1
|
Ding L, Qi K, Zhou Y, Li Q, Liu M, Hu N, Wang J, Qiu J, Deng X, Xu L. Ingestion of Artemisia argyit essential oil combats Salmonella pullorum infections by altering gut microbiota composition in chicks. Vet Res 2025; 56:98. [PMID: 40329327 PMCID: PMC12057167 DOI: 10.1186/s13567-025-01527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/07/2025] [Indexed: 05/08/2025] Open
Abstract
Pullorum disease, caused by Salmonella pullorum (S. pullorum), is a highly contagious illness affecting the poultry industry. Emerging evidence suggests that Artemisia argyit essential oil can influence the composition of gut microbes in the host, thereby promoting overall health. However, the specific mechanisms by which Artemisia argyit essential oil modulates gut microbiota to combat S. pullorum infection remains unclear. This study explored the effectiveness of various doses of Artemisia argyit essential oil in preventing S. pullorum infection in chicks. Our findings indicate that consuming this essential oil can mitigate the intestinal mucosal barrier damage and excessive inflammatory response caused by S. pullorum, as well as reverse the weight loss seen in infected chicks. Additionally, chicks that received faecal microbiota transplantation (FMT) from the gut microbiota of Artemisia argyit essential oil donors exhibited notable recovery from S. pullorum infections. This suggests that the observed protection may be linked to the modulation of gut microbiota. Furthermore, 16S rRNA sequencing revealed an increased abundance of Lactobacillus reuteri (L. reuteri), which along with the activation of Wnt/β-catenin pathways, played critical roles in the enhanced health of S. pullorum-infected chicks treated with Artemisia argyit essential oil. In summary, these findings highlight that the dietary inclusion of Artemisia argyit essential oil promotes the intestinal enrichment of L. reuteri, offering a promising strategy for the treatment and prevention of pullorum disease in chicks.
Collapse
Affiliation(s)
- Linlin Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Kaige Qi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yutong Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qingjie Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Minda Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Na Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Lei Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Zhao Z, Zhao F, Luo T, Zhou Z, Zhang X. Emodin Improves Juvenile Largemouth Bass ( Micropterus salmoides) Liver Health Through Nrf2/NF-κB Pathway and Fat Metabolism: Growth Performance, Immune Response and Resistance Against Aeromonas veronii Infection. Animals (Basel) 2025; 15:178. [PMID: 39858180 PMCID: PMC11758297 DOI: 10.3390/ani15020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The experiment was aimed at examining the influence of adding emodin to feeds on the growth performance, liver immunity, and resistance against Aeromonas veronii infection among juvenile largemouth basses and other potential mechanisms. A total of 540 fish (45 ± 0.3 g) were randomly divided into 6 diets, including EM-0, EM-250, EM-500, EM-1000, EM-2000, and EM-4000 diets, in which 0, 250, 500, 1000, 2000, and 4000 mg kg-1 emodin was added. Following a 60-day feeding test, it demonstrated that the feed conversion ratio (FCR) of juveniles within the EM-500 and EM-1000 groups remarkably exceeded that of the EM-0 group. Subsequently, unlike those in EM-0 group, the fish in the EM-1000 group showed heightened hepatocyte count, induced hepatic lipolysis-associated expression of peroxisome proliferators-activated receptor α (PPARα) and acyl-coenzyme an oxidase (ACO), and reduced the hepatic triglyceride (TG) levels. Additionally, EM-1000 could up-regulate the expressions of nuclear factor erythroid 2-associated factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in livers compared with controls and boost antioxidant enzymes activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), along with a lower content of reactive oxygen species (ROS) and malondialdehyde (MDA). Meanwhile, the EM-1000 group increased anti-inflammatory cytokines of interleukin-10 (IL-10) while suppressing the interleukin-8 (IL-8) expression of pro-inflammatory cytokines in livers by contrast to controls. In the end, juvenile largemouth bass in the EM-1000 group showed a comparatively highest survival rate, whereas fish in the EM-2000 and EM-4000 groups exhibited a little higher mortality than that of the EM-0 group. To sum up, our study exposed that supplementing emodin with 1000 mg kg-1 in diet could enhance the hepatic antioxidant status and unspecific immunity to reinforce the protective effect on disease resistance, resulting in improving the growth performance in juvenile largemouth bass.
Collapse
Affiliation(s)
- Zhenxin Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China; (Z.Z.)
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Fei Zhao
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China; (Z.Z.)
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Tianxun Luo
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China; (Z.Z.)
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Zhou Zhou
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China; (Z.Z.)
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| | - Xianbo Zhang
- Institute of Fisheries, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China; (Z.Z.)
