1
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
2
|
Chen T, Fu B, Li H. Optimisation of PAHs biodegradation by Klebsiella pneumonia and Pseudomonas aeruginosa through response surface methodology. ENVIRONMENTAL TECHNOLOGY 2024; 45:5204-5217. [PMID: 37970911 DOI: 10.1080/09593330.2023.2283813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023]
Abstract
Response Surface Methodology (RSM) with Box-Behnken Design (BBD) is used to optimise the Phenanthrene (PHE) degradation process by Klebsiella pneumoniae (K bacteria) and Pseudomonas aeruginosa (P bacteria). Wherein substrate concentration, temperature, and pH at three levels are used as independent variables, and degradation rate of PHE as dependent variables (response). The statistical analysis, via ANOVA, shows coefficient of determination R2 as 0.9848 with significant P value 0.0001 fitting in second-order quadratic regression model for PAHs removal by Klebsiella pneumonia, and R2 as 0.9847 with significant P value 0.0001 by P bacteria. According to the model analysis, temperature (P < 0.0006) is the most influential factor for PHE degradation efficiency by K bacteria, while pH (P < 0.0001) is the most influential factor for PHE degradation by P bacteria. The predicted optimum parameters for K bacteria, namely, temperature, substrate concentration, and pH are found to be 34.00℃, 50.80 mg/L, and 7.50, respectively, and those for P bacteria are 33.30℃, 52.70 mg/L, and 7.20, respectively. At these optimum conditions, the observed PHE removal rates by two bacteria are found to be 83.36% ± 2.1% and 81.23% ± 1.6% in validation experiments, respectively. Thus RSM can optimise the biodegradation conditions of both bacteria for PHE.
Collapse
Affiliation(s)
- Tao Chen
- Beijing University of Civil Engineering and Architecture, Key Laboratory of Urban Stormwater System & Water Environment Beijing, Beijing, China
| | - Bo Fu
- Beijing University of Civil Engineering and Architecture, Key Laboratory of Urban Stormwater System & Water Environment Beijing, Beijing, China
| | - Haiyan Li
- Tianjin Municipal Engineering Design and Research Institute Co. Ltd, Tianjin
| |
Collapse
|
3
|
Li Y, Zhao H, Wang L, Bai Y, Tang T, Liang H, Gao D. New insights in the biodegradation of high-cyclic polycyclic aromatic hydrocarbons with crude enzymes of Trametes versicolor. ENVIRONMENTAL TECHNOLOGY 2024; 45:2243-2254. [PMID: 36647685 DOI: 10.1080/09593330.2023.2169639] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
High-cyclic polycyclic aromatic hydrocarbons (PAHs), with complex fused aromatic structures, are widespread, refractory and harmful in soil, but the current remediation technologies for high-cyclic PAHs are often inefficient and costly. This study focused on the biodegradation process of high-cyclic benzo[a]pyrene by Trametes versicolor crude enzymes. The crude enzymes exhibited high laccase activity (22112 U/L) and benzo[a]pyrene degradation efficiency (42.21%) within a short reaction time. Through the actual degradation and degradation kinetics, the degradation efficiency of PAHs decreased with the increase of aromatic rings. And the degradation conditions (temperature, pH, Cu2+ concentration, mediator) were systematically optimised. The optimum degradation conditions (1.5 mM Cu2+, 28℃ and pH 6) showed significant degradation efficiency for the low and medium concentrations of benzo[a]pyrene. In addition, complete degradation of benzo[a]pyrene could be achieved using only 0.2 mM of HBT mediator compared with crude enzymes alone. Collectively, these results showed the high-cyclic PAHs degradation potential of Trametes versicolor crude enzymes, and provided references to evaluate applicable prospects of white rot fungus crude enzymes in PAHs-contaminated soils.
