1
|
Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, Thakare RP, Banday S, Mishra AK, Das G, Malonia SK. Next-Generation Sequencing Technology: Current Trends and Advancements. BIOLOGY 2023; 12:997. [PMID: 37508427 PMCID: PMC10376292 DOI: 10.3390/biology12070997] [Citation(s) in RCA: 261] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The advent of next-generation sequencing (NGS) has brought about a paradigm shift in genomics research, offering unparalleled capabilities for analyzing DNA and RNA molecules in a high-throughput and cost-effective manner. This transformative technology has swiftly propelled genomics advancements across diverse domains. NGS allows for the rapid sequencing of millions of DNA fragments simultaneously, providing comprehensive insights into genome structure, genetic variations, gene expression profiles, and epigenetic modifications. The versatility of NGS platforms has expanded the scope of genomics research, facilitating studies on rare genetic diseases, cancer genomics, microbiome analysis, infectious diseases, and population genetics. Moreover, NGS has enabled the development of targeted therapies, precision medicine approaches, and improved diagnostic methods. This review provides an insightful overview of the current trends and recent advancements in NGS technology, highlighting its potential impact on diverse areas of genomic research. Moreover, the review delves into the challenges encountered and future directions of NGS technology, including endeavors to enhance the accuracy and sensitivity of sequencing data, the development of novel algorithms for data analysis, and the pursuit of more efficient, scalable, and cost-effective solutions that lie ahead.
Collapse
Affiliation(s)
- Heena Satam
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Kandarp Joshi
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Upasana Mangrolia
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Sanober Waghoo
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Gulnaz Zaidi
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Shravani Rawool
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Ritesh P. Thakare
- Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA; (R.P.T.); (S.B.); (A.K.M.)
| | - Shahid Banday
- Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA; (R.P.T.); (S.B.); (A.K.M.)
| | - Alok K. Mishra
- Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA; (R.P.T.); (S.B.); (A.K.M.)
| | - Gautam Das
- miBiome Therapeutics, Mumbai 400102, India; (H.S.); (K.J.); (U.M.); (S.W.); (G.Z.); (S.R.)
| | - Sunil K. Malonia
- Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA; (R.P.T.); (S.B.); (A.K.M.)
| |
Collapse
|
2
|
Zhou Z, Li Z, Yao Y, Qian J, Ji Q, Shao C, Xie J. Validation of phylogenetic informative Y-InDels in Y-chromosomal haplogroup O-M175. Front Genet 2023; 14:1182028. [PMID: 37205119 PMCID: PMC10185902 DOI: 10.3389/fgene.2023.1182028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
The Y-chromosomal haplogroup tree, which consists of a group of Y-chromosomal loci with phylogenetic information, has been widely applied in anthropology, archaeology and population genetics. With the continuous updating of the phylogenetic structure, Y-chromosomal haplogroup tree provides more information for recalling the biogeographical origin of Y chromosomes. Generally, Y-chromosomal insertion-deletion polymorphisms (Y-InDels) are genetically stable as Y-chromosomal single nucleotide polymorphisms (Y-SNPs), and therefore carry mutations that can accumulate over generations. In this study, potential phylogenetic informative Y-InDels were filtered out in haplogroup O-M175, which is dominant in East Asia, based on population data retrieved from the 1000 Genomes Project. A group of 22 phylogenetic informative Y-InDels were identified and then assigned to their corresponding subclades of haplogroup O-M175, which provided a supplement for the update and application of Y-chromosomal markers. Especially, four Y-InDels were introduced to define subclades determined using a single Y-SNP.
Collapse
|
3
|
Zho Z, Zhou Y, Li Z, Yao Y, Yang Q, Qian J, Shao C, Qian X, Sun K, Tang Q, Xie J. Identification and assessment of a subset of Y-SNPs with recurrent mutation for forensic purpose. Forensic Sci Int 2022; 334:111270. [DOI: 10.1016/j.forsciint.2022.111270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
|
4
|
Zhou Z, Zhou Y, Yao Y, Qian J, Liu B, Yang Q, Shao C, Li H, Sun K, Tang Q, Xie J. A 16-plex Y-SNP typing system based on allele-specific PCR for the genotyping of Chinese Y-chromosomal haplogroups. Leg Med (Tokyo) 2020; 46:101720. [PMID: 32505804 DOI: 10.1016/j.legalmed.2020.101720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Y-chromosomal SNP (Y-SNP), with its stable inheritance and low mutation, can provide Supplementary information in forensic investigation. While commonly used Y-chromosomal STR haplotypes show their limitations, typing of Y-SNP would become a powerful complement. In this study, a 16-plex Y-SNP typing system based on allele-specific PCR (AS-PCR) was developed to discriminate four dominant Y-chromosomal haplogroups (C-M130, D-CTS3946, N-M231, and O-M175) and 12 predominant sub-haplogroups of O-M175 (O1a-M119, O1a1a1a-CTS3265, O1b-M268, O1b1a2-Page59, O2-M122, O2a1-L127.1, O2a1b-F240, O2a1b1a1-CTS5820, O2a2-P201, O2a2b1a1-M177, O2a2b1a1a1a-Y17728, O2a2b1a2-F114). A series of experimental validation studies including sensitivity, species specificity, male-female mixture and inhibition were performed. The discrimination of the typing system was preliminarily proved with a haplogroup diversity of 0.9239. Altogether, the Y-SNP typing system based on AS-PCR should be capable of distinguishing China's dominant Y-chromosomal haplogroups in a rapid and reliable manner, thus can be employed as a useful complement in forensic casework.
