1
|
Parson W, Alterauge A, Amory C, Heinze S, Hölzl S, Jahn RG, Lehn C, Sänger T, Xavier C, Tillmar A, Nolte K, Lutz-Bonengel S, Doll S. Remains of the German outlaw Johannes Bückler alias Schinderhannes identified by an interdisciplinary approach. Forensic Sci Int Genet 2025; 78:103276. [PMID: 40157087 DOI: 10.1016/j.fsigen.2025.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
Two mounted skeletons assigned to the famous German criminals Schinderhannes and Hölzerlips were on display at the Anatomical Collection of Heidelberg University for two centuries. However, doubts about their authenticity existed for decades. Based on historical research, an interdisciplinary team with experts from the fields of anatomy, radiology, anthropology, genealogy and molecular biology set out to examine the remains from the following perspectives: (1) Isotope analyses were carried out to compare inferred childhood residences with historical narratives, (2) anthropological and radiological examinations were documented and compared with historical records, (3) genealogical research identified a living male descendant along the maternal line and (4) mitogenome sequencing as well as nuclear SNP analysis using the FORCE panel provided compelling evidence for the identification of Schinderhannes' remains. Additionally, the prediction of eye, hair and skin color from the DNA offered science-based data to clarify conflicting historical records.
Collapse
Affiliation(s)
- Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| | - Amelie Alterauge
- Department of Archaeology, Cantonal Heritage Service, Canton of Schaffhausen, Schaffhausen, Switzerland
| | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Heinze
- Diagnostik, & Forschungsinstitut für Gerichtliche Medizin, Medizinische Universität Graz, Graz, Austria
| | - Stefan Hölzl
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Ries Krater Museum, Nördlingen, Germany
| | | | - Christine Lehn
- Institute of Legal Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | - Timo Sänger
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catarina Xavier
- I3S Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Andreas Tillmar
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Karen Nolte
- Institute for Medical History and Ethics, Medical Faculty of Heidelberg University, Heidelberg, Germany
| | - Sabine Lutz-Bonengel
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sara Doll
- Institute of Anatomy and Cell Biology, Medical Faculty of Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Li H, Cao Y, Yang F, Liu X, Tao R, Xia R, Zhu R, Jiang L, Liu S, Li C. Quantitation of human mitochondrial DNA and whole mtGenomes sequencing of fingernail/hair shaft samples. Forensic Sci Res 2025; 10:owae018. [PMID: 40007636 PMCID: PMC11850650 DOI: 10.1093/fsr/owae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2025] Open
Abstract
The analysis of mitochondrial DNA (mtDNA) is suitable for fingernail/hair shaft samples in forensic science. A successful mtDNA forensic analysis depends on the quantity and quality of the mtDNA. The application of massively parallel sequence techniques to the analysis of mtDNA has the potential to improve the recovery of genetic information from difficult forensic specimens and to increase the discrimination potential of mtDNA by capturing and comparing full mtGenomes. In this study, we constructed mtDNA-specific standard curves using real-time PCR. The 105-base pair target sequence facilitates the amplification of degraded DNA and is minimally homologous to non-human mtDNA. The results indicated that the assay enables the absolute quantification of down to 10 copies of mtDNA and provides a dynamic range of eight orders of magnitude. Whole mtGenome sequencing experiments demonstrated that as few as 2 000 mtDNA copies resulted in a successful full region amplification and sequencing. Moreover, the frequency of point heteroplasmy from one donor showed that hairs from the same donor have been found to differ within and among themselves and from other tissues, which could impact the interpretation of the results obtained in a forensic investigation.