Collapse
Affiliation(s)
- Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Huan Zhao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
4
|
Kózka B, Sośnicka A, Nałęcz-Jawecki G, Drobniewska A, Turło J, Giebułtowicz J. Various species of Basidiomycota fungi reveal different abilities to degrade pharmaceuticals and also different pathways of degradation. CHEMOSPHERE 2023; 338:139481. [PMID: 37454990 DOI: 10.1016/j.chemosphere.2023.139481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The presence of pharmaceuticals (PhACs) in the aquatic environment is an emerging problem worldwide. PhACs reach surface water via the effluents of wastewater treatment plants (WWTPs). WWTPs, although able to remove organic pollutants, do not always remove PhACs. Currently, in the treatment of sewage with the activated sludge method, numerous microorganisms are used, mostly bacteria. Nevertheless, these microorganisms are not resistant to many drug contaminants, and some may also pose a risk to human health. White-rot fungi (WRF), which degrade a wide spectrum of environmental pollutants, may be used as an alternative to microorganisms. However, little data exists comparing the removal of various PhACs by different WRF. In this study, we aimed to determine the ability of three WRF Basidiomycota species, Armillaria mellea, Phanerochaete chrysosporium, and Pleurotus ostreatus, to remove PhACs from various therapeutic groups over the course of 1 h-4 days. Additionally, we identified the fungal metabolites of PhACs, proposed the degradation pathways, and assessed the toxicity of the post-culture media. All selected WRF removed PhACs, but the degree of removal depended on WRF species and PhACs type. Antidepressants and immunosuppressants were removed most efficiently by P. ostreatus, cardiovascular drugs and sulfamethoxazole by A. mellea, and erythromycin by P. chrysosporium. The vast differences observed highlight the need for more intensive testing of different WRF species to select the best species for removing pharmaceuticals of interest. The structure of metabolites generated during degradation strongly depended on WRF species, but the most frequent xenobiotic transformations were oxidation and dealkylation. The obtained results gave insight into the substrate specificity of selected WRF while also providing a broad extension of the knowledge of pharmaceutical degradation by A. mellea.
Collapse
Affiliation(s)
- B Kózka
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Poland
| | - A Sośnicka
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Technology and Pharmaceutical Biotechnology, Poland
| | - G Nałęcz-Jawecki
- Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, Poland
| | - A Drobniewska
- Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, Poland
| | - J Turło
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Technology and Pharmaceutical Biotechnology, Poland
| | - J Giebułtowicz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Poland.
| |
Collapse
|
5
|
Thacharodi A, Hassan S, Singh T, Mandal R, Chinnadurai J, Khan HA, Hussain MA, Brindhadevi K, Pugazhendhi A. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. CHEMOSPHERE 2023; 328:138498. [PMID: 36996919 DOI: 10.1016/j.chemosphere.2023.138498] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A class of organic priority pollutants known as PAHs is of critical public health and environmental concern due to its carcinogenic properties as well as its genotoxic, mutagenic, and cytotoxic properties. Research to eliminate PAHs from the environment has increased significantly due to awareness about their negative effects on the environment and human health. Various environmental factors, including nutrients, microorganisms present and their abundance, and the nature and chemical properties of the PAH affect the biodegradation of PAHs. A large spectrum of bacteria, fungi, and algae have ability to degrade PAHs with the biodegradation capacity of bacteria and fungi receiving the most attention. A considerable amount of research has been conducted in the last few decades on analyzing microbial communities for their genomic organization, enzymatic and biochemical properties capable of degrading PAH. While it is true that PAH degrading microorganisms offer potential for recovering damaged ecosystems in a cost-efficient way, new advances are needed to make these microbes more robust and successful at eliminating toxic chemicals. By optimizing some factors like adsorption, bioavailability and mass transfer of PAHs, microorganisms in their natural habitat could be greatly improved to biodegrade PAHs. This review aims to comprehensively discuss the latest findings and address the current wealth of knowledge in the microbial bioremediation of PAHs. Additionally, recent breakthroughs in PAH degradation are discussed in order to facilitate a broader understanding of the bioremediation of PAHs in the environment.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Saqib Hassan
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, 110029, India; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Tripti Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Ramkrishna Mandal
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Jeganathan Chinnadurai
- Department of Research and Development, Dr. Thacharodi's Laboratories, No. 24, 5th Cross, Thanthaiperiyar Nagar, Ellapillaichavadi, Puducherry, 605005, India
| | - Hilal Ahmad Khan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Mir Ashiq Hussain
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali,140103, India.