Collapse
Affiliation(s)
- Zhihan Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxiang Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yining Yao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jinglei Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baonian Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qinrui Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai 200083, China
| | - Kuan Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiqun Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Larmuseau MH, van den Berg P, Claerhout S, Calafell F, Boattini A, Gruyters L, Vandenbosch M, Nivelle K, Decorte R, Wenseleers T. A Historical-Genetic Reconstruction of Human Extra-Pair Paternity. Curr Biol 2019; 29:4102-4107.e7. [DOI: 10.1016/j.cub.2019.09.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/12/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022]
|
6
|
Maisano Delser P, Ravnik-Glavač M, Gasparini P, Glavač D, Mezzavilla M. Genetic Landscape of Slovenians: Past Admixture and Natural Selection Pattern. Front Genet 2018; 9:551. [PMID: 30510563 PMCID: PMC6252347 DOI: 10.3389/fgene.2018.00551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
The Slovenian territory played a crucial role in the past serving as gateway for several human migrations. Previous studies used Slovenians as a source population to interpret different demographic events happened in Europe but not much is known about the genetic background and the demographic history of this population. Here, we analyzed genome-wide data from 96 individuals to shed light on the genetic role and history of the Slovenian population. Y chromosome diversity splits into two major haplogroups R1b and R1a with the latter suggesting a genetic contribution from the steppe. Slovenian individuals are more closely related to Northern and Eastern European populations than Southern European populations even though they are geographically closer. This pattern is confirmed by an admixture and clustering analysis. We also identified a single stream of admixture events between the Slovenians with Sardinians and Russians around ∼2630 BCE (2149-3112). Using ancient samples, we found a significant admixture in Slovenians using Yamnaya and the early Neolithic Hungarians as sources, dated around ∼1762 BCE (1099-2426) suggesting a strong contribution from the steppe to the foundation of the observed modern genetic diversity. Finally, we looked for signals of selection in candidate variants and we found significant hits in HERC2 and FADS responsible for blue eye color and synthesis of long-chain unsaturated fatty acids, respectively, when Slovenians were compared to Southern Europeans. While the comparison was done with Eastern Europeans, we identified significant signals in PKD2L1 and IL6R which are genes associated with taste and coronary artery disease, respectively.
Collapse
Affiliation(s)
- Pierpaolo Maisano Delser
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Metka Ravnik-Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Paolo Gasparini
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Massimo Mezzavilla
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
7
|
Larmuseau MHD, Ottoni C. Mediterranean Y-chromosome 2.0-why the Y in the Mediterranean is still relevant in the postgenomic era. Ann Hum Biol 2018; 45:20-33. [PMID: 29382278 DOI: 10.1080/03014460.2017.1402956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Due to its unique paternal inheritance, the Y-chromosome has been a highly popular marker among population geneticists for over two decades. Recently, the advent of cost-effective genome-wide methods has unlocked information-rich autosomal genomic data, paving the way to the postgenomic era. This seems to have announced the decreasing popularity of investigating Y-chromosome variation, which provides only the paternal perspective of human ancestries and is strongly influenced by genetic drift and social behaviour. OBJECTIVE For this special issue on population genetics of the Mediterranean, the aim was to demonstrate that the Y-chromosome still provides important insights in the postgenomic era and in a time when ancient genomes are becoming exponentially available. METHODS A systematic literature search on Y-chromosomal studies in the Mediterranean was performed. RESULTS Several applications of Y-chromosomal analysis with future opportunities are formulated and illustrated with studies on Mediterranean populations. CONCLUSIONS There will be no reduced interest in Y-chromosomal studies going from reconstruction of male-specific demographic events to ancient DNA applications, surname history and population-wide estimations of extra-pair paternity rates. Moreover, more initiatives are required to collect population genetic data of Y-chromosomal markers for forensic research, and to include Y-chromosomal data in GWAS investigations and studies on male infertility.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- a KU Leuven, Forensic Biomedical Sciences , Department of Imaging & Pathology , Leuven , Belgium.,b KU Leuven, Laboratory of Socioecology and Social Evolution , Department of Biology , Leuven , Belgium
| | - Claudio Ottoni
- c Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences , University of Oslo , Oslo , Norway
| |
Collapse
|
8
|
Claerhout S, Vandenbosch M, Nivelle K, Gruyters L, Peeters A, Larmuseau MH, Decorte R. Determining Y-STR mutation rates in deep-routing genealogies: Identification of haplogroup differences. Forensic Sci Int Genet 2018; 34:1-10. [DOI: 10.1016/j.fsigen.2018.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
|
9
|
Defining Y-SNP variation among the Flemish population (Western Europe) by full genome sequencing. Forensic Sci Int Genet 2017; 31:e12-e16. [PMID: 29089250 DOI: 10.1016/j.fsigen.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022]
Abstract