Collapse
Affiliation(s)
- Hui Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Yu Cao
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai, China
| | - Fan Yang
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Ruocheng Xia
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Ruxin Zhu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Lei Jiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Shiquan Liu
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| |
Collapse
|
3
|
Lee SE, Kim GE, Lee DY, Kim H, Kim MY. Analysis of the sequencing quality of next-generation sequencing for the entire mitochondrial genome in decomposed human samples. Int J Legal Med 2025; 139:551-562. [PMID: 39607452 DOI: 10.1007/s00414-024-03380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Human body decomposition significantly damages DNA, particularly short tandem repeats used in DNA profiling. In degraded samples, mitochondrial DNA (mtDNA) is used for aiding identification, utilizing hard tissues such as bones as DNA sources. However, extracting DNA from these tissues is complex and time-consuming. This study explores soft tissues for mtDNA analysis employing a next-generation sequencing (NGS) panel. A total of 290 samples from 30 autopsy cases were analyzed using an NGS panel targeting the entire mitochondrial genome. Among them, 239 samples were from 25 decomposed bodies with total body scores (TBS) ranging from 3 to 24. Nine types of soft tissue, including heart, liver, kidney, lung, brain, pectoralis muscle, iliacus muscle, aorta, and uterus, were examined. Rib cartilage, a representative hard tissue, and blood samples served as reference materials. Over 90% of the mtDNA sequence was confirmed in 49.6% of decomposed samples, increasing to 78.7% in hypervariable regions. As much as 95-100% of the mtDNA sequence could be retrieved from several highly decomposed soft tissues, comparable to rib cartilage. Among soft tissues, the uterus and aorta showed the shortest regions of uncovered mtDNA, highlighting their potential in decomposed bodies. No significant correlation was found between mtDNA sequencing quality and TBS or the nuclear DNA degradation index. The NGS panel successfully obtained most mtDNA sequences from decomposed soft tissues, suggesting that decomposition does not preclude genetic testing. Employing uterine or aortic tissues as alternatives to hard tissues in forensic contexts could streamline procedures, saving both time and resources.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Anatomy and Cell Biology, Laboratory of Forensic Medicine, Sungkyunkwan University School of Medicine, 2066 Seobu- ro, Jangan-gu, Suwon-si, 16419, Republic of Korea
| | - Ga Eun Kim
- Department of Anatomy and Cell Biology, Laboratory of Forensic Medicine, Sungkyunkwan University School of Medicine, 2066 Seobu- ro, Jangan-gu, Suwon-si, 16419, Republic of Korea
| | - Dong Yeon Lee
- Department of Anatomy and Cell Biology, Laboratory of Forensic Medicine, Sungkyunkwan University School of Medicine, 2066 Seobu- ro, Jangan-gu, Suwon-si, 16419, Republic of Korea
| | - Hajin Kim
- Department of Anatomy and Cell Biology, Laboratory of Forensic Medicine, Sungkyunkwan University School of Medicine, 2066 Seobu- ro, Jangan-gu, Suwon-si, 16419, Republic of Korea
| | - Moon-Young Kim
- Department of Anatomy and Cell Biology, Laboratory of Forensic Medicine, Sungkyunkwan University School of Medicine, 2066 Seobu- ro, Jangan-gu, Suwon-si, 16419, Republic of Korea.
| |
Collapse
|
4
|
Melchionda F, Pesaresi M, Alessandrini F, Onofri V, Turchi C. Developmental validation of a multiplex qPCR assay for simultaneous quantification of nuclear and mitochondrial DNA. Forensic Sci Int Genet 2024; 74:103164. [PMID: 39437496 DOI: 10.1016/j.fsigen.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Quantification of human DNA is key in forensic genetics. A more accurate estimate of the amount of DNA is essential for planning and optimising genotyping assays, as is evaluating the presence of PCR inhibitory substances and DNA degradation status. Multiplex qPCR assays are helpful in forensics because they can quantify different targets simultaneously, thus saving valuable samples, time, and labour. The aim of this study was to highlight the challenges in the developmental validation of a multiplex real-time PCR assay and the drawbacks encountered in translating a previously described and validated assay (SD quants) to a different technology by modifying the dye probes and reagent mix to be used in a different instrument. We developed a TaqMan probe-based multiplex qPCR using reagents and fluorescent probes adapted for the Rotor-Gene 6000 instrument (QIAGEN, Hilden, Germany). The initial assay combined two mitochondrial DNA (mtDNA) and two nuclear DNA (nDNA) targets, with amplification products of different sizes (mtDNA = 69 and 143 bp; nDNA = 71 and 181 bp), to estimate the DNA degradation status and an internal positive control (IPC) to detect potential inhibitors. During the initial testing of the assay, we observed an interaction between the 69 bp mtDNA target and the 71 bp nDNA target probe, and experiments were conducted to resolve this issue without success. We removed the small nDNA target (71 bp) and changed from a 5-plex to a 4-plex qPCR assay (qMIND). The final tetraplex assay was tested on 105 forensic samples and/or small amounts of degraded DNA, such as bones, teeth, fingernails, formalin-fixed paraffin-embedded tissues (FFPE), and hair shaft samples. The quantification results were compared with data acquired from the same samples using another commercially available quantification system commonly used in forensic laboratories. In addition, the short tandem repeat (STR) profiles were investigated to determine their correlation with the quantitative values obtained. Overall, the qPCR assay was robust and reliable for DNA quantification in samples commonly used in forensic practice.