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang 550025, China
| |
Collapse
|
3
|
Cui W, Cao Q, Liu L, Yin X, Wang X, Zhao Y, Wang Y, Wei B, Xu X, Tang Y. Artemisia Argyi essential oil ameliorates acetaminophen-induced hepatotoxicity via CYP2E1 and γ-glutamyl cycle reprogramming. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156106. [PMID: 39366156 DOI: 10.1016/j.phymed.2024.156106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND The hepatotoxicity induced by acetaminophen (APAP), a commonly used antipyretic, analgesic and anti-inflammatory drug in clinical practice, has received accumulated attention. Artemisia argyi essential oil (AAEO), a volatile oil component extracted from traditional Chinese medicine Artemisia argyi H.Lév. & Vaniot, has great hepatoprotective effects. However, the potential role of AAEO in APAP-induced hepatotoxicity has not been characterized. The present study aimed to investigate the effects of AAEO on hepatic metabolic changes in mice exposed to APAP. METHODS In this study, 300.00 mg/kg acetaminophen was used to establish liver injury model in C57BL/6 J mice. Hepatoprotective effect of AAEO on APAP-induced hepatotoxicity in mice was investigated by detecting liver function enzymes and histopathological examination. Secondly, UPLC-MS/MS was used to analyze the to analyze the small molecule metabolites and metabolic pathways induced by AAEO treatment; In addition, the effect of AAEO on APAP-induced oxidative stress and inflammation were evaluated by detecting the levels of glutathione peroxidase 4, malondialdehyde, reactive oxygen species and inflammatory factors. Finally, the active components of AAEO were preliminarily screened by cellular assays. The hepatoprotective effect of AAEO against APAP-induced hepatotoxicity was examined through the Western blotting, after the CYP2E1 gene was knocked down in AML12 cells by siRNA transfection. RESULTS Compared with the APAP group, AAEO could reduce the abnormal increase in the levels of liver function enzymes caused by APAP. AAEO could enhance the antioxidant capacity by down-regulating the biosynthesis pathway of unsaturated fatty acids and promoting the activity of antioxidant enzymes SOD and CAT in liver tissue induced by APAP. Our study revealed that AAEO promoted GSH synthesis and covalently combined to form APAP-GSH conjugates to reduce the accumulation of APAP in liver tissue. In addition, the chemical constituents in AAEO were analyzed by GC-MS/MS, and it was determined to identify that dihydro-beta-ionone and (-)-verbenone in AAEO might have a significant protective effect on hepatocyte survival after APAP exposure. Further studies on the hepatoprotective mechanism of AAEO indicated that it might reduce the production of toxic metabolites by regulating CYP2E1 levels. CONCLUSION AAEO exerted hepatoprotective effects on acetaminophen-induced hepatotoxicity in mice via regulating the activity of CYP2E1 and regulating the γ-glutamyl cycle pathway.
Collapse
Affiliation(s)
- Weiqi Cui
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qianwen Cao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Luyao Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuecui Yin
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Wang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Zhao
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanhong Wang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Youcai Tang
- Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Henan Workshop of Chronic Liver Injury for Outstanding Overseas Scientists, Zhengzhou Key Laboratory of Metabolic-dysfunction-associated Fatty Liver Disease, Department of Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
4
|
Erdenebileg S, Kim M, Nam Y, Cha KH, Le TT, Jung SH, Nho CW. Artemisia argyi ethanol extract ameliorates nonalcoholic steatohepatitis-induced liver fibrosis by modulating gut microbiota and hepatic signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118415. [PMID: 38848971 DOI: 10.1016/j.jep.2024.118415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi (AA), a herbal medicine traditionally used in Asian countries, to treat inflammatory conditions such as eczema, dermatitis, arthritis, allergic asthma and colitis. However, the mechanism of action of this plant with regard to hepatitis and other liver-related diseases is still unclear. AIM This study aimed to investigate the effects of AA ethanol extract on NASH-related fibrosis and gut microbiota in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-induced mouse model. METHODS Male C57BL/6J mice were fed CDAHFD, with or without AA ethanol extract treatment. Biochemical markers, lipid profiles, hepatic mRNA expression levels of key genes, and the fibrosis area were assessed. In vitro, TGF-β-stimulated human hepatic stellate LX-2 cells and mouse primary hepatic stellate cells (mHSCs) were used to elucidate the effects of AA ethanol extract on fibrosis and steatosis. 16S rRNA sequencing, QIIME2, and PICRUST2 were employed to analyze gut microbial diversity, composition, and functional pathways. RESULTS Treatment with the AA ethanol extract improved plasma and liver lipid profiles, modulated hepatic mRNA expression levels of antioxidant, lipolytic, and fibrosis-related genes, and significantly reduced CDAHFD-induced hepatic fibrosis. Gut microbiota analysis revealed a marked decrease in Acetivibrio ethanolgignens abundance upon treatment with the AA ethanol extract, and its functional pathways were significantly correlated with NASH/fibrosis markers. The AA ethanol extract and its active components (jaceosidin, eupatilin, and chlorogenic acid) inhibited fibrosis-related markers in LX-2 and mHSC. CONCLUSION The AA ethanol extract exerted therapeutic effects on CDAHFD-induced liver disease by modulating NASH/fibrosis-related factors and gut microbiota composition. Notably, AA treatment reduced the abundance of the potentially profibrotic bacterium (A. ethanolgignens). These findings suggest that AA is a promising candidate for treating NASH-induced fibrosis.