Y-chromosomal single nucleotide polymorphisms (Y-SNPs) represent a powerful tool in forensic research and casework, especially for inferring paternal ancestry of unknown perpetrators and unidentified bodies. However, the wealth of recently discovered Y-SNPs, the 'jungle' of different evolutionary lineage trees and nomenclatures, and the lack of population-wide data of many phylogenetically mapped Y-SNPs, limits the use of Y-SNPs in routine forensic approaches. Recently, a concise reference phylogeny of the human Y chromosome, the 'Minimal Reference Y-tree', was introduced aiming to provide a stable phylogeny with optimal global discrimination capacity by including the most resolving Y-SNPs. Here, we obtained a representative sample of 270 whole-genome sequences (WGS) to grasp the Y-SNP variation within the autochthonous Flemish population (Belgium, Western Europe) according to this reference Y-tree. The high quality of the Y-SNP calling was guaranteed for the WGS sample as well as its representativeness for the Flemish population based on the comparison of the main haplogroup frequencies with those from earlier studies on Flanders and the Netherlands. The 270 Flemish Y chromosomes were assigned to 98 different sub-haplogroups of the Minimal Reference Y-tree, showing its high potential of discrimination and confirming the spectrum of evolutionary lineages within Western Europe in general and within Flanders in particular. The full database with all Y-SNP calls of the Flemish sample is public available for future updates including forensic and population genetic studies. New initiatives to categorise Y-SNP variation in other populations according to the reference phylogeny of the Y chromosome are highly encouraged for forensic applications. Recommendations to realise such future population sample sets are discussed based on this study.
Collapse
|
10
|
Larmuseau MHD, Claerhout S, Gruyters L, Nivelle K, Vandenbosch M, Peeters A, van den Berg P, Wenseleers T, Decorte R. Genetic-genealogy approach reveals low rate of extrapair paternity in historical Dutch populations. Am J Hum Biol 2017; 29. [PMID: 28742271 DOI: 10.1002/ajhb.23046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/01/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Evolutionary theory has shown that seeking out extrapair paternity (EPP) can be a viable reproductive strategy for both sexes in pair-bonded species, also in humans. As yet, estimates of the contemporary or historical EPP rate in human population are still rare. In the present study, we estimated the historical EPP rate in the Dutch population over the last 400 years and compared the rate with those obtained for other human populations to determine the evolutionary, cultural, and socio-demographic factors that influence human cuckoldry behavior. METHODS We estimated the historical EPP rate for the Dutch population via the "genealogical pair method", in which the EPP rate is derived from Y-chromosome mismatches between pairs of individuals that, based on genealogical evidence, share a common paternal ancestor. RESULTS Based on the analysis of 68 representative genealogical pairs, separated by a total of 1013 fertilization events, we estimated that the historical EPP rate for the Dutch population over the last 400 years was 0.96% per generation (95% confidence interval 0.46%-1.76%). CONCLUSION The Dutch EPP rate fits perfectly within the range reported for other contemporary and historical populations in Western Europe and was highly congruent with that estimated for neighboring Flanders, despite the socio-economic and religious differences between both populations. The estimated low EPP rate challenges the "dual mating strategy hypothesis" that states that women could obtain fitness benefits by securing investment from one man while cuckolding him to obtain good genes from an affair partner.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Sofie Claerhout
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Leen Gruyters
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Kelly Nivelle
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Michiel Vandenbosch
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Anke Peeters
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium
| | - Pieter van den Berg
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ronny Decorte
- Department of Imaging & Pathology, KU Leuven, Forensic Biomedical Sciences, Leuven, Belgium.,Laboratory of Forensic genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
11
|
The Paternal Landscape along the Bight of Benin - Testing Regional Representativeness of West-African Population Samples Using Y-Chromosomal Markers. PLoS One 2015; 10:e0141510. [PMID: 26544036 PMCID: PMC4636292 DOI: 10.1371/journal.pone.0141510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Patterns of genetic variation in human populations across the African continent are still not well studied in comparison with Eurasia and America, despite the high genetic and cultural diversity among African populations. In population and forensic genetic studies a single sample is often used to represent a complete African region. In such a scenario, inappropriate sampling strategies and/or the use of local, isolated populations may bias interpretations and pose questions of representativeness at a macrogeographic-scale. The non-recombining region of the Y-chromosome (NRY) has great potential to reveal the regional representation of a sample due to its powerful phylogeographic information content. An area poorly characterized for Y-chromosomal data is the West-African region along the Bight of Benin, despite its important history in the trans-Atlantic slave trade and its large number of ethnic groups, languages and lifestyles. In this study, Y-chromosomal haplotypes from four Beninese populations were determined and a global meta-analysis with available Y-SNP and Y-STR data from populations along the Bight of Benin and surrounding areas was performed. A thorough methodology was developed allowing comparison of population samples using Y-chromosomal lineage data based on different Y-SNP panels and phylogenies. Geographic proximity turned out to be the best predictor of genetic affinity between populations along the Bight of Benin. Nevertheless, based on Y-chromosomal data from the literature two population samples differed strongly from others from the same or neighbouring areas and are not regionally representative within large-scale studies. Furthermore, the analysis of the HapMap sample YRI of a Yoruban population from South-western Nigeria based on Y-SNPs and Y-STR data showed for the first time its regional representativeness, a result which is important for standard population and forensic genetic applications using the YRI sample. Therefore, the uniquely and powerful geographical information carried by the Y-chromosome makes it an important locus to test the representativeness of a certain sample even in the genomic era, especially in poorly investigated areas like Africa.
