1
|
de Jong EAC, Arts MHJ, van der Gaag KJ, van Oers PAM, Theelen JPG. Developmental validation of the IDseek® OmniSTR™ global autosomal STR profiling kit. Forensic Sci Int Genet 2025; 76:103226. [PMID: 39827497 DOI: 10.1016/j.fsigen.2025.103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Forensic science takes advantage of population variability in autosomal Short Tandem Repeat (STR) lengths to establish human identification. The most common method for DNA profiling by STR is based on PCR, where the highly polymorphic STR regions are amplified and analysed using Capillary Electrophoresis (CE) or Massively Parallel Sequencing (MPS). MPS determines not only the repeat length, but also the repeat structure and variations in the flanking regions, making this method superior in discriminatory power compared to CE. Reverse Complement PCR (RC-PCR) is a novel, more sophisticated PCR based MPS library preparation method combining indexing and PCR amplification in a single closed-tube reaction. In this document we describe the complete developmental validation of the IDseek® OmniSTR™ kit, an RC-PCR based MPS library preparation kit. The developed IDseek® OmniSTR™ kit contains 28 autosomal STR targets, one Y-chromosomal STR and the Amelogenin gene covering all relevant STR core loci from the USA, EU, UK and Interpol.
Collapse
Affiliation(s)
| | | | - Kristiaan J van der Gaag
- Division of Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, The Hague 2497 GB, the Netherlands
| | | | | |
Collapse
|
2
|
Agudo MM, Aanes H, Albert M, Janssen K, Gill P, Bleka Ø. An overview of autosomal STRs and identity SNPs in a Norwegian population using massively parallel sequencing. Forensic Sci Int Genet 2024; 71:103057. [PMID: 38733649 DOI: 10.1016/j.fsigen.2024.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
In recent years, probabilistic genotyping software has been adapted for the analysis of massively parallel sequencing (MPS) forensic data. Likelihood ratios (LR) are based on allele frequencies selected from populations of interest. This study provides an outline of sequence-based (SB) allele frequencies for autosomal short tandem repeats (aSTRs) and identity single nucleotide polymorphisms (iSNPs) in 371 individuals from Southern Norway. 27 aSTRs and 94 iSNPs were previously analysed with the ForenSeq™ DNA Signature Prep Kit (Verogen). The number of alleles with frequencies less than 0.05 for sequenced-based alleles was 4.6 times higher than for length-based alleles. Consistent with previous studies, it was observed that sequence-based data (both with and without flanks) exhibited higher allele diversity compared to length-based (LB) data; random match probabilities were lower for SB alleles confirming their advantage to discriminate between individuals. Two alleles in markers D22S1045 and Penta D were observed with SNPs in the 3´ flanking region, which have not been reported before. Also, a novel SNP with a minor allele frequency (MAF) of 0.001, was found in marker TH01. The impact of the sample size on minor allele frequency (MAF) values was studied in 88 iSNPs from Southern Norway (n = 371). The findings were then compared to a larger Norwegian population dataset (n = 15,769). The results showed that the smaller Southern Norway dataset provided similar results, and it was a representative sample. Population structure was analyzed for regions within Southern Norway; FST estimates for aSTR and iSNPs did not indicate any genetic structure. Finally, we investigated the genetic differences between Southern Norway and two other populations: Northern Norway and Denmark. Allele frequencies between these populations were compared, and we found no significant frequency differences (p-values > 0.0001). We also calculated the pairwise FST values per marker and comparisons between Southern and Northern Norway showed small differences. In contrast, the comparisons between Southern Norway and Denmark showed higher FST values for some markers, possibly driven by distinct alleles that were present in only one of the populations. In summary, we propose that allele frequencies from each population considered in this study could be used interchangeably to calculate genotype probabilities.
