1
|
Oh KK, Yoon SJ, Song SH, Park JH, Kim JS, Kim MJ, Kim DJ, Suk KT. The unfolded features on the synchronized fashion of gut microbiota and Drynaria rhizome against obesity via integrated pharmacology. Food Chem 2024; 460:140616. [PMID: 39094340 DOI: 10.1016/j.foodchem.2024.140616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Drynaria rhizome (DR) is used as a natural remedy to ameliorate obesity (OB) in East Asia; in parallel, the gut microbiota (GM) might exert a positive impact on OB through their metabolites. This study elucidates the orchestrated effects of DR and GM on OB. DR-GM, - a key signaling pathway-target-metabolite (DGSTM) networks were used to unveil the relationship between DR and GM, and Molecular Docking Test (MDT) and Density Functional Theory (DFT) were adopted to underpin the uppermost molecules. The NR1H3 (target) - 3-Epicycloeucalenol (ligand), and PPARG (target) - Clionasterol (ligand) conjugates from DR, FABP3 (target) - Ursodeoxycholic acid, FABP4 (target) - Lithocholic acid (ligand) or Deoxycholic acid (ligand), PPARA (target) - Equol (ligand), and PPARD (target) - 2,3-Bis(3,4-dihydroxybenzyl)butyrolactone (ligand) conjugates from GM formed the most stable conformers via MDT and DFT. Overall, these findings suggest that DR-GM might be a promising ameliorator on PPAR signaling pathway against OB.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Sang-Jun Yoon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seol Hee Song
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jeong Ha Park
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jeong Su Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Ju Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
2
|
Avcioglu NH. Enhanced bacterial cellulose production by Komagataeibacter species and Hibiscus sabdariffa herbal tea. Int J Biol Macromol 2024; 276:133904. [PMID: 39084992 DOI: 10.1016/j.ijbiomac.2024.133904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
This study proposed Hibiscus sabdariffa as a novel substrate for BC production with Komagataeibacter species and their consortia. K. intermedius is found as the most efficient producer (5.98 g/L BC, 3.56 × 10-2 g-1 h-1 productivity rate) following K. maltaceti (4.44 g/L BC, 2.64 × 10-2 g-1 h-1 productivity rate) and K. nataicola (3.67 g/L BC, 2.18 × 10-2 g-1 h-1 productivity rate). Whereas agitation increased BC production with K. nataicola (1.22-fold, 4.49 g/L BC), K. maltaceti (1.24-fold, 5.52 g/L BC) and K. intermedius (1.27-fold, 7.63 g/L BC), irregular shaped BC was obtained. This could be a novel result as Komagataeibacter consortia increased BC production by 1.17-2.01-fold compared to monocultures resulting as 8.11 g/L BC through the co-cultivation of K. maltaceti-K. intermedius. Maximum increase was found to be 1.75-fold (1.79-fold WHC), occurring with monoculture of K. maltaceti, while 1.94-fold (1.26-fold WHC) with K. maltaceti-K. intermedius consortium when H. sabdariffa-based media compared Hestrin-Schramm media. Based on these results, this could be a novel result as H. sabdariffa-based media may replace the use of HS media in BC production by means of a bioactive content-rich plant and obtaining 3-D ultrafine porous structure with high thermal resistant (∼460-500 °C) BC with mono and co-cultivation of Komagataeibacter species to be used in industrial area.
Collapse
Affiliation(s)
- Nermin Hande Avcioglu
- Hacettepe University, Faculty of Science, Biology Department, Biotechnology Section, Beytepe, Ankara, Turkey.