Collapse
|
12
|
Johansson MM, Van Geystelen A, Larmuseau MHD, Djurovic S, Andreassen OA, Agartz I, Jazin E. Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups. PLoS One 2015; 10:e0137223. [PMID: 26322892 PMCID: PMC4554990 DOI: 10.1371/journal.pone.0137223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The human Y chromosome is almost always excluded from genome-wide investigations of copy number variants (CNVs) due to its highly repetitive structure. This chromosome should not be forgotten, not only for its well-known relevance in male fertility, but also for its involvement in clinical phenotypes such as cancers, heart failure and sex specific effects on brain and behaviour. RESULTS We analysed Y chromosome data from Affymetrix 6.0 SNP arrays and found that the signal intensities for most of 8179 SNP/CN probes in the male specific region (MSY) discriminated between a male, background signals in a female and an isodicentric male containing a large deletion of the q-arm and a duplication of the p-arm of the Y chromosome. Therefore, this SNP/CN platform is suitable for identification of gain and loss of Y chromosome sequences. In a set of 1718 males, we found 25 different CNV patterns, many of which are novel. We confirmed some of these variants by PCR or qPCR. The total frequency of individuals with CNVs was 14.7%, including 9.5% with duplications, 4.5% with deletions and 0.7% exhibiting both. Hence, a novel observation is that the frequency of duplications was more than twice the frequency of deletions. Another striking result was that 10 of the 25 detected variants were significantly overrepresented in one or more haplogroups, demonstrating the importance to control for haplogroups in genome-wide investigations to avoid stratification. NO-M214(xM175) individuals presented the highest percentage (95%) of CNVs. If they were not counted, 12.4% of the rest included CNVs, and the difference between duplications (8.9%) and deletions (2.8%) was even larger. CONCLUSIONS Our results demonstrate that currently available genome-wide SNP platforms can be used to identify duplications and deletions in the human Y chromosome. Future association studies of the full spectrum of Y chromosome variants will demonstrate the potential involvement of gain or loss of Y chromosome sequence in different human phenotypes.
Collapse
Affiliation(s)
- Martin M. Johansson
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
- * E-mail: (MMJ); (EJ)
| | - Anneleen Van Geystelen
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Maarten H. D. Larmuseau
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
- * E-mail: (MMJ); (EJ)
| |
Collapse
|
13
|
Rothe J, Nagy M. Separation of Y-chromosomal haplotypes from male DNA mixtures via multiplex haplotype-specific extraction. Forensic Sci Int Genet 2015; 19:223-231. [PMID: 26275613 DOI: 10.1016/j.fsigen.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
Abstract
In forensic analysis, the interpretation of DNA mixtures is the subject of ongoing debate and requires expertise knowledge. Haplotype-specific extraction (HSE) is an alternative method that enables the separation of large chromosome fragments or haplotypes by using magnetic beads in conjunction with allele-specific probes. HSE thus allows physical separation of the components of a DNA mixture. Here, we present the first multiplex HSE separation of a Y-chromosomal haplotype consisting of six Yfiler short tandem repeat markers from a mixture of male DNA.