Collapse
Affiliation(s)
- Filomena Melchionda
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Torrette, Ancona 60126, Italy.
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Torrette, Ancona 60126, Italy.
| | - Federica Alessandrini
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Torrette, Ancona 60126, Italy.
| | - Valerio Onofri
- Legal Medicine Unit, AOU Azienda Ospedaliera Universitaria delle Marche, Ancona, Via Conca, Torrette, Ancona 60126, Italy.
| | - Chiara Turchi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Torrette, Ancona 60126, Italy.
| |
Collapse
|
5
|
Naue J, Xavier C, Hörer S, Parson W, Lutz-Bonengel S. Assessment of mitochondrial DNA copy number variation relative to nuclear DNA quantity between different tissues. Mitochondrion 2024; 74:101823. [PMID: 38040171 DOI: 10.1016/j.mito.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial DNA is a widely tested genetic marker in various fields of research and diagnostics. Nonetheless, there is still little understanding on its abundance and quality within different tissues. Aiming to obtain deeper knowledge about the content and quality of mtDNA, we investigated nine tissues including blood, bone, brain, hair (root and shaft), cardiac muscle, liver, lung, skeletal muscle, and buccal mucosa of 32 deceased individuals using two real-time quantitative PCR-based assays with differently sized mtDNA and nDNA targets. The results revealed that the quantity of nDNA is a weak surrogate to estimate mtDNA quantities among tissues of an individual, as well as tissues across individuals. Especially hair showed extreme variation, depicting a range of multiple magnitudes of mtDNA molecules per hair fragment. Furthermore, degradation can lead to fewer fragments being available for PCR. The results call for parallel determination of the quantity and quality of mtDNA prior to downstream genotyping assays.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstrasse 9, Freiburg 79104, Germany
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, Innsbruck 6020, Austria; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Steffen Hörer
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstrasse 9, Freiburg 79104, Germany
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, Innsbruck 6020, Austria; Forensic Science Program, The Pennsylvania State University, USA.
| | - Sabine Lutz-Bonengel
- Institute of Forensic Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstrasse 9, Freiburg 79104, Germany
| |
Collapse
|
6
|
Obal M, Zupanc T, Zupanič Pajnič I. Measure quantity of mitochondrial DNA in aged bones or calculate it from nuclear DNA quantitative PCR results? Int J Legal Med 2023; 137:1653-1659. [PMID: 37558822 PMCID: PMC10567894 DOI: 10.1007/s00414-023-03074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Mitochondrial DNA (mtDNA) is of great value in forensics to procure information about a person when a next of kin, personal belongings, or other sources of nuclear DNA (nDNA) are unavailable, or nDNA is lacking in quality and quantity. The quality and reliability of the results depend greatly on ensuring optimal conditions for the given method, for instance, the optimal input of the copy number (CN) in next-generation sequencing (NGS) methods. The unavailability of commercial quantitative PCR (qPCR) methods to determine mtDNA CN creates the necessity to rely on recommendations to infer mtDNA CN from nDNA yield. Because nDNA yield varies between individuals, tissues, parts of the same tissue, and because mtDNA CN varies between tissues, such assumptions must be examined for a specific context, rather than be generalized. This study compares mtDNA CN calculated from nDNA yield and qPCR measured mtDNA CN. Seventy-five femurs from the Second World War victims were used as samples; they were cut below the greater trochanter, surface contaminants were removed by mechanical and chemical cleaning, samples were fully demineralized, and DNA was isolated. PowerQuant® Kit (Promega) was used to analyze DNA yield. An in-house method was used to determine mtDNA CN. Comparison of mtDNA CN from nDNA derived calculations and measured mtDNA CN highlighted vast differences. The results emphasize the need to perform qPCR to assess mtDNA CN before NGS analyses of aged bones' mitogenomes rather than estimating mtDNA CN from nDNA yield to ensure the quality and reliability of the results of NGS analysis.