| |
Collapse
|
6
|
Wang Z, Hu H, Zhang Z, Xu Y, Xu P, Tang H. lA multiple PAHs-degrading Shinella sp. strain and its potential bioremediation in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162974. [PMID: 36958565 DOI: 10.1016/j.scitotenv.2023.162974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic derivatives are organic pollutants which threaten ecosystems and human beings. In this study, a new strain, Shinella sp. FLN 14, was isolated and characterized. It can utilize fluorene as its sole carbon source and effectively co-metabolize multiple PAHs and heterocyclic derivatives, including phenanthrene, acenaphthene, and fluoranthene. Two possible metabolic pathways are proposed (i.e., salicylic acid pathway and phthalic acid pathway). Whole-genome sequencing revealed that strain FLN14 possesses a chromosome and four plasmids. However, when combined with ensemble genetic information, novel fluorene-degrading functional gene clusters were not located within the genome of FLN 14, except for some new dioxygenases and electron transport chains, which typically initiate the oxidation of aromatic compounds. In wastewater bioremediation, strain FLN14 removed nearly 95 % of PAHs within 5 days and maintained high degrading activity during the 18-day reaction compared to the control. Overall, our study provides a promising candidate to achieve bioremediation of PAHs-contaminated environments.
Collapse
Affiliation(s)
- Zan Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhan Zhang
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450000, People's Republic of China
| | - Yongming Xu
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450000, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
7
|
Charpentier-Alfaro C, Benavides-Hernández J, Poggerini M, Crisci A, Mele G, Della Rocca G, Emiliani G, Frascella A, Torrigiani T, Palanti S. Wood-Decaying Fungi: From Timber Degradation to Sustainable Insulating Biomaterials Production. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093547. [PMID: 37176430 PMCID: PMC10179824 DOI: 10.3390/ma16093547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Addressing the impacts of climate change and global warming has become an urgent priority for the planet's well-being. In recent decades the great potential of fungal-based products with characteristics equal to, or even outperforming, classic petroleum-derived products has been acknowledged. These new materials present the added advantage of having a reduced carbon footprint, less environmental impact and contributing to the shift away from a fossil-based economy. This study focused on the production of insulation panels using fungal mycelium and lignocellulosic materials as substrates. The process was optimized, starting with the selection of Trametes versicolor, Pleurotus ostreatus, P. eryngii, Ganoderma carnosum and Fomitopsis pinicola isolates, followed by the evaluation of three grain spawn substrates (millet, wheat and a 1:1 mix of millet and wheat grains) for mycelium propagation, and finishing with the production of various mycelium-based composites using five wood by-products and waste materials (pine sawdust, oak shavings, tree of heaven wood chips, wheat straw and shredded beech wood). The obtained biomaterials were characterized for internal structure by X-ray micro-CT, thermal transmittance using a thermoflowmeter and moisture absorption. The results showed that using a wheat and millet 1:1 (w/w) mix is the best option for spawn production regardless of the fungal isolate. In addition, the performance of the final composites was influenced both by the fungal isolate and the substrate used, with the latter having a stronger effect on the measured properties. The study shows that the most promising sustainable insulating biomaterial was created using T. versicolor grown on wheat straw.
Collapse
Affiliation(s)
- Camila Charpentier-Alfaro
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Jorge Benavides-Hernández
- Département Chimie, Faculté des Sciences et Technologies, Université de Lille, 59655 Villeneuve-d'Ascq, France
| | - Marco Poggerini
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy
| | - Alfonso Crisci
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy
| | - Giacomo Mele
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (ISAFOM), Consiglio Nazionale delle Ricerche, P.Le Enrico Fermi, Portici, 80055 Napoli, Italy
| | - Gianni Della Rocca
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy
| | - Giovanni Emiliani
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy
| | - Angela Frascella
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy
| | - Tommaso Torrigiani
- Laboratorio di Meteorologia Modellistica Ambientale (LaMMA), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy
| | - Sabrina Palanti
- Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
8
|
Tang C, Tan Y, Zhang J, Zhou S, Honda Y, Zhang H. A Novel Strain Breeding of Ganoderma lucidum UV119 (Agaricomycetes) with High Spores Yield and Strong Resistant Ability to Other Microbes' Invasions. Foods 2023; 12:foods12030465. [PMID: 36765994 PMCID: PMC9914782 DOI: 10.3390/foods12030465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
The spore powder of Ganoderma lucidum (G. lucidum) has been proven to have a variety of pharmacological activities, and it has become a new resource for the development of health products and pharmaceuticals. However, the scarcity of natural resources, strict growth conditions and difficulty in controlling the stable yield, and quality of different culture batches seriously limit the development and utilization of G. lucidum spore powder. In the present study, the strain with the highest spore powder yield, G0109, was selected as the original strain to generate mutants of G. lucidum using ultraviolet ray irradiation. A total of 165 mutagenic strains were obtained, and fifty-five strains were chosen for the cultivation test. Importantly, one mutagenic strain with high spore powder yield and strong resistance to undesired microorganisms was acquired and named strain UV119. More cultivations demonstrated that the fruiting body and basidiospore yields from UV119 were, respectively, 8.67% and 19.27% higher than those of the parent (G0109), and the basidiospore yield was 20.56% higher than that of the current main cultivar "Longzhi No.1". In conclusion, this study suggested that ultraviolet ray irradiation is an efficient and practical method for Ganoderma strain improvement and thus provided a basis for the development and application of G. lucidum spore production and outstanding contributions to the rapid development of the G. lucidum industry.