| |
Collapse
|
3
|
Javadi B, Farahmand A, Soltani-Gorde-Faramarzi S, Hesarinejad MA. Chitosan-coated nanoliposome: An approach for simultaneous encapsulation of caffeine and roselle-anthocyanin in beverages. Int J Biol Macromol 2024; 275:133469. [PMID: 38945345 DOI: 10.1016/j.ijbiomac.2024.133469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The objective of the present research was to develop chitosan-coated nanoliposomes using a modified heating method as a delivery system for simultaneous encapsulation of caffeine and roselle anthocyanin to fortify beverage. Response surface methodology was used to ascertain the optimized formulation, aiming to maximize the encapsulation efficiency, minimize the particle size, and maximize the zeta potential. The liposomes fabricated under the optimized conditions (lecithin to cholesterol ratio of 13 and wall to core ratio of 2.16) showed encapsulation efficiency values of 66.73 % for caffeine and 97.03 % for anthocyanin, with a size of 268.1 nm and a zeta potential of -39.11 mV. Fourier transform infrared spectroscopy confirmed the formation of hydrogen bonds between the polar sites of lecithin and the loaded core compounds. Thermal analysis suggested the successful encapsulation of the caffeine and anthocyanin. Transmission and scanning electron microscopy images confirmed a uniform spherical shape with a smooth surface. Fortifying the model beverage with the liposome and the chitosan-coated nanoliposome revealed higher values of encapsulation efficiency of anthocyanin (70.33 ± 3.11 %), caffeine (86.37 ± 2.17 %) and smaller size (280.5 ± 0.74 nm) of the chitosan-coated nanoliposomes at the end of 60the days. A hedonic sensory test of the fortified beverage with chitosan-coated nanoliposomes confirmed an improvement in the organoleptic properties of the beverage by masking its bitterness (receiving three more sensory scores in perceiving the bitterness intensity). Overall, our study indicates that the high potential of the chitosan-coated nanoliposomes for the simultaneous loading of the caffeine and anthocyanin, as well as their possible application in food and beverage formulations.
Collapse
Affiliation(s)
- Bahareh Javadi
- Research and development center, Abfam Govara Tejarat Shargh Co., Mashhad, Iran
| | - Atefeh Farahmand
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
4
|
Martinez-Ramirez EZ, Gonzalez-Cruz L, Bernardino-Nicanor A, Silva-Martínez GA, Falfan-Cortes RN, Gonzalez-Montiel S, Gomez-Aldapa CA. Hibiscus Acid Inhibitory Capacity of Angiotensin Converting Enzyme: an In Vitro and In Silico Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:234-241. [PMID: 38285102 DOI: 10.1007/s11130-024-01142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Edna Zaranne Martinez-Ramirez
- Química y Bioquimica de Alimentos, Tecnológico Nacional de Mexico / IT de Celaya, Campus I, Antonio Garcia Cubas Pte #600 esq. Av. Tecnologico, Celaya, C.P 38010, Mexico
| | - Leopoldo Gonzalez-Cruz
- Química y Bioquimica de Alimentos, Tecnológico Nacional de Mexico / IT de Celaya, Campus I, Antonio Garcia Cubas Pte #600 esq. Av. Tecnologico, Celaya, C.P 38010, Mexico
| | - Aurea Bernardino-Nicanor
- Química y Bioquimica de Alimentos, Tecnológico Nacional de Mexico / IT de Celaya, Campus I, Antonio Garcia Cubas Pte #600 esq. Av. Tecnologico, Celaya, C.P 38010, Mexico
| | - Guillermo Antonio Silva-Martínez
- Investigador por Mexico (IxM)-TecNM en Celaya, Tecnologico Nacional de Mexico / IT de Celaya, Campus I, Antonio Garcia Cubas Pte #600 esq. Av. Tecnologico, Celaya, C.P 38010, Mexico
| | - Reyna Nallely Falfan-Cortes
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, Mineral de la Reforma, C.P. 42184, Hidalgo, México
| | - Simplicio Gonzalez-Montiel
- Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, Mineral de la Reforma, C.P. 42184, Hidalgo, México
| | - Carlos Alberto Gomez-Aldapa
- Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, km. 4.5 Carretera Pachuca-Tulancingo, Ciudad del Conocimiento, Mineral de la Reforma, C.P. 42184, Hidalgo, México.