Collapse
Affiliation(s)
- Marcel Obal
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Xavier C, Sutter C, Amory C, Niederstätter H, Parson W. NuMY-A qPCR Assay Simultaneously Targeting Human Autosomal, Y-Chromosomal, and Mitochondrial DNA. Genes (Basel) 2023; 14:1645. [PMID: 37628695 PMCID: PMC10454206 DOI: 10.3390/genes14081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The accurate quantification of DNA in forensic samples is of utmost importance. These samples are often present in limited amounts; therefore, it is indicated to use the appropriate analysis route with the optimum DNA amount (when possible). Also, DNA quantification can inform about the degradation stage and therefore support the decision on which downstream genotyping method to use. Consequently, DNA quantification aids in getting the best possible results from a forensic sample, considering both its DNA quantity and quality limitations. Here, we introduce NuMY, a new quantitative real-time PCR (qPCR) method for the parallel quantification of human nuclear (n) and mitochondrial (mt) DNA, assessing the male portion in mixtures of both sexes and testing for possible PCR inhibition. NuMY is based on previous work and follows the MIQE guidelines whenever applicable. Although quantification of nuclear (n)DNA by simultaneously analyzing autosomal and male-specific targets is available in commercial qPCR kits, tools that include the quantification of mtDNA are sparse. The quantification of mtDNA has proven relevant for samples with low nDNA content when conventional DNA fingerprinting techniques cannot be followed. Furthermore, the development and use of new massively parallel sequencing assays that combine multiple marker types, i.e., autosomal, Y-chromosomal, and mtDNA, can be optimized when precisely knowing the amount of each DNA component present in the input sample. For high-quality DNA extracts, NuMY provided nDNA results comparable to those of another quantification technique and has also proven to be a reliable tool for challenging, forensically relevant samples such as mixtures, inhibited, and naturally degraded samples.
Collapse
Affiliation(s)
- Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
- i3S—Institute for Research and Innovation in Health, University of Porto, 4099-002 Porto, Portugal
| | - Charlotte Sutter
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.A.); (H.N.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
8
|
Thomas JT, Cavagnino C, Kjelland K, Anderson E, Sturk-Andreaggi K, Daniels-Higginbotham J, Amory C, Spatola B, Moran K, Parson W, Marshall C. Evaluating the Usefulness of Human DNA Quantification to Predict DNA Profiling Success of Historical Bone Samples. Genes (Basel) 2023; 14:genes14050994. [PMID: 37239354 DOI: 10.3390/genes14050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
This study assessed the usefulness of DNA quantification to predict the success of historical samples when analyzing SNPs, mtDNA, and STR targets. Thirty burials from six historical contexts were utilized, ranging in age from 80 to 800 years postmortem. Samples underwent library preparation and hybridization capture with two bait panels (FORCE and mitogenome), and STR typing (autosomal STR and Y-STR). All 30 samples generated small (~80 bp) autosomal DNA target qPCR results, despite mean mappable fragments ranging from 55-125 bp. The qPCR results were positively correlated with DNA profiling success. Samples with human DNA inputs as low as 100 pg resulted in ≥80% FORCE SNPs at 10X coverage. All 30 samples resulted in mitogenome coverage ≥100X despite low human DNA input (as low as 1 pg). With PowerPlex Fusion, ≥30 pg human DNA input resulted in >40% of auSTR loci. At least 59% of Y-STR loci were recovered with Y-target qPCR-based inputs of ≥24 pg. The results also indicate that human DNA quantity is a better predictor of success than the ratio of human to exogenous DNA. Accurate quantification with qPCR is feasible for historical bone samples, allowing for the screening of extracts to predict the success of DNA profiling.
Collapse
Affiliation(s)
- Jacqueline Tyler Thomas
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
| | - Courtney Cavagnino
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
| | - Katelyn Kjelland
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- Amentum Services Inc. (Contractor Supporting the AFMES-AFDIL), Germantown, MD 20876, USA
| | - Elise Anderson
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- Amentum Services Inc. (Contractor Supporting the AFMES-AFDIL), Germantown, MD 20876, USA
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
| | - Jennifer Daniels-Higginbotham
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
| | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Brian Spatola
- National Museum of Health and Medicine, Anatomical Division, Defense Health Agency, Silver Spring, MD 20910, USA
| | - Kimberlee Moran
- Forensic Science Program, Department of Chemistry, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
- Forensic Science Program, The Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
9
|
Liu Z, Simayijiang H, Wang Q, Yang J, Sun H, Wu R, Yan J. DNA and protein analyses of hair in forensic genetics. Int J Legal Med 2023; 137:613-633. [PMID: 36732435 DOI: 10.1007/s00414-023-02955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Hair is one of the most common pieces of biological evidence found at a crime scene and plays an essential role in forensic investigation. Hairs, especially non-follicular hairs, are usually found at various crime scenes, either by natural shedding or by forcible shedding. However, the genetic material in hairs is usually highly degraded, which makes forensic analysis difficult. As a result, the value of hair has not been fully exploited in forensic investigations and trials. In recent years, with advances in molecular biology, forensic analysis of hair has achieved remarkable strides and provided crucial clues in numerous cases. This article reviews recent developments in DNA and protein analysis of hair and attempts to provide a comprehensive solution to improve forensic hair analysis.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Qiangwei Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|
