1
|
Jia L, Zhang X, Zhang Z, Luo W, Nambeesan SU, Li Q, Qiao X, Yang B, Wang L, Zhang S. PbrbZIP15 promotes sugar accumulation in pear via activating the transcription of the glucose isomerase gene PbrXylA1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1392-1412. [PMID: 38044792 DOI: 10.1111/tpj.16569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
The composition and abundance of soluble sugars in mature pear (Pyrus) fruit are important for its acceptance by consumers. However, our understanding of the genes responsible for soluble sugar accumulation remains limited. In this study, a S1-group member of bZIP gene family, PbrbZIP15, was characterized from pear genome through the combined analyses of metabolite and transcriptome data followed by experimental validation. PbrbZIP15, located in nucleus, was found to function in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli. After analyzing the expression profiles of sugar-metabolism-related genes and the distribution of cis-acting elements in their promoters, the glucose isomerase 1 gene (PbrXylA1), whose corresponding protein catalyzed the isomerization of glucose and fructose in vitro, was identified as a downstream target gene of PbrbZIP15. PbrbZIP15 could directly bind to the G-box element in PbrXylA1 promoter and activate its transcription, as evidenced by chromatin immunoprecipitation-quantitative PCR, yeast one-hybrid, electrophoretic mobility shift assay, and dual-luciferase assay. PbrXylA1, featuring a leucine-rich signal peptide in its N-terminal, was localized to the endoplasmic reticulum. It was validated to play a significant role in fructose, sucrose, and total soluble sugar accumulation in pear fruit and calli, which was associated with the upregulated fructose/glucose ratio. Further studies revealed a positive correlation between the sucrose content and the expression levels of several sucrose-biosynthesis-related genes (PbrFRK3/8, PbrSPS1/3/4/8, and PbrSPP1) in PbrbZIP15-/PbrXylA1-transgenic fruit/calli. In conclusion, our results suggest that PbrbZIP15-induced soluble sugar accumulation during pear development is at least partly attributed to the activation of PbrXylA1 transcription.
Collapse
Affiliation(s)
- Luting Jia
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Weiqi Luo
- U.S. Horticultural Research Laboratory, ARS-USDA, Ft. Pierce, Florida, 34945, USA
- CIPM, NC State University, Raleigh, North Carolina, 27606, USA
| | | | - Qionghou Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xin Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Bing Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Libin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
2
|
Geng B, Jia X, Peng X, Han Y. Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic engineering. Metab Eng Commun 2022; 15:e00211. [PMID: 36311477 PMCID: PMC9597109 DOI: 10.1016/j.mec.2022.e00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hemicellulose is the second most abundant carbohydrate in lignocellulosic biomass and has extensive applications. In conventional biomass refinery, hemicellulose is easily converted to unwanted by-products in pretreatment and therefore can't be fully utilized. The present study aims to summarize the most recent development of lignocellulosic polysaccharide degradation and fully convert it to value-added bioproducts through microbial and enzymatic catalysis. Firstly, bioprocess and microbial metabolic engineering for enhanced utilization of lignocellulosic carbohydrates were discussed. The bioprocess for degradation and conversion of natural lignocellulose to monosaccharides and organic acids using anaerobic thermophilic bacteria and thermostable glycoside hydrolases were summarized. Xylose transmembrane transporting systems in natural microorganisms and the latest strategies for promoting the transporting capacity by metabolic engineering were summarized. The carbon catabolite repression effect restricting xylose utilization in microorganisms, and metabolic engineering strategies developed for co-utilization of glucose and xylose were discussed. Secondly, the metabolic pathways of xylose catabolism in microorganisms were comparatively analyzed. Microbial metabolic engineering for converting xylose to value-added bioproducts based on redox pathways, non-redox pathways, pentose phosphate pathway, and improving inhibitors resistance were summarized. Thirdly, strategies for degrading lignocellulosic polysaccharides and fully converting hemicellulose to value-added bioproducts through microbial metabolic engineering were proposed.
Collapse
Affiliation(s)
- Biao Geng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Gao M, Ploessl D, Shao Z. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Front Microbiol 2019; 9:3264. [PMID: 30723464 PMCID: PMC6349770 DOI: 10.3389/fmicb.2018.03264] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,The Ames Laboratory, Iowa State University, Ames, IA, United States.,The Interdisciplinary Microbiology Program, Biorenewables Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Zhu X, Zhao D, Qiu H, Fan F, Man S, Bi C, Zhang X. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab Eng 2017; 43:37-45. [PMID: 28800965 DOI: 10.1016/j.ymben.2017.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
One of the most important research subjects of metabolic engineering is the pursuit of balanced metabolic pathways, which requires the modulation of expression of many genes. However, simultaneously modulating multiple genes on the chromosome remains challenging in prokaryotic organisms, including the industrial workhorse - Escherichia coli. In this work, the CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique was developed to simultaneously modulate the expression of multiple genes on the chromosome. To implement it, two plasmids were employed to target Cas9 to regulatory sequences of pathway genes, and a donor DNA plasmid library was constructed containing a regulator pool to modulate the expression of these genes. A modularized plasmid construction strategy was used to enable the assembly of a complex donor DNA plasmid library. After genome editing using this technique, a combinatorial library was obtained with variably expressed pathway genes. As a demonstration, the CFPO technique was applied to the xylose metabolic pathway genes in E. coli to improve xylose utilization. Three transcriptional units containing a total of four genes were modulated simultaneously with 70% efficiency, and improved strains were selected from the resulting combinatorial library by growth enrichment. The best strain, HQ304, displayed a 3-fold increase of the xylose-utilization rate. Finally, the xylose-utilization pathway of HQ304 was analyzed enzymologically to determine the optimal combination of enzyme activities.
Collapse
Affiliation(s)
- Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Huanna Qiu
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China
| | - Shuli Man
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese of Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin 300308, China.
| |
Collapse
|
5
|
Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y. Metabolism of L-arabinose in plants. JOURNAL OF PLANT RESEARCH 2016; 129:781-792. [PMID: 27220955 PMCID: PMC5897480 DOI: 10.1007/s10265-016-0834-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 05/07/2023]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar accounting for 5-10 % of cell wall saccharides in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). L-Ara occurs in pectic arabinan, rhamnogalacturonan II, arabinoxylan, arabinogalactan-protein (AGP), and extensin in the cell walls, as well as in glycosylated signaling peptides like CLAVATA3 and small glycoconjugates such as quercetin 3-O-arabinoside. This review focuses on recent advances towards understanding the generation of L-Ara and the metabolism of L-Ara-containing molecules in plants.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | - Yukiko Yamanashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Chiemi Imaizumi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
6
|
Alves LC, Magalhães DMD, Labate MTV, Guidetti-Gonzalez S, Labate CA, Domingues DS, Sera T, Vieira LGE, Pereira LFP. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1635-1647. [PMID: 26809209 DOI: 10.1021/acs.jafc.5b04376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.
Collapse
Affiliation(s)
- Leonardo Cardoso Alves
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina , P.O. Box 6001, Londrina, Parana 86051-990, Brazil
| | | | | | - Simone Guidetti-Gonzalez
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Carlos Alberto Labate
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Douglas Silva Domingues
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | - Tumoru Sera
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | | | - Luiz Filipe Protasio Pereira
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- EMBRAPA Café , Brasilia, DF, Brazil
| |
Collapse
|