Collapse
Affiliation(s)
- Chuanhong Tang
- National Engineering Research Center of Edible Fungi, Key Laboratory for the Utilization of Edible Fungi in Southern China, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai Key Open Laboratory of Agricultural Genetic Breeding, Shanghai 201403, China
| | - Yi Tan
- National Engineering Research Center of Edible Fungi, Key Laboratory for the Utilization of Edible Fungi in Southern China, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai Key Open Laboratory of Agricultural Genetic Breeding, Shanghai 201403, China
| | - Jingsong Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory for the Utilization of Edible Fungi in Southern China, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai Key Open Laboratory of Agricultural Genetic Breeding, Shanghai 201403, China
| | - Shuai Zhou
- National Engineering Research Center of Edible Fungi, Key Laboratory for the Utilization of Edible Fungi in Southern China, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai Key Open Laboratory of Agricultural Genetic Breeding, Shanghai 201403, China
| | - Yoichi Honda
- Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan
| | - Henan Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory for the Utilization of Edible Fungi in Southern China, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai Key Open Laboratory of Agricultural Genetic Breeding, Shanghai 201403, China
- Correspondence: or ; Tel.: +86-021-62201203
| |
Collapse
|
9
|
Sonwani RK, Kim KH, Zhang M, Tsang YF, Lee SS, Giri BS, Singh RS, Rai BN. Construction of biotreatment platforms for aromatic hydrocarbons and their future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125968. [PMID: 34492879 DOI: 10.1016/j.jhazmat.2021.125968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Aromatic hydrocarbons (AHCs) are one of the major environmental pollutants introduced from both natural and anthropogenic sources. Many AHCs are well known for their toxic, carcinogenic, and mutagenic impact on human health and ecological systems. Biodegradation is an eco-friendly and cost-effective option as microorganisms (e.g., bacteria, fungi, and algae) can efficiently breakdown or transform such pollutants into less harmful and simple metabolites (e.g., carbon dioxide (aerobic), methane (anaerobic), water, and inorganic salts). This paper is organized to offer a state-of-the-art review on the biodegradation of AHCs (monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs)) and associated mechanisms. The recent progress in biological treatment using suspended and attached growth bioreactors for the biodegradation of AHCs is also discussed. In addition, various substrate growth and inhibition models are introduced along with the key factors governing their biodegradation kinetics. The growth and inhibition models have helped gain a better understanding of substrate inhibition in biodegradation. Techno-economic analysis (TEA) and life cycle assessment (LCA) aspects are also described to assess the technical, economical, and environmental impacts of the biological treatment system.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Balendu Shekher Giri
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Sakshi, Haritash AK. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 2020; 202:2033-2058. [DOI: 10.1007/s00203-020-01929-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023]
|
11
|
Sonwani R, Giri B, Das T, Singh R, Rai B. Biodegradation of fluorene by neoteric LDPE immobilized Pseudomonas pseudoalcaligenes NRSS3 in a packed bed bioreactor and analysis of external mass transfer correlation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Behera BK, Das A, Sarkar DJ, Weerathunge P, Parida PK, Das BK, Thavamani P, Ramanathan R, Bansal V. Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:212-233. [PMID: 29807281 DOI: 10.1016/j.envpol.2018.05.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 05/14/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are among the most ubiquitous environmental pollutants of high global concern. PAHs belong to a diverse family of hydrocarbons with over one hundred compounds known, each containing at least two aromatic rings in their structure. Due to hydrophobic nature, PAHs tend to accumulate in the aquatic sediments, leading to bioaccumulation and elevated concentrations over time. In addition to their well-manifested mutagenic and carcinogenic effects in humans, they pose severe detrimental effects to aquatic life. The high eco-toxicity of PAHs has attracted a number of reviews, each dealing specifically with individual aspects of this global pollutant. However, efficient management of PAHs warrants a