10
|
Borik-Heil L, Endler G, Parson W, Zuckermann A, Schnaller L, Uyanik-Ünal K, Jaksch P, Böhmig G, Cejka D, Staufer K, Hielle-Wittmann E, Rasoul-Rockenschaub S, Wolf P, Sunder-Plassmann R, Geusau A. Cumulative UV Exposure or a Modified SCINEXA™-Skin Aging Score Do Not Play a Substantial Role in Predicting the Risk of Developing Keratinocyte Cancers after Solid Organ Transplantation-A Case Control Study. Cancers (Basel) 2023; 15:cancers15030864. [PMID: 36765822 PMCID: PMC9913211 DOI: 10.3390/cancers15030864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The risk of keratinocyte cancer is determined by intrinsic and extrinsic factors, which also influence skin aging. Few studies have linked skin aging and UV exposure with the incidence of non-melanoma skin cancer (NMSC). We evaluated signs of actinic skin damage and aging, individual UV burden, and melanocortin-1 receptor (MC1R) variants. A total of 194 organ transplant recipients (OTR) who suffered from NMSC were compared to 194 tumor-free controls matched for gender, age, type of transplanted organ, post-transplantation (TX) period, and immunosuppressive therapy. Compared with the cases, the controls scored higher in all skin aging scores and there were no differences in UV burden except for intentional whole-body UV exposure for specific UV scenarios and periods of life in favor of cases. The number of NMSCs correlated with all types of skin aging scores, the extent of intentional sun exposure, older age, longer post-TX period, shorter interval from TX to first NMSC, and specific MC1R risk groups. Multivariable models revealed a 7.5-fold risk of developing NMSC in individuals with actinic keratosis; 4.1- or 3.6-fold in those with green or blue eyes, respectively; and a 1.9-fold increased risk in the MC1R medium- + high-risk group. In the absence of skin aging contributing to NMSC development, certain MC1R risk types may identify OTR at risk for high tumor burden.
Collapse
Affiliation(s)
- Liliane Borik-Heil
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Endler
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16801, USA
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Keziban Uyanik-Ünal
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Böhmig
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Cejka
- Department of Nephrology, Ordensklinikum Barmherzige Schwestern Linz, 4020 Linz, Austria
| | - Katharina Staufer
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, 1090 Vienna, Austria
| | - Elisabeth Hielle-Wittmann
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, 1090 Vienna, Austria
| | - Susanne Rasoul-Rockenschaub
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, 8036 Graz, Austria
| | | | - Alexandra Geusau
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-77690
| |
Collapse
|
11
|
Turchi C, Melchionda F, Alessandrini F, Onofri V, Pesaresi M, Buscemi L, Tagliabracci A. Pitfalls, challenges and caveats in whole mitochondrial genome sequencing from hair shafts by MPS: Where, when and how to address them. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2022. [DOI: 10.1016/j.fsigss.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Dierig L, Bamberg M, Brommer A, Klein-Unseld R, Kunz SN, Schwender M, Wiegand P. Development of a multiplex assay for detection of autosomal and Y-chromosomal STRs, assessment of the degradation state of mitochondrial DNA and presence of mitochondrial length heteroplasmies. Forensic Sci Int Genet 2022; 61:102775. [PMID: 36137414 DOI: 10.1016/j.fsigen.2022.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022]
Abstract
The current focus in most routine forensic casework is detection of autosomal or gonosomal Short Tandem Repeats (STRs). With increasing degradation, STR analysis tends to be less successful up to complete failure. For challenging samples such as telogen hair roots and shafts, touch DNA samples or skeletal remains, mitochondrial DNA (mtDNA) analysis provides a powerful tool. Determination of DNA quantity is an important part in the casework workflow. Several ready-to-use kits are commercially available for nuclear DNA targets. However, quantification of mtDNA targets requires the establishment of an in-house method. Some assays even contain assessment of degradation, which alleviates the choice of target enrichment for sequencing through medium or small amplicons. As Sanger-type Sequencing (STS) still remains the golden standard in many laboratories, identification of heteroplasmies in C-tract regions prior to the sequencing reaction is advantageous. Firstly, primer selection can be expanded with primers binding near the C-tract and secondly, determination of the dominant variant is straightforward. All those quantity (nuclear and mtDNA) and quality (degradation and length heteroplasmies) evaluations usually require at least two separate reactions. Therefore, the aim of this project was the combination of all these targets in one multiplex assay using capillary electrophoresis to spare valuable sample extract. Amplification of representative autosomal and Y-chromosomal STRs allows estimate of success of (Y-)STR analysis. Simultaneously, five length heteroplasmies in the mitochondrial control region are targeted as well as three conservative regions of differing fragment lengths for assessment of the mitochondrial degradation state. Based on the outcome of this assay, forensic examiners can decide if STR analysis may be suitable. In case of absent STR peaks, appropriate proceeding of mtDNA sequencing can be determined.