| |
Collapse
|
5
|
Chew LY, Teng SK, Neo YP, Sim YY, Chew SC. The Potential of Roselle (Hibiscus sabdariffa) Plant in Industrial Applications: A Promising Source of Functional Compounds. J Oleo Sci 2024; 73:275-292. [PMID: 38432993 DOI: 10.5650/jos.ess23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Roselle is an annual botanical plant that widely planted in different countries worldwide. Its different parts, including seeds, leaves, and calyces, can offer multi-purpose applications with economic importance. The present review discusses the detailed profile of bioactive compounds present in roselle seeds, leaves, and calyces, as well as their extraction and processing, to explore their potential application in pharmaceutical, cosmetic, nutraceutical, food and other industries. Roselle seeds with high phenolics, fiber, and protein contents, which are suitable to use in functional food product development. Besides, roselle seeds can yield 17-20% of roselle seed oil with high content of linoleic acid (35.0-45.3%) and oleic acid (27.1- 36.9%). This unique fatty acid composition of roselle seed oil makes it suitable to use as edible oil to offer the health benefits of essential fatty acid. Moreover, high contents of tocopherols, phenolics, and phytosterols were detected in roselle seed oil to provide nutritional, pharmaceutical, and therapeutic properties. On the other hand, roselle leaves with valuable contents of phenols, flavonoids, organic acid, and tocopherols can be applied in silver nanoparticles, food product development, and the pharmaceutical industry. Roselle calyces with high content of anthocyanins, protocatechuic acids, and organic acids are widely applied in food and colorant industries.
Collapse
Affiliation(s)
- Lye Yee Chew
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus
| | | | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus
| | | | - Sook Chin Chew
- School of Foundation Studies, Xiamen University Malaysia Campus
| |
Collapse
|
6
|
Choi G, Han Y, Sim K, Kim M. Phenolic compounds, antioxidant capacity, and α-amylase and α-glucosidase inhibitory activity of ethanol extracts of perilla seed meal. Food Sci Nutr 2023; 11:4596-4606. [PMID: 37576065 PMCID: PMC10420855 DOI: 10.1002/fsn3.3419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 08/15/2023] Open
Abstract
Perilla frutescens is a medicinal herb that is commonly cultivated in Asian countries. Perilla seed is extensively pressed for cooking oil extraction. However, phenolic chemicals are still abundant in pressed perilla seed meal (PSM), which was previously thought to be useless after oil extraction. In our study, PSM was extracted using five solvents (water and 25%, 50%, 75%, and 100% ethanol) based on different ethanol concentrations, and its antioxidant activity, phenolic compounds, and inhibitory effects against key enzymes related to diabetes mellitus were evaluated. The 75% ethanol extract had higher phenolic (105.58 mg GAE/g DW) and flavonoid (66.52 mg QE/g DW) contents and showed better antioxidant and inhibitory effects against α-glucosidase and α-amylase. Analysis of the phenolic compounds of the five extracts by HPLC indicated the presence of apigenin, rosmarinic acid, benzoic acid, caffeic acid, and vanillic acid. Therefore, because of its high antioxidant activity and inhibitory capacity against enzymes relevant to diabetes, the 75% ethanol extract of perilla seed meal has the most potential to be used as a functional or nutraceutical food in the prevention and treatment of oxidation and diabetes.