Collapse
Affiliation(s)
- Jessica Rothe
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité- Campus Virchow-Klinikum, Augustenburger Platz 1, Forum 4, 13353 Berlin, Germany.
| | - Marion Nagy
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité- Campus Virchow-Klinikum, Augustenburger Platz 1, Forum 4, 13353 Berlin, Germany
| |
Collapse
|
14
|
Kwon SY, Lee HY, Lee EY, Yang WI, Shin KJ. Confirmation of Y haplogroup tree topologies with newly suggested Y-SNPs for the C2, O2b and O3a subhaplogroups. Forensic Sci Int Genet 2015; 19:42-46. [PMID: 26103100 DOI: 10.1016/j.fsigen.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
Y chromosome single nucleotide polymorphisms (Y-SNPs) are useful markers for reconstructing male lineages through hierarchically arranged allelic sets known as haplogroups, and are thereby widely used in the fields such as human evolution, anthropology and forensic genetics. The Y haplogroup tree was recently revised with newly suggested Y-SNP markers for designation of several subgroups of haplogroups C2, O2b and O3a, which are predominant in Koreans. Therefore, herein we analyzed these newly suggested Y-SNPs in 545 unrelated Korean males who belong to the haplogroups C2, O2b or O3a, and investigated the reconstructed topology of the Y haplogroup tree. We were able to confirm that markers L1373, Z1338/JST002613-27, Z1300, CTS2657, Z8440 and F845 define the C2 subhaplogroups, C2b, C2e, C2e1, C2e1a, C2e1b and C2e2, respectively, and that markers F3356, L682, F11, F238/F449 and F444 define the O subhaplogroups O2b1, O2b1b, O3a1c1, O3a1c2 and O3a2c1c, respectively. Among six C2 subhaplogroups (C2b, C2e, C2e1*, C2e1a, C2e1b and C2e2), the C2e haplogroup and its subhaplogroups were found to be predominant, and among the four O2b subhaplogroups (O2b*, O2b1*, O2b1a and O2b1b), O2b1b was most frequently observed. Among the O3a subhaplogroups, O3a2c1 was predominant and it was further divided into the subhaplogroups O3a2c1a and O3a2c1c with a newly suggested marker. However, the JST002613-27 marker, which had been known to define the haplogroup C2f, was found to be an ancestral marker of the C2e haplogroup, as is the Z1338 marker. Also, the M312 marker for the O2b1 haplogroup designation was replaced by F3356, because all of the O2b1 haplotypes showed a nucleotide change at F3356, but not at M312. In addition, the F238 marker was always observed to be phylogenetically equivalent to F449, while both of the markers were assigned to the O3a1c2 haplogroup. The confirmed phylogenetic tree of this study with the newly suggested Y-SNPs could be valuable for anthropological and forensic investigations of East Asians including Koreans.
Collapse
Affiliation(s)
- So Yeun Kwon
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea; Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Eun Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Woo Ick Yang
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Kyoung-Jin Shin
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea; Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea.
| |
Collapse
|
15
|
Large-scale recent expansion of European patrilineages shown by population resequencing. Nat Commun 2015; 6:7152. [PMID: 25988751 PMCID: PMC4441248 DOI: 10.1038/ncomms8152] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 04/13/2015] [Indexed: 12/12/2022] Open
Abstract
The proportion of Europeans descending from Neolithic farmers ∼ 10 thousand years ago (KYA) or Palaeolithic hunter-gatherers has been much debated. The male-specific region of the Y chromosome (MSY) has been widely applied to this question, but unbiased estimates of diversity and time depth have been lacking. Here we show that European patrilineages underwent a recent continent-wide expansion. Resequencing of 3.7 Mb of MSY DNA in 334 males, comprising 17 European and Middle Eastern populations, defines a phylogeny containing 5,996 single-nucleotide polymorphisms. Dating indicates that three major lineages (I1, R1a and R1b), accounting for 64% of our sample, have very recent coalescent times, ranging between 3.5 and 7.3 KYA. A continuous swathe of 13/17 populations share similar histories featuring a demographic expansion starting ∼ 2.1-4.2 KYA. Our results are compatible with ancient MSY DNA data, and contrast with data on mitochondrial DNA, indicating a widespread male-specific phenomenon that focuses interest on the social structure of Bronze Age Europe.
Collapse
|
16
|
Rothe J, Melisch C, Powers N, Geppert M, Zander J, Purps J, Spors B, Nagy M. Genetic research at a fivefold children's burial from medieval Berlin. Forensic Sci Int Genet 2015; 15:90-7. [DOI: 10.1016/j.fsigen.2014.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
17
|
Hallast P, Batini C, Zadik D, Maisano Delser P, Wetton JH, Arroyo-Pardo E, Cavalleri GL, de Knijff P, Destro Bisol G, Dupuy BM, Eriksen HA, Jorde LB, King TE, Larmuseau MH, López de Munain A, López-Parra AM, Loutradis A, Milasin J, Novelletto A, Pamjav H, Sajantila A, Schempp W, Sears M, Tolun A, Tyler-Smith C, Van Geystelen A, Watkins S, Winney B, Jobling MA. The Y-chromosome tree bursts into leaf: 13,000 high-confidence SNPs covering the majority of known clades. Mol Biol Evol 2014; 32:661-73. [PMID: 25468874 PMCID: PMC4327154 DOI: 10.1093/molbev/msu327] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analyzing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of nonsynonymous variants in 15 MSY single-copy genes.