Collapse
Affiliation(s)
- Lisa Dierig
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany.
| | - Malte Bamberg
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Arthur Brommer
- Ludwig-Maximilians University Munich, Geschwister-Scholl-Platz 1, München 80539, Germany
| | - Rachel Klein-Unseld
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Sebastian N Kunz
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Max Schwender
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Peter Wiegand
- University Ulm, Institute of Legal Medicine, Albert-Einstein-Allee 23, Ulm 89081, Germany
| |
Collapse
|
13
|
Development and validation of a SYBR green-based mitochondrial DNA quantification method by following the MIQE and other guidelines. Leg Med (Tokyo) 2022; 58:102096. [PMID: 35689884 DOI: 10.1016/j.legalmed.2022.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 01/28/2023]
Abstract
In forensic mitochondrial DNA (mtDNA) analysis, quantitative PCR (qPCR) is usually performed to obtain high-quality sequence data for subsequent Sanger or massively parallel sequencing. Unlike methods for nuclear DNA quantification using qPCR, a calibrator is necessary to obtain mtDNA concentrations (i.e., copies/µL). Herein, we developed and validated a mtDNA quantification method based on a SYBR Green assay by following MIQE [Bustin et al., Clin. Chem. 55 (2009) 611-22] and other guidelines. Primers were designed to amplify nucleotide positions 16,190-16,420 in hypervariable region 1 for qPCR using PowerUp SYBR Green and QuantStudio 5. The optimized conditions were 0.3 µM each primer and an annealing temperature of 60 °C under a 2-step cycling protocol. K562 DNA at 100 pg/µL was converted into a mtDNA concentration of 16,400 copies/µL using linearized plasmid DNA. This mtDNA calibrator was obtained by cloning the synthesized DNA fragments of mtDNA (positions 16,140-16,470) containing a 100-bp inversion. The linear dynamic range of the K562 standard curve was 10,000-0.1 pg/µL (r2 ≥ 0.999). The accuracy was examined using NIST SRM 2372a, and its components A, B, and C were quantified with differences of -29.4%, -35.0%, and -22.0%, respectively, against the mtDNA concentrations calculated from published NIST data. We also examined the specificity of the primers, stability of the reaction mix, precision, tolerance against PCR inhibitors, and cross-reactivity against DNA from various animal taxa. Our newly developed mtDNA quantification method is expected to be useful for forensic mtDNA analysis.
Collapse
|
14
|
Marshall C, Parson W. Interpreting NUMTs in forensic genetics: Seeing the forest for the trees. Forensic Sci Int Genet 2021; 53:102497. [PMID: 33740708 DOI: 10.1016/j.fsigen.2021.102497] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/29/2023]
Abstract
Nuclear mitochondrial DNA (mtDNA) segments (NUMTs) were discovered shortly after sequencing the first human mitochondrial genome. They have earlier been considered to represent archaic elements of ancient insertion events, but modern sequencing technologies and growing databases of mtDNA and NUMT sequences confirm that they are abundant and some of them phylogenetically young. Here, we build upon mtDNA/NUMT review articles published in the mid 2010 s and focus on the distinction of NUMTs and other artefacts that can be observed in aligned sequence reads, such as mixtures (contamination), point heteroplasmy, sequencing error and cytosine deamination. We show practical examples of the effect of the mtDNA enrichment method on the representation of NUMTs in the mapped sequence data and discuss methods to bioinformatically filter NUMTs from mtDNA reads.