Collapse
Affiliation(s)
- Ga‐Young Choi
- Department of Food & NutritionSookmyung Women's UniversitySeoulSouth Korea
| | - Young‐Sil Han
- Department of Food & NutritionSookmyung Women's UniversitySeoulSouth Korea
| | - Ki‐Hyeon Sim
- Major in Traditional Culinary Culture, Graduate School of ArtsSookmyung Women's UniversitySeoulSouth Korea
| | - Myung‐Hyun Kim
- Department of Culinary Arts Traditional Korean Cuisine MajorBaewha Women's UniversitySeoulSouth Korea
| |
Collapse
|
7
|
ShamsEldeen AM, Fawzy A, Ashour H, Abdel-Rahman M, Nasr HE, Mohammed LA, Abdel Latif NS, Mahrous AM, Abdelfattah S. Hibiscus attenuates renovascular hypertension-induced aortic remodeling dose dependently: the oxidative stress role and Ang II/cyclophilin A/ERK1/2 signaling. Front Physiol 2023; 14:1116705. [PMID: 37415906 PMCID: PMC10321301 DOI: 10.3389/fphys.2023.1116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction: The high levels of angiotensin II (Ang II) can modify the vascular tone, enhance vascular smooth muscle cells (VSMCs) proliferation and hypertrophy and increase the inflammatory cellular infiltration into the vessel wall. The old herbal nonpharmacological agent, Hibiscus (HS) sabdariffa L has multiple cardioprotective impacts; thus, we investigated the role of HS extract in amelioration of renovascular hypertension (RVH)-induced aortic remodeling. Materials and methods: Thirty-five rats (7/group) were randomly allocated into 5 groups; group: I: Control-sham group, and RVH groups; II, III, IV, and V. The rats in RVH groups were subjected to the modified Goldblatt two-kidneys, one clip (2K1C) for induction of hypertension. In group: II, the rats were left untreated whereas in group III, IV, and V: RVH-rats were treated for 6 weeks with low dose hibiscus (LDH), medium dose hibiscus (MDH), and high dose hibiscus (HDH) respectively. Results: We found that the augmented pro-contractile response of the aortic rings was ameliorated secondary to the in-vivo treatment with HS dose dependently. The cyclophilin A (CyPA) protein levels positively correlated with the vascular adhesion molecule-1 (VCAM-1) and ERK1/2, which, in turn, contribute to the reactive oxygen species (ROS) production. Daily HS intake modified aortic renovation by enhancing the antioxidant capacity, restraining hypertrophy and fibrosis, downregulation of the metastasis associated lung adenocarcinoma transcript (MALAT1), and cyclophilin A (CyPA)/ERK1/2 levels. Discussion: Adding to the multiple beneficial effects, HS aqueous extract was able to inhibit vascular smooth muscle cell proliferation induced by 2K1C model. Thus, adding more privilege for the utilization of the traditional herbal extracts to attenuate RVH-induced aortopathy.
Collapse
Affiliation(s)
| | - Ahmed Fawzy
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Ashour
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Marwa Abdel-Rahman
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Benha University, Benha, Egypt
| | | | | | - Amr M. Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, Al Sharquia, Egypt
| | - Shereen Abdelfattah
- Department of Anatomy and Embryology Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Optimization of the Extraction of Antioxidant Compounds from Roselle Hibiscus Calyxes (Hibiscus sabdariffa), as a Source of Nutraceutical Beverages. Molecules 2023; 28:molecules28062628. [PMID: 36985600 PMCID: PMC10051257 DOI: 10.3390/molecules28062628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Secondary metabolites from Hibiscus sabdariffa have been used to prevent different diseases. Roselle Hibiscus is known for being rich in phenolic bioactive compounds. The extraction conditions are directly related to the chemical composition and then to the overall bioactivity of the extract. In this study, a Box-Behnken experimental design has been used to optimize the antioxidant activity, considering four variables: ethanol:water ratio, temperature, extraction time, and solvent:solid ratio. The experiment comprises 27 experiments and 3 repetitions at the central point. The results are described by surface response analysis and a second-degree polynomial equation. The model explains 87% of the variation in the response. The maximum antioxidant activity is yielded when 1% solids are extracted in 35.5% ethanol at 60 °C for 33 min. Finally, a nutritional functional supplement of 495 µmol Trolox Equivalent (TE) antioxidant capacity was prepared with the optimized extract.
