, 72-, 96-, 120-, and 144 h post-infection (hpi)), transcriptome profiles of 48 hpi (T48G) compared to control (C48G), and key immune-related genes expression patterns were measured in rainbow trout gill following IHNV challenge through biochemical methods, RNA sequencing (RNA-seq), and quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that alkaline phosphatase (AKP), acid phosphatase (ACP), total superoxide dismutase (T-SOD), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities, as well as lysozyme (LZM) and malonaldehyde (MDA) content decreased and then increased during infection, and remained at a high level after 48 hpi (P < 0.05), whereas catalase (CAT) activity showed a significant peak at 48 hpi (P < 0.05). The mRNA and miRNA analysis identified 4343 differentially expressed genes (DEGs) and 11 differentially expressed miRNAs (DEMs), and numerous immune-related DEGs involved in the Toll-like receptor signaling pathway, apoptosis, DNA replication, p53 signaling, RIG-I-like receptor signaling pathway, and NOD-like receptor signaling pathway and expression were significantly up-regulated in T48Gm group, including tlr3, tlr7, tlr8, traf3, ifih1, trim25, dhx58, ddh58, hsp90a.1, nlrc3, nlrc5, socs3, irf3, irf7, casp7, mx1, and vig2. The integrated analysis identified several important miRNAs (ola-miR-27d-3p_R+5, gmo-miR-124-3-5p, ssa-miR-301a-5p_L+2, and ssa-miR-146d-3p) that targeted key immune-related DEGs. Expression analysis showed that tlr3, tlr7, traf3, ifih1, dhx58, hap90a.1, irf3, irf7, and mx1 genes increased and then decreased during infection, and peaked at 72 hpi (P < 0.05). However, trim25 expression peaked at 96 hpi (P < 0.05). This study contributes to understanding immune response of rainbow trout against IHNV infection, and provides new insights into the immune regulation mechanisms and disease resistance breeding studies.
Collapse
Affiliation(s)
- Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|