Collapse
Affiliation(s)
- Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA; SNA International, Contractor Supporting the AFMES-AFDIL, Alexandria, VA 22314, USA; Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Walther Parson
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA; Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Lutz-Bonengel S, Niederstätter H, Naue J, Koziel R, Yang F, Sänger T, Huber G, Berger C, Pflugradt R, Strobl C, Xavier C, Volleth M, Weiß SC, Irwin JA, Romsos EL, Vallone PM, Ratzinger G, Schmuth M, Jansen-Dürr P, Liehr T, Lichter P, Parsons TJ, Pollak S, Parson W. Evidence for multi-copy Mega-NUMTs in the human genome. Nucleic Acids Res 2021; 49:1517-1531. [PMID: 33450006 PMCID: PMC7897518 DOI: 10.1093/nar/gkaa1271] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
The maternal mode of mitochondrial DNA (mtDNA) inheritance is central to human genetics. Recently, evidence for bi-parental inheritance of mtDNA was claimed for individuals of three pedigrees that suffered mitochondrial disorders. We sequenced mtDNA using both direct Sanger and Massively Parallel Sequencing in several tissues of eleven maternally related and other affiliated healthy individuals of a family pedigree and observed mixed mitotypes in eight individuals. Cells without nuclear DNA, i.e. thrombocytes and hair shafts, only showed the mitotype of haplogroup (hg) V. Skin biopsies were prepared to generate ρ° cells void of mtDNA, sequencing of which resulted in a hg U4c1 mitotype. The position of the Mega-NUMT sequence was determined by fluorescence in situ hybridization and two different quantitative PCR assays were used to determine the number of contributing mtDNA copies. Thus, evidence for the presence of repetitive, full mitogenome Mega-NUMTs matching haplogroup U4c1 in various tissues of eight maternally related individuals was provided. Multi-copy Mega-NUMTs mimic mixtures of mtDNA that cannot be experimentally avoided and thus may appear in diverse fields of mtDNA research and diagnostics. We demonstrate that hair shaft mtDNA sequencing provides a simple but reliable approach to exclude NUMTs as source of misleading results.
Collapse
Affiliation(s)
- Sabine Lutz-Bonengel
- Institute of Forensic Medicine, Medical Center, University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Jana Naue
- Institute of Forensic Medicine, Medical Center, University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck 6020, Austria
| | - Fengtang Yang
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Timo Sänger
- Institute of Forensic Medicine, Medical Center, University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - René Pflugradt
- State Investigation Department of Lower Saxony, Hannover 30169, Germany
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Marianne Volleth
- Magdeburg University Hospital, Institute of Human Genetics, Otto von Guericke University, Magdeburg 39120, Germany
| | - Sandra Carina Weiß
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Jodi A Irwin
- DNA Support Unit, FBI Laboratory, Quantico, VA 22135, USA
| | - Erica L Romsos
- U.S. National Institute of Standards and Technology, Biomolecular Measurement Division, Gaithersburg, MD 20899, USA
| | - Peter M Vallone
- U.S. National Institute of Standards and Technology, Biomolecular Measurement Division, Gaithersburg, MD 20899, USA
| | - Gudrun Ratzinger
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergy, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck 6020, Austria
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena 07747, Germany
| | - Peter Lichter
- German Cancer Research Center, Molecular Genetics, Heidelberg 69120, Germany
| | - Thomas J Parsons
- International Commission on Missing Persons, The Hague 2514 AA, Netherlands
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan Pollak
- Institute of Forensic Medicine, Medical Center, University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Evaluation of DNA Extraction Methods Developed for Forensic and Ancient DNA Applications Using Bone Samples of Different Age. Genes (Basel) 2021; 12:genes12020146. [PMID: 33499220 PMCID: PMC7911526 DOI: 10.3390/genes12020146] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
The efficient extraction of DNA from challenging samples, such as bones, is critical for the success of downstream genotyping analysis in molecular genetic disciplines. Even though the ancient DNA community has developed several protocols targeting small DNA fragments that are typically present in decomposed or old specimens, only recently forensic geneticists have started to adopt those protocols. Here, we compare an ancient DNA extraction protocol (Dabney) with a bone extraction method (Loreille) typically used in forensics. Real-time quantitative PCR and forensically representative typing methods including fragment size analysis and sequencing were used to assess protocol performance. We used four bone samples of different age in replicates to study the effects of both extraction methods. Our results confirm Loreille’s overall increased gain of DNA when enough tissue is available and Dabney’s improved efficiency for retrieving shorter DNA fragments that is beneficial when highly degraded DNA is present. The results suggest that the choice of extraction method needs to be based on available sample, degradation state, and targeted genotyping method. We modified the Dabney protocol by pooling parallel lysates prior to purification to study gain and performance in single tube typing assays and found that up to six parallel lysates lead to an almost linear gain of extracted DNA. These data are promising for further forensic investigations as the adapted Dabney protocol combines increased sensitivity for degraded DNA with necessary total DNA amount for forensic applications.