Collapse
|
9
|
Elsaba YM, El-Hennawi HM, Ibrahim MM, Wehaidy HR. Production of a novel laccase from Ceratorhiza hydrophila and assessing its potential in natural dye fixation and cytotoxicity against tumor cells. J Genet Eng Biotechnol 2023; 21:14. [PMID: 36757585 PMCID: PMC9911566 DOI: 10.1186/s43141-023-00473-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Flavonoid natural dyes have gained attention because they are nontoxic and eco-friendly. However, they do not work effectively with artificial fibers and require the use of mordants, which are considered as hazardous chemicals. Laccase enzyme catalyzes the oxidation of phenols, forming phenoxyl radicals that undergo a further polymerization process. So, laccase can oxidize flavonoid dyes, and it can be used instead of harmful mordants in flavonoid dye fixation on cotton fabrics. Laccases also are involved in a variety of metabolic processes, and they have anti-proliferative effects toward HepG2 and MCF-7 tumor cells. RESULTS Among fifteen fungal isolates, the fungus Ceratorhiza hydrophila isolated from the submerged plant Myriophyllum spicatum was selected as the most potent laccase producer. Optimization of the production medium resulted in a 9.9-fold increase in laccase productivity. The partially purified Ceratorhiza hydrophila laccase could successfully improve the affinity of cotton fabrics toward quercetin (flavonoid) dye with excellent color fastness properties. The partially purified laccase also showed anti-proliferative activity against HepG2 and MCF-7 tumor cells. However, high laccase concentration is required to estimate IC50. CONCLUSIONS Ceratorhiza hydrophila MK387081 is an excellent laccase producer. The partially purified laccase from Ceratorhiza hydrophila can be used in textile dyeing and printing processes as a safer alternative to the conventional hazardous mordants. Also, it can be used in preparation of cancer treatment drugs. However, further studies are needed to investigate IC50 for both cell types at higher laccase concentrations.
Collapse
Affiliation(s)
- Yasmin M. Elsaba
- grid.412093.d0000 0000 9853 2750Botany and Microbiology Department, Faculty of Sciences, Helwan University, Cairo, Egypt
| | - Heba M. El-Hennawi
- grid.419725.c0000 0001 2151 8157Dyeing, Printing and Textile Auxiliaries Department, National Research Centre, Dokki, Giza, Egypt
| | - Mona M. Ibrahim
- grid.419725.c0000 0001 2151 8157Plant Biotechnology Department, National Research Centre, Dokki, Giza, Egypt
| | - Hala R. Wehaidy
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
10
|
Sayed Mostafa H. Production of low-tannin Hibiscus sabdariffa tea through D-optimal design optimization of the preparation conditions and the catalytic action of new tannase. Food Chem X 2023; 17:100562. [PMID: 36845514 PMCID: PMC9943849 DOI: 10.1016/j.fochx.2023.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Many tannase-based industrial applications are currently being developed to successfully break down tannins in teas and juices. However, so far, no study has demonstrated the potential application of tannase to reduce tannin levels in Hibiscus sabdariffa tea. The D-optimal design was utilized to predict the optimal conditions for maximizing anthocyanins and decreasing tannin content in Hibiscus tea. Then, the effects of Penicillium commune tannase were evaluated by examining the physicochemical parameters and α-amylase inhibitory action of untreated and treated Hibiscus tea, as well as quantifying catechin content changes using HPLC. Following treatment with tannase, the esterified catechins decreased by 8.91%, while the non-esterified catechins increased by 19.76%. Additionally, tannase significantly raised the total phenolic compounds by 8.6%. In contrast, the α-amylase inhibiting activity of Hibiscus tea decreased by ≈28%. As a novel member of the tea family, tannase offers an excellent means of conditionally producing low-astringency Hibiscus tea.