holistic approach that combines a thorough understanding of their physico-chemical properties, modes of environmental distribution and bioaccumulation, efficient detection, and bioremediation strategies. Currently, there is a lack of a comprehensive study that amalgamates all these aspects together. The current review, for the first time, overcomes this constraint, through providing a high level comprehensive understanding of the complexities faced during PAH management, while also recommending future directions through potentially viable solutions. Importantly, effective management of PAHs strongly relies upon reliable detection tools, which are currently non-existent, or at the very best inefficient, and therefore have a strong prospect of future development. Notably, the currently available biosensor technologies for PAH monitoring have not so far been compiled together, and therefore a significant focus of this article is on biosensor technologies that are critical for timely detection and efficient management of PAHs. This review is focussed on inland aquatic ecosystems with an emphasis on fish biodiversity, as fish remains a major source of food and livelihood for a large proportion of the global population. This thought provoking study is likely to instigate new collaborative approaches for protecting aquatic biodiversity from PAHs-induced eco-toxicity.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India; Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Abhishek Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Pabudi Weerathunge
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Pranaya Kumar Parida
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
13
|
Coelho-Moreira JDS, Brugnari T, Sá-Nakanishi AB, Castoldi R, de Souza CG, Bracht A, Peralta RM. Evaluation of diuron tolerance and biotransformation by the white-rot fungus Ganoderma lucidum. Fungal Biol 2018; 122:471-478. [DOI: 10.1016/j.funbio.2017.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|
14
|
Pozdnyakova NN, Balandina SA, Dubrovskaya EV, Golubev CN, Turkovskaya OV. Ligninolytic basidiomycetes as promising organisms for the mycoremediation of PAH-contaminated Environments. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/107/1/012071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Syafiuddin A, Hadibarata T, Zon NF, Salmiati. Characterization of Titanium Dioxide Doped with Nitrogen and Sulfur and its Photocatalytic Appraisal for Degradation of Phenol and Methylene Blue. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Achmad Syafiuddin
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; 81310 UTM Johor Bahru Johor Malaysia
| | - Tony Hadibarata
- Department of Environmental Engineering, Faculty of Engineering and Science; Curtin University; Miri Sarawak 98009 Malaysia
| | - Nur Farhan Zon
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; 81310 UTM Johor Bahru Johor Malaysia
| | - Salmiati
- Department of Environmental Engineering, Faculty of Civil Engineering; Universiti Teknologi Malaysia; 81310 UTM Johor Bahru Johor Malaysia
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE); Universiti Teknologi Malaysia; 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
16
|
Hadibarata T, Khudhair AB, Kristanti RA, Kamyab H. Biodegradation of pyrene by Candida sp. S1 under high salinity conditions. Bioprocess Biosyst Eng 2017; 40:1411-1418. [PMID: 28612166 DOI: 10.1007/s00449-017-1798-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/06/2017] [Indexed: 11/28/2022]
Abstract
Polycyclic aromatic hydrocarbon is a toxic recalcitrant environmental pollutant and its removal from the environment is very essential. In this study, a novel S1 strain isolated from the tropical rain forest was identified as Candida species based on 18S rRNA. The pyrene biodegradation was performed by Candida sp. S1. Pyrene was 35% degraded in 15 days. The percentage of pyrene biodegradation increased up to 75% with 24 g L-1 of sodium chloride and decreased along with increasing salinity. Under the acidic condition, the biodegradation was increased up to 60% at pH 5. It was also found that the increasing glucose concentration of more than 10 g L-1 had no significant effect on pyrene biodegradation, while agitation proved to have greater influence. There was a positive relationship between biomass growth and biodegradation rate of pyrene. One pyrene metabolite was identified from the extract solution and analyzed by a thin-layer chromatography, UV-visible absorption and gas chromatography-mass spectrometry. The metabolite found in the pyrene degradation was benzoic acid. Suitable conditions must be found to promote a successful microbial augmentation in liquid culture.