Collapse
|
17
|
Cihlar JC, Amory C, Lagacé R, Roth C, Parson W, Budowle B. Developmental Validation of a MPS Workflow with a PCR-Based Short Amplicon Whole Mitochondrial Genome Panel. Genes (Basel) 2020; 11:E1345. [PMID: 33202822 PMCID: PMC7709034 DOI: 10.3390/genes11111345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
For the adoption of massively parallel sequencing (MPS) systems by forensic laboratories, validation studies on specific workflows are needed to support the feasibility of implementation and the reliability of the data they produce. As such, the whole mitochondrial genome sequencing methodology-Precision ID mtDNA Whole Genome Panel, Ion Chef, Ion S5, and Converge-has been subjected to a variety of developmental validation studies. These validation studies were completed in accordance with the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines and assessed reproducibility, repeatability, accuracy, sensitivity, specificity to human DNA, and ability to analyze challenging (e.g., mixed, degraded, or low quantity) samples. Intra- and inter-run replicates produced an average maximum pairwise difference in variant frequency of 1.2%. Concordance with data generated with traditional Sanger sequencing and an orthogonal MPS platform methodology was used to assess accuracy, and generation of complete and concordant haplotypes at DNA input levels as low as 37.5 pg of nuclear DNA or 187.5 mitochondrial genome copies illustrated the sensitivity of the system. Overall, data presented herein demonstrate that highly accurate and reproducible results were generated for a variety of sample qualities and quantities, supporting the reliability of this specific whole genome mitochondrial DNA MPS system for analysis of forensic biological evidence.
Collapse
Affiliation(s)
- Jennifer Churchill Cihlar
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.A.); (W.P.)
| | - Robert Lagacé
- Human Identification Group, Thermo Fisher Scientific, South San Francisco, CA 94080, USA; (R.L.); (C.R.)
| | - Chantal Roth
- Human Identification Group, Thermo Fisher Scientific, South San Francisco, CA 94080, USA; (R.L.); (C.R.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.A.); (W.P.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
18
|
Distinguishing mitochondrial DNA and NUMT sequences amplified with the precision ID mtDNA whole genome panel. Mitochondrion 2020; 55:122-133. [PMID: 32949792 DOI: 10.1016/j.mito.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
Nuclear mitochondrial DNA segments (NUMTs) are generated via transfer of portions of the mitochondrial genome into the nuclear genome. Given their common origin, there is the possibility that both the mitochondrial and NUMT segments may co-amplify using the same set of primers. Thus, analysis of the variation of the mitochondrial genome must take into account this co-amplification of mitochondrial and NUMT sequences. The study herein builds on data from the study by Strobl et al. (Strobl et al., 2019), in which multiple point heteroplasmies were called with an "N" to prevent labeling NUMT sequences mimicking mitochondrial heteroplasmy and being interpreted as true mitochondrial in origin sequence variants. Each of these point heteroplasmies was studied in greater detail, both molecularly and bioinformatically, to determine whether NUMT or true mitochondrial DNA variation was present. The bioinformatic and molecular tools available to help distinguish between NUMT and mitochondrial DNA and the effect of NUMT sequences on interpretation were discussed.
Collapse
|
19
|
Xavier C, de la Puente M, Mosquera-Miguel A, Freire-Aradas A, Kalamara V, Vidaki A, E. Gross T, Revoir A, Pośpiech E, Kartasińska E, Spólnicka M, Branicki W, E. Ames C, M. Schneider P, Hohoff C, Kayser M, Phillips C, Parson W. Development and validation of the VISAGE AmpliSeq basic tool to predict appearance and ancestry from DNA. Forensic Sci Int Genet 2020; 48:102336. [DOI: 10.1016/j.fsigen.2020.102336] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
|
20
|
Simoes Dutra Correa H, Brescia G, Cortellini V, Cerri N, Verzeletti A. DNA quantitation and degradation assessment: a quantitative PCR protocol designed for small forensic genetics laboratories. Electrophoresis 2020; 41:714-719. [DOI: 10.1002/elps.201900360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Heitor Simoes Dutra Correa
- Forensic Medicine UnitDepartment of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of Brescia Brescia Italy
| | - Gloria Brescia
- Forensic Medicine UnitDepartment of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of Brescia Brescia Italy
| | - Venusia Cortellini
- Forensic Medicine UnitDepartment of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of Brescia Brescia Italy
| | - Nicoletta Cerri
- Forensic Medicine UnitDepartment of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of Brescia Brescia Italy
| | - Andrea Verzeletti
- Forensic Medicine UnitDepartment of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of Brescia Brescia Italy
| |
Collapse
|