Collapse
Affiliation(s)
- Pille Hallast
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Chiara Batini
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Daniel Zadik
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Jon H Wetton
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Eduardo Arroyo-Pardo
- Laboratory of Forensic and Population Genetics, Department of Toxicology and Health Legislation, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Gianpiero L Cavalleri
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Giovanni Destro Bisol
- Istituto Italiano di Antropologia, Rome, Italy Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Berit Myhre Dupuy
- Division of Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi A Eriksen
- Centre of Arctic Medicine, Thule Institute, University of Oulu, Oulu, Finland Utsjoki Health Care Centre, Utsjoki, Finland
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT
| | - Turi E King
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Maarten H Larmuseau
- Laboratory of Forensic Genetics and Molecular Archaeology, KU Leuven, Leuven, Belgium Department of Imaging & Pathology, Biomedical Forensic Sciences, KU Leuven, Leuven, Belgium Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Ana M López-Parra
- Laboratory of Forensic and Population Genetics, Department of Toxicology and Health Legislation, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | - Jelena Milasin
- School of Dental Medicine, Institute of Human Genetics, University of Belgrade, Belgrade, Serbia
| | | | - Horolma Pamjav
- Network of Forensic Science Institutes, Institute of Forensic Medicine, Budapest, Hungary
| | - Antti Sajantila
- Department of Forensic Medicine, Hjelt Institute, University of Helsinki, Helsinki, Finland Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Werner Schempp
- Institute of Human Genetics, University of Freiburg, Freiburg, Germany
| | - Matt Sears
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Aslıhan Tolun
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | | | - Anneleen Van Geystelen
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Scott Watkins
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT
| | - Bruce Winney
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mark A Jobling
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
18
|
Larmuseau MHD, Van Geystelen A, Kayser M, van Oven M, Decorte R. Towards a consensus Y-chromosomal phylogeny and Y-SNP set in forensics in the next-generation sequencing era. Forensic Sci Int Genet 2014; 15:39-42. [PMID: 25488610 DOI: 10.1016/j.fsigen.2014.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 11/19/2022]
Abstract
Currently, several different Y-chromosomal phylogenies and haplogroup nomenclatures are presented in scientific literature and at conferences demonstrating the present diversity in Y-chromosomal phylogenetic trees and Y-SNP sets used within forensic and anthropological research. This situation can be ascribed to the exponential growth of the number of Y-SNPs discovered due to mostly next-generation sequencing (NGS) studies. As Y-SNPs and their respective phylogenetic positions are important in forensics, such as for male lineage characterization and paternal bio-geographic ancestry inference, there is a need for forensic geneticists to know how to deal with these newly identified Y-SNPs and phylogenies, especially since these phylogenies are often created with other aims than to carry out forensic genetic research. Therefore, we give here an overview of four categories of currently used Y-chromosomal phylogenies and the associated Y-SNP sets in scientific research in the current NGS era. We compare these categories based on the construction method, their advantages and disadvantages, the disciplines wherein the phylogenetic tree can be used, and their specific relevance for forensic geneticists. Based on this overview, it is clear that an up-to-date reduced tree with a consensus Y-SNP set and a stable nomenclature will be the most appropriate reference resource for forensic research. Initiatives to reach such an international consensus are therefore highly recommended.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- UZ Leuven, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium; KU Leuven, Forensic Biomedical Sciences, Department of Imaging & Pathology, Leuven, Belgium; KU Leuven, Laboratory of Socioecology and Social Evolution, Department of Biology, Leuven, Belgium.
| | - Anneleen Van Geystelen
- KU Leuven, Laboratory of Socioecology and Social Evolution, Department of Biology, Leuven, Belgium
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ronny Decorte
- UZ Leuven, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium; KU Leuven, Forensic Biomedical Sciences, Department of Imaging & Pathology, Leuven, Belgium
| |
Collapse
|
19
|
Pseudoautosomal region 1 length polymorphism in the human population. PLoS Genet 2014; 10:e1004578. [PMID: 25375121 PMCID: PMC4222609 DOI: 10.1371/journal.pgen.1004578] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022] Open
Abstract
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into theMa Y chromosome generates an extended PAR. The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution. The human sex chromosomes differ in sequence, except for homologous sequences at both ends, termed the pseudoautosomal regions (PAR1 and PAR2). PAR enables the pairing of chromosomes Y and X during meiosis. The PARs are located at the termini of respectively the short and long arms of chromosomes X and Y. The observation of gradual shortening of the Y chromosome over evolutionary time has led to speculations that the Y chromosome is “doomed to extinction.” However, the Y chromosome has been shaped over evolution not only by the loss of genes, but also by addition of genes as a result of interchromosomal exchanges. In this work, we identified males with a duplication on chromosome Xp22.33 of about 136 kb as an incidental finding during a copy number variation screen. We demonstrate that the duplicon is an insertional translocation due to non-allelic homologous recombination from the X to the Y chromosome that is flanked by a long terminal repeat (LTR6B). We show this translocation event has occurred independently multiple times and that the duplicated region recombines with the X chromosome. Therefore, the duplicated region represents an extension of the pseudoautosomal region, representing a novel mechanism shaping sex chromosomal evolution in humans.