Collapse
Affiliation(s)
- Saruul Erdenebileg
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Myungsuk Kim
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, South Korea
| | - Yunseong Nam
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Kwang Hyun Cha
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, South Korea; Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Tam Thi Le
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Sang Hoon Jung
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea.
| |
Collapse
|
5
|
Dong H, Zeng X, Zheng X, Li C, Ming J, Zhang J. The Liver-Protective Effects of the Essential Oil from Amomum villosum in Tilapia ( Oreochromis niloticus): Antioxidant, Transcriptomic, and Metabolomic Modulations. Antioxidants (Basel) 2024; 13:1118. [PMID: 39334777 PMCID: PMC11428501 DOI: 10.3390/antiox13091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the effects of the essential oil from Amomum villosum (EOA) on liver-protective effects in Nile tilapia (Oreochromis niloticus), utilizing a multidisciplinary approach that integrates physiological assessments and transcriptomic and metabolomic analyses. Fish were fed diets containing 2 g/kg of EOA over a 56-day trial, with a no-EOA diet serving as the control. The results demonstrate that EOA supplementation improves liver histology, enhances antioxidant capacities, and reduces inflammation in tilapia. The transcriptomic analysis revealed significant alterations in gene expression profiles related to RNA splicing, metabolism, and disease pathways. The identification of differential genes and disease databases identified key target genes associated with the primary component of EOA for its anti-hepatobiliary disease effects. Furthermore, a molecular docking analysis of EOA major components with core differentially expressed genes in the hepatobiliary syndrome indicated that α-pinene is a potential Hsp90 inhibitor, which may prevent inflammation. A metabolomic analysis further demonstrated that EOA supplementation leads to notable changes in liver phospholipids, fatty acids, and carbohydrate metabolism. These findings underscore the potential of EOA as a natural additive for improving liver health in tilapia, offering valuable insights to the aquaculture industry for enhancing fish health and welfare in intensive farming systems.
Collapse
Affiliation(s)
- Hongbiao Dong
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Xiangbing Zeng
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Zheng
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Chenghui Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- National Aquaculture Engineering Technology Research Center, Zhejiang Ocean University, Zhoushan 316000, China
| | - Junchao Ming
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| | - Jiasong Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Lingshui 572426, China
| |
Collapse
|
6
|
Zhang H, Zhao L, Zhang P, Xie Y, Yao X, Pan X, Fu Y, Wei J, Bai H, Shao X, Ye J, Wu C. Effects of selenoprotein extracts from Cardamine hupingshanensis on growth, selenium metabolism, antioxidant capacity, immunity and intestinal health in largemouth bass Micropterus salmoides. Front Immunol 2024; 15:1342210. [PMID: 38318186 PMCID: PMC10839570 DOI: 10.3389/fimmu.2024.1342210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1β and interferon γ), while increasing transforming growth factor β1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.
Collapse
Affiliation(s)
- Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Long Zhao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xinfeng Yao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xuewen Pan
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Yifan Fu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Jiao Wei
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Hongfeng Bai
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|
7
|
Li Q, Wu L, Wang G, Zheng F, Sun J, Zhang Y, Li Z, Li L, Sun B. Inhibitory Effects of Jiuzao Polysaccharides on Alcoholic Fatty Liver Formation in Zebrafish Larvae and Their Regulatory Impact on Intestinal Microbiota. Foods 2024; 13:276. [PMID: 38254577 PMCID: PMC10815347 DOI: 10.3390/foods13020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The liver is critical in alcohol metabolism, and excessive consumption heightens the risk of hepatic damage, potentially escalating to hepatitis and cirrhosis. Jiuzao, a by-product of Baijiu production, contains a rich concentration of naturally active polysaccharides known for their antioxidative properties. This study investigated the influence of Laowuzeng Jiuzao polysaccharide (LJP) on the development of ethanol-induced alcoholic fatty liver. Zebrafish larvae served as the model organisms for examining the LJPs hepatic impact via liver phenotypic and biochemical assays. Additionally, this study evaluated the LJPs effects on gene expression associated with alcoholic fatty liver and the composition of the intestinal microbiota through transcriptomic and 16 S rRNA gene sequencing analyses, respectively. Our findings revealed that LJP markedly mitigated morphological liver damage and reduced oxidative stress and lipid peroxidation in larvae. Transcriptome data indicated that LJP ameliorated hepatic fat accumulation and liver injury by enhancing gene expression involved in alcohol and lipid metabolism. Furthermore, LJP modulated the development of alcoholic fatty liver by altering the prevalence of intestinal Actinobacteriota and Firmicutes, specifically augmenting Acinetobacter while diminishing Chryseobacterium levels. Ultimately, LJP mitigated alcohol-induced hepatic injury by modulating gene expression related to ethanol metabolism, lipid metabolism, and inflammation and by orchestrating alterations in the intestinal microbiota.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Liling Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guangnan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhang Zhang
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053009, China (Z.L.)
| | - Zexia Li
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053009, China (Z.L.)
| | - Lianghao Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|