Collapse
Affiliation(s)
- Maria Martin Agudo
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håvard Aanes
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Michel Albert
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Kirstin Janssen
- Centre for Forensic Genetics, UiT The Arctic University of Norway, Norway
| | - Peter Gill
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Bleka
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Huang Y, Wang M, Liu C, He G. Comprehensive landscape of non-CODIS STRs in global populations provides new insights into challenging DNA profiles. Forensic Sci Int Genet 2024; 70:103010. [PMID: 38271830 DOI: 10.1016/j.fsigen.2024.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
The worldwide implementation of short tandem repeats (STR) profiles in forensic genetics necessitated establishing and expanding the CODIS core loci set to facilitated efficient data management and exchange. Currently, the mainstay CODIS STRs are adopted in most general-purpose forensic kits. However, relying solely on these loci failed to yield satisfactory results for challenging tasks, such as bio-geographical ancestry inference, complex DNA mixture profile interpretation, and distant kinship analysis. In this context, non-CODIS STRs are potent supplements to enhance the systematic discriminating power, particularly when combined with the high-throughput next-generation sequencing (NGS) technique. Nevertheless, comprehensive evaluation on non-CODIS STRs in diverse populations was scarce, hindering their further application in routine caseworks. To address this gap, we investigated genetic variations of 178 historically available non-CODIS STRs from ethnolinguistically different worldwide populations and studied their characteristics and forensic potentials via high-coverage whole genome sequencing (WGS) data. Initially, we delineated the genomic properties of these non-CODIS markers through sequence searching, repeat structure scanning, and manual inspection. Subsequent population genetics analysis suggested that these non-CODIS STRs had comparable polymorphism levels and forensic utility to CODIS STRs. Furthermore, we constructed a theoretical next-generation sequencing (NGS) panel comprising 108 STRs (20 CODIS STRs and 88 non-CODIS STRs), and evaluated its performance in inferring bio-geographical ancestry origins, deconvoluting complex DNA mixtures, and differentiating distant kinships using real and simulated datasets. Our findings demonstrated that incorporating supplementary non-CODIS STRs enabled the extrapolation of multidimensional information from a single STR profile, thereby facilitating the analysis of challenging forensic tasks. In conclusion, this study presents an extensive genomic landscape of forensic non-CODIS STRs among global populations, and emphasized the imperative inclusion of additional polymorphic non-CODIS STRs in future NGS-based forensic systems.
Collapse
Affiliation(s)
- Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610041, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610041, China
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China; Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610041, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
4
|
Foley MM, Koehler G, Fu J, Allen R, Wagner JR. An exploratory view into allelic drop-out of sequenced autosomal STRs. J Forensic Sci 2024; 69:825-835. [PMID: 38505986 DOI: 10.1111/1556-4029.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
As massively parallel sequencing is implemented in forensic genetics, an understanding of sequence data must accompany these advancements, that is, accurate modeling of data for proper statistical analysis. Allelic drop-out, a common stochastic effect seen in genetic data, is often modeled in statistical analysis of STR results. This proof-of-concept study sequenced several serial dilutions of a standard sample ranging from 4 ng to 7.82 pg to evaluate allelic drop-out trends on a select panel of autosomal STRs using the ForenSeq™ DNA Signature Prep Kit, Primer Set A on the Illumina MiSeq FGx. Parameters assessed included locus, profile, and run specific information. A majority of the allelic drop-out occurred in DNA concentrations less than 31.25 pg. Statistical results indicated a need for locus-specific modeling based on STR descriptors, like simple versus compound repeat patterns. No correlation was seen between average read count of scored alleles and allelic drop-out at a locus. A statistical correlation was observed between the amount of allelic drop-out and the starting amount of DNA in a sample, average read count of a sample, and total read count generated on a flow cell. This study supports using common allelic drop-out factors used in fragment length analysis on sequenced STRs while including additional locus, sample, and run specific information. Results demonstrate multiple factors that can be considered when developing probability of allelic drop-out models for sequenced autosomal STRs including locus-specific analysis, total read count of a profile, and total read count sequenced on a flow cell.
Collapse
Affiliation(s)
- Megan M Foley
- School of Forensic Sciences, Oklahoma State University, Tulsa, Oklahoma, USA
- Department of Forensic Sciences, George Washington University, Washington, DC, USA
| | - Gerwald Koehler
- Department of Biochemistry & Microbiology, Oklahoma State University, Tulsa, Oklahoma, USA
| | - Jun Fu
- School of Forensic Sciences, Oklahoma State University, Tulsa, Oklahoma, USA
| | - Robert Allen
- School of Forensic Sciences, Oklahoma State University, Tulsa, Oklahoma, USA
| | - Jarrad R Wagner
- School of Forensic Sciences, Oklahoma State University, Tulsa, Oklahoma, USA
| |
Collapse
|
5
|
Lan Q, Cai M, Xu H, Bai X, Shen C, Zhu B. Developmental validation of a custom-designed Multi-InDel panel: A five-dye multiplex amplification system for challenging DNA samples. Electrophoresis 2024; 45:489-504. [PMID: 38037290 DOI: 10.1002/elps.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
The continual investigation of novel genetic markers has yielded promising solutions for addressing the challenges encountered in forensic DNA analysis. In this study, we have introduced a custom-designed panel capable of simultaneously amplifying 41 novel Multi-insertion/deletion (Multi-InDel) markers and an amelogenin locus using the capillary electrophoresis platform. Through a developmental validation study conducted in accordance with guidelines recommended by the Scientific Working Group on DNA Analysis Methods, we demonstrated that the new Multi-InDel system exhibited the sensitivity to produce reliable genotyping profiles with as little as 62.5 pg of template DNA. Accurate and complete genotyping profiles could be obtained even in the presence of specific concentrations of PCR inhibitors. Furthermore, the maximum amplicon size for this system was limited to under 220 bp in the genotyping profile, resulting in its superior efficiency compared to commercially available short tandem repeat kits for both naturally and artificially degraded samples. In the context of mixed DNA analysis, the Multi-InDel system was proved informative in the identification of two-person DNA mixture, even when the template DNA of the minor contributor was as low as 50 pg. In conclusion, a series of performance evaluation studies have provided compelling evidence that the new Multi-InDel system holds promise as a valuable tool for forensic DNA analysis.