Collapse
|
20
|
Yang Y, Xie B, Yan J. Application of next-generation sequencing technology in forensic science. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:190-7. [PMID: 25462152 PMCID: PMC4411420 DOI: 10.1016/j.gpb.2014.09.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 12/03/2022]
Abstract
Next-generation sequencing (NGS) technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multiple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice.
Collapse
Affiliation(s)
- Yaran Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingbing Xie
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangwei Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
21
|
Larmuseau MH, Vanderheyden N, Van Geystelen A, Decorte R. A substantially lower frequency of uninformative matches between 23 versus 17 Y-STR haplotypes in north Western Europe. Forensic Sci Int Genet 2014; 11:214-9. [DOI: 10.1016/j.fsigen.2014.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 01/31/2023]
|
22
|
Van Geystelen A, Wenseleers T, Decorte R, Caspers MJL, Larmuseau MHD. In silico detection of phylogenetic informative Y-chromosomal single nucleotide polymorphisms from whole genome sequencing data. Electrophoresis 2014; 35:3102-10. [DOI: 10.1002/elps.201300459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/03/2013] [Accepted: 01/07/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Anneleen Van Geystelen
- Laboratory of Forensic Genetics and Molecular Archaeology; UZ Leuven Leuven Belgium
- Laboratory of Socioecology and Social Evolution; Department of Biology; KU Leuven Leuven Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution; Department of Biology; KU Leuven Leuven Belgium
| | - Ronny Decorte
- Laboratory of Forensic Genetics and Molecular Archaeology; UZ Leuven Leuven Belgium
- Biomedical Forensic Sciences; Department of Imaging & Pathology; KU Leuven Leuven Belgium
| | - Maarten J. L. Caspers
- Laboratory of Forensic Genetics and Molecular Archaeology; UZ Leuven Leuven Belgium
- Laboratory of Biodiversity and Evolutionary Genomics; Department of Biology; KU Leuven Leuven Belgium
| | - Maarten H. D. Larmuseau
- Laboratory of Forensic Genetics and Molecular Archaeology; UZ Leuven Leuven Belgium
- Biomedical Forensic Sciences; Department of Imaging & Pathology; KU Leuven Leuven Belgium
- Laboratory of Biodiversity and Evolutionary Genomics; Department of Biology; KU Leuven Leuven Belgium
| |
Collapse
|
23
|
Larmuseau MHD, Vanderheyden N, Van Geystelen A, Oven M, Knijff P, Decorte R. Recent Radiation within Y‐chromosomal Haplogroup R‐M269 Resulted in High Y‐STR Haplotype Resemblance. Ann Hum Genet 2014; 78:92-103. [DOI: 10.1111/ahg.12050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/07/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Maarten H. D. Larmuseau
- Laboratory of Forensic Genetics and Molecular ArchaeologyUZ Leuven Leuven Belgium
- Department of Imaging & PathologyBiomedical Forensic SciencesKU Leuven Leuven Belgium
- Laboratory of Biodiversity and Evolutionary GenomicsDepartment of BiologyKU Leuven Leuven Belgium
| | - Nancy Vanderheyden
- Laboratory of Forensic Genetics and Molecular ArchaeologyUZ Leuven Leuven Belgium
| | - Anneleen Van Geystelen
- Laboratory of Socioecology and Social EvolutionDepartment of BiologyKU Leuven Leuven Belgium
| | - Mannis Oven
- Department of Forensic Molecular BiologyErasmus MC – University Medical Center Rotterdam Rotterdam The Netherlands
| | - Peter Knijff
- Department of Human GeneticsLeiden University Medical Center Leiden The Netherlands
| | - Ronny Decorte
- Laboratory of Forensic Genetics and Molecular ArchaeologyUZ Leuven Leuven Belgium
- Department of Imaging & PathologyBiomedical Forensic SciencesKU Leuven Leuven Belgium
| |
Collapse
|
24
|
Larmuseau MHD, Vanoverbeke J, Van Geystelen A, Defraene G, Vanderheyden N, Matthys K, Wenseleers T, Decorte R. Low historical rates of cuckoldry in a Western European human population traced by Y-chromosome and genealogical data. Proc Biol Sci 2013; 280:20132400. [PMID: 24266034 PMCID: PMC3813347 DOI: 10.1098/rspb.2013.2400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 11/12/2022] Open
Abstract
Recent evidence suggests that seeking out extra-pair paternity (EPP) can be a viable alternative reproductive strategy for both males and females in many pair-bonded species, including humans. Accurate data on EPP rates in humans, however, are scant and mostly restricted to extant populations. Here, we provide the first large-scale, unbiased genetic study of historical EPP rates in a Western European human population based on combining Y-chromosomal data to infer genetic patrilineages with genealogical and surname data, which reflect known historical presumed paternity. Using two independent methods, we estimate that over the last few centuries, EPP rates in Flanders (Belgium) were only around 1–2% per generation. This figure is substantially lower than the 8–30% per generation reported in some behavioural studies on historical EPP rates, but comparable with the rates reported by other genetic studies of contemporary Western European populations. These results suggest that human EPP rates have not changed substantially during the last 400 years in Flanders and imply that legal genealogies rarely differ from the biological ones. This result has significant implications for a diverse set of fields, including human population genetics, historical demography, forensic science and human sociobiology.