Collapse
|
11
|
Khalid A, Nadeem T, Khan MA, Ali Q, Zubair M. In vitro evaluation of immunomodulatory, anti-diabetic, and anti-cancer molecular mechanisms of Tribulus terrestris extracts. Sci Rep 2022; 12:22478. [PMID: 36577761 PMCID: PMC9797551 DOI: 10.1038/s41598-022-26742-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Dampened immunity and impaired wound healing in diabetic patients may lead to diabetic foot ulcer disease, which is the leading cause of limb amputations and hospitalization. On the other hand, cancer is the most significant cause of mortality globally, accounting for over 10 million fatalities in 2020, or nearly one in every six deaths. Plants and herbs have been used to treat chronic diseases due to their essential pharmaceutical attributes, such as mitigating drug resistance, ameliorating systemic toxicities, reducing the need for synthetic chemotherapeutic agents,and strengthening the immune system. The present study has been designed to evaluate the effects of Tribulus terrestris on wound healing, cytotoxic and anti-inflammatory responses against HepG-2 liver cancer cell line. Two solvents (methanol and ethanol) were used for root extraction of T. terrestris. The wound healing potential of the extracts was studied on diabetic cell culture line by scratch assay. The anti-oxidant and cytotoxic potentials were evaluated by in vitro assays against HepG2 cell line. The methanolic root extract resulted in the coverage of robust radical scavenging or maximum inhibition of 66.72%,potent cytotoxic activity or reduced cell viability of 40.98%, and anti-diabetic activity having mighty α-glucosidase inhibition of 50.16% at a concentration of 80 μg/ml. Significant reduction in the levels of LDH leakage (56.38%), substantial ROS (48.45%) and SOD (72.13%) activities were recorededMoreover, gene expression analysis demonstrated the down-regulation of inflammatory markers (TNF-α, MMP-9, Bcl-2, and AFP) in HepG-2 cells when treated with T. terresteris methanolic extract as compared to stress. Furthermore, the down-regulation of inflammatory markers was validated through ELISA-mediated protein estimation of IL-1β and TNF-α. It is expected that this study will lay a foundation and lead to the development of efficient but low-cost, natural herbs extract-based dressing/ointment for diabetic patients and identify potential drug metabolites to treat out-of-whack inflammatory responses involved in cancer onset, progression, and metastasis.
Collapse
Affiliation(s)
- Abdullah Khalid
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tariq Nadeem
- grid.11173.350000 0001 0670 519XCentre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asaf Khan
- grid.412298.40000 0000 8577 8102Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| | - Qurban Ali
- grid.11173.350000 0001 0670 519XDepartment of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab Lahore, Lahore, Pakistan
| | - Muhammad Zubair
- grid.411786.d0000 0004 0637 891XDepartment of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
12
|
Elegbeleye JA, Krishnamoorthy S, Bamidele OP, Adeyanju AA, Adebowale OJ, Agbemavor WSK. Health-promoting foods and food crops of West-Africa origin: The bioactive compounds and immunomodulating potential. J Food Biochem 2022; 46:e14331. [PMID: 36448596 DOI: 10.1111/jfbc.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022]
Abstract
The rural communities of the sub-Sahara regions in Africa are rich in diverse indigenous culinary knowledge and foods, food crops, and condiments such as roots/tubers, cereal, legumes/pulses, locust beans, and green leafy vegetables. These food crops are rich in micronutrients and phytochemicals, which have the potentials to address hidden hunger as well as promote health when consumed. Some examples of these are fermented foods such as ogi and plants such as Vernonia amygdalina (bitter leaf), Zingiber officinales (garlic), Hibiscus sabdariffa (Roselle), and condiments. Food crops from West Africa contain numerous bioactive substances such as saponins, alkaloids, tannins, phenolics, flavonoids, and monoterpenoid chemicals among others. These bioresources have proven biological and pharmacological activities due to diverse mechanisms of action such as immunomodulatory, anti-inflammatory, antipyretic, and antioxidant activities which made them suitable as candidates for nutraceuticals and pharma foods. This review seeks to explore the different processes such as fermentation applied during food preparation and food crops of West-African origin with health-promoting benefits. The different bioactive compounds present in such food or food crops are discussed extensively as well as the diverse application, especially regarding respiratory diseases. PRACTICAL APPLICATIONS: The plants and herbs summarized here are more easily accessible and affordable by therapists and others having a passion for promising medicinal properties of African-origin plants.The mechanisms and unique metabolic potentials of African food crops discussed in this article will promote their applicability as a template molecule for novel drug discoveries in treatment strategies for emerging diseases. This compilation of antiviral plants will help clinicians and researchers bring new preventive strategies in combating COVID-19 like viral diseases, ultimately saving millions of affected people.
Collapse
Affiliation(s)
| | - Srinivasan Krishnamoorthy
- Department of Technology Dissemination, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | | | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | | | - Wisdom Selorm Kofi Agbemavor
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon Accra, Ghana
| |
Collapse
|
13
|
Singh M, Thrimawithana T, Shukla R, Benu Adhikari. Inhibition of enzymes associated with obesity by the polyphenol-rich extracts of Hibiscus sabdariffa. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|