Collapse
Affiliation(s)
- Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Xiaole Bai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Chunmei Shen
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
6
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
7
|
Aalbers SE, Khan AT, Weir BS. Perceptions of forensic scientists on statistical models, sequence data, and ethical implications for DNA evidence evaluations: A qualitative assessment. Forensic Sci Int Synerg 2023; 6:100335. [PMID: 37325613 PMCID: PMC10265457 DOI: 10.1016/j.fsisyn.2023.100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
With the introduction of next generation sequencing (NGS) technology in the forensic field, it will be of interest to assess if forensic scientists feel equipped to interpret and present DNA evidence for sequence data. Here, we describe perceptions of sixteen U.S.-based forensic scientists on statistical models, sequence data, and ethical implications for DNA evidence evaluations. To get an in-depth understanding of the current situation, we used a qualitative research approach with a cross-sectional study design. Semi-structured interviews (N = 16) were conducted with U.S. forensic scientists working with DNA evidence. Open-ended interview questions were used to explore participants' views and needs surrounding the use of statistical models and sequence data for forensic purposes. We conducted a conventional content analysis using ATLAS. ti software and employed a second coder to ensure reliability of our results. Eleven themes emerged: 1) a statistical model that maximizes the value of the evidence is preferred; 2) a high-level understanding of the statistical model used is generally sufficient; 3) transparency is key in minimizing the risk of creating black boxes; 4) training and education should be an ongoing effort; 5) the effectiveness of presenting results in court can be improved; 6) NGS has the potential to become revolutionary; 7) some hesitations surrounding the use of sequence data remain; 8) there is a need for a concrete plan to alleviate barriers to the implementation of sequencing techniques; 9) ethics plays a major part in the role of a forensic scientist; 10) ethical barriers for sequence data depend on the application; 11) DNA evidence has its limitations. The results of this study give insight into the perceptions of forensic scientists regarding the use of statistical models and sequence data, providing valuable information in the move towards implementing sequencing methods for DNA evidence evaluations.
Collapse
Affiliation(s)
- Sanne E. Aalbers
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Alyna T. Khan
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Bruce S. Weir
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Application of Forensic DNA Phenotyping for Prediction of Eye, Hair and Skin Colour in Highly Decomposed Bodies. Healthcare (Basel) 2023; 11:healthcare11050647. [PMID: 36900653 PMCID: PMC10000573 DOI: 10.3390/healthcare11050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few years, predicting externally visible characteristics (EVCs) by adopting informative DNA molecular markers has become a method in forensic genetics that has increased its value, giving rise to an interesting field called "Forensic DNA Phenotyping" (FDP). The most meaningful forensic applications of EVCs prediction are those in which, having only a DNA sample isolated from highly decomposed remains, it is essential to reconstruct the physical appearance of a person. Through this approach, we set out to evaluate 20 skeletal remains of Italian provenance in order to associate them with as many cases of missing persons as possible. To achieve the intended goal, in this work we applied the HIrisPlex-S multiplex system through the conventional short tandem repeats (STR) method to confirm the expected identity of subjects by evaluating phenotypic features. To investigate the reliability and accuracy of the DNA-based EVCs prediction, pictures of the cases were compared as they were available to researchers. Results showed an overall prediction accuracy greater than 90% for all three phenotypic features-iris, hair, and skin colour-at a probability threshold of 0.7. The experimental analysis showed inconclusive results in only two cases; this is probably due to the characteristics of subjects who had an intermediate eye and hair colour, for which the DNA-based system needs to improve the prediction accuracy.
Collapse
|