Collapse
Affiliation(s)
- M. H. D. Larmuseau
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - J. Vanoverbeke
- Laboratory of Aquatic Ecology and Evolutionary Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - A. Van Geystelen
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - G. Defraene
- Department of Radiation Oncology, UZ Leuven, Leuven, Belgium
| | - N. Vanderheyden
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
| | - K. Matthys
- Centre for Sociological Research (CESO), Family and Population Studies, KU Leuven, Leuven, Belgium
| | - T. Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - R. Decorte
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
- Biomedical Forensic Sciences, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Niederstätter H, Berger B, Erhart D, Willuweit S, Geppert M, Gassner C, Schennach H, Parson W, Roewer L. Multiple recurrent mutations at four human Y-chromosomal single nucleotide polymorphism sites in a 37 bp sequence tract on the ARSDP1 pseudogene. Forensic Sci Int Genet 2013; 7:593-600. [DOI: 10.1016/j.fsigen.2013.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
26
|
van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau MHD. Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome. Hum Mutat 2013; 35:187-91. [PMID: 24166809 DOI: 10.1002/humu.22468] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
During the last few decades, a wealth of studies dedicated to the human Y chromosome and its DNA variation, in particular Y-chromosome single-nucleotide polymorphisms (Y-SNPs), has led to the construction of a well-established Y-chromosome phylogeny. Since the recent advent of new sequencing technologies, the discovery of additional Y-SNPs is exploding and their continuous incorporation in the phylogenetic tree is leading to an ever higher resolution. However, the large and increasing amount of information included in the "complete" Y-chromosome phylogeny, which now already includes many thousands of identified Y-SNPs, can be overwhelming and complicates its understanding as well as the task of selecting suitable markers for genotyping purposes in evolutionary, demographic, anthropological, genealogical, medical, and forensic studies. As a solution, we introduce a concise reference phylogeny whereby we do not aim to provide an exhaustive tree that includes all known Y-SNPs but, rather, a quite stable reference tree aiming for optimal global discrimination capacity based on a strongly reduced set that includes only the most resolving Y-SNPs. Furthermore, with this reference tree, we wish to propose a common standard for Y-marker as well as Y-haplogroup nomenclature. The current version of our tree is based on a core set of 417 branch-defining Y-SNPs and is available online at http://www.phylotree.org/Y.
Collapse
Affiliation(s)
- Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Larmuseau MHD, Delorme P, Germain P, Vanderheyden N, Gilissen A, Van Geystelen A, Cassiman JJ, Decorte R. Genetic genealogy reveals true Y haplogroup of House of Bourbon contradicting recent identification of the presumed remains of two French Kings. Eur J Hum Genet 2013; 22:681-7. [PMID: 24105374 DOI: 10.1038/ejhg.2013.211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 11/09/2022] Open
Abstract
Genetic analysis strongly increases the opportunity to identify skeletal remains or other biological samples from historical figures. However, validation of this identification is essential and should be done by DNA typing of living relatives. Based on the similarity of a limited set of Y-STRs, a blood sample and a head were recently identified as those belonging respectively to King Louis XVI and his paternal ancestor King Henry IV. Here, we collected DNA samples from three living males of the House of Bourbon to validate the since then controversial identification of these remains. The three living relatives revealed the Bourbon's Y-chromosomal variant on a high phylogenetic resolution for several members of the lineage between Henry IV and Louis XVI. This 'true' Bourbon's variant is different from the published Y-STR profiles of the blood as well as of the head. The earlier identifications of these samples can therefore not be validated. Moreover, matrilineal genealogical data revealed that the published mtDNA sequence of the head was also different from the one of a series of relatives. This therefore leads to the conclusion that the analyzed samples were not from the French kings. Our study once again demonstrated that in order to realize an accurate genetic identification of historical remains DNA typing of living persons, who are paternally or maternally related with the presumed donor of the samples, is required.
Collapse
Affiliation(s)
- Maarten H D Larmuseau
- 1] Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium [2] Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium [3] Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | - Nancy Vanderheyden
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
| | - Anja Gilissen
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
| | - Anneleen Van Geystelen
- 1] Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium [2] Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Cassiman
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
| | - Ronny Decorte
- 1] Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium [2] Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|