Collapse
Affiliation(s)
- Tony Hadibarata
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | | | - Risky Ayu Kristanti
- Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan, 26300, Gambang, Pahang, Malaysia
| | - Hesam Kamyab
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
17
|
Wang CC, Lin LJ, Chao YP, Chiang CJ, Lee MT, Chang SC, Yu B, Lee TT. Antioxidant molecular targets of wheat bran fermented by white rot fungi and its potential modulation of antioxidative status in broiler chickens. Br Poult Sci 2017; 58:262-271. [DOI: 10.1080/00071668.2017.1280772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- C. C. Wang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - L. J. Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Y. P. Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - C. J. Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - M. T. Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - S. C. Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Changhua, Taiwan
| | - B. Yu
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - T. T. Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci (China) 2017; 51:52-74. [PMID: 28115152 DOI: 10.1016/j.jes.2016.08.023] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes more challenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds.
Collapse
Affiliation(s)
- Tayssir Kadri
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada.
| | - Maximiliano Cledon
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Saurabhjyoti Sarma
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Mausam Verma
- CO(2) Solutions Inc., 2300, rue Jean-Perrin, Québec, QC G2C 1T9, Canada
| |
Collapse
|
19
|
Teerapatsakul C, Chitradon L. Physiological Regulation of an Alkaline-Resistant Laccase Produced by Perenniporia tephropora and Efficiency in Biotreatment of Pulp Mill Effluent. MYCOBIOLOGY 2016; 44:260-268. [PMID: 28154483 PMCID: PMC5287158 DOI: 10.5941/myco.2016.44.4.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/21/2016] [Accepted: 09/19/2016] [Indexed: 05/31/2023]
Abstract
Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process.
Collapse
Affiliation(s)
- Churapa Teerapatsakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.; Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand
| | - Lerluck Chitradon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.; Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
20
|
Teerapatsakul C, Pothiratana C, Chitradon L, Thachepan S. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13. J GEN APPL MICROBIOL 2016; 62:303-312. [PMID: 27885193 DOI: 10.2323/jgam.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The biodegradation of three polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, and pyrene, by a newly isolated thermotolerant white rot fungal strain RYNF13 from Thailand, was investigated. The strain RYNF13 was identified as Trametes polyzona, based on an analysis of its internal transcribed spacer sequence. The strain RYNF13 was superior to most white rot fungi. The fungus showed excellent removal of PAHs at a high concentration of 100 mg·L-1. Complete degradation of phenanthrene in a mineral salt glucose medium culture was observed within 18 days of incubation at 30°C, whereas 90% of fluorene and 52% of pyrene were degraded under the same conditions. At a high temperature of 42°C, the strain RYNF13 was still able to grow, and degraded approximately 68% of phenanthrene, whereas 48% of fluorene and 30% of pyrene were degraded within 32 days. Thus, the strain RYNF13 is a potential fungus for PAH bioremediation, especially in a tropical environment where the temperature can be higher than 40°C. The strain RYNF13 secreted three different ligninolytic enzymes, manganese peroxidase, laccase, and lignin peroxidase, during PAH biodegradation at 30°C. When the incubation temperature was increased from 30°C to 37°C and 42°C, only two ligninolytic enzymes, manganese peroxidase and laccase, were detectable during the biodegradation. Manganese peroxidase was the major enzyme produced by the fungus. In the culture containing phenanthrene, manganese peroxidase showed the highest enzymatic activity at 179 U·mL-1. T. polyzona RYNF13 was determined as a potential thermotolerant white rot fungus, and suitable for application in the treatment of PAH-containing contaminants.
Collapse
|
21
|
Kulikova NA, Klein OI, Pivchenko DV, Landesman EO, Pozdnyakova NN, Turkovskaya OV, Zaichik BT, Ruzhitskii AO, Koroleva OV. Oil degradation by basidiomycetes in soil and peat at low temperatures. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Pozdnyakova NN, Chernyshova MP, Grinev VS, Landesman EO, Koroleva OV, Turkovskaya OV. Degradation of fluorene and fluoranthene by the basidiomycete Pleurotus ostreatus. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816060132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Tang X, Dong S, Shi W, Gao N, Zuo L, Xu H. Fates of nickel and fluoranthene during the bioremediation byPleurotus eryngiiin three different soils. J Basic Microbiol 2016; 56:1194-1202. [DOI: 10.1002/jobm.201600171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xia Tang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Shunwen Dong
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences; Chengdu Sichuan P. R. China
| | - Wenjin Shi
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Ni Gao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Lei Zuo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| | - Heng Xu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education); College of Life Science; Sichuan University; Chengdu Sichuan P. R. China
| |
Collapse
|
24
|
Wu M, Xu Y, Ding W, Li Y, Xu H. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin. Appl Microbiol Biotechnol 2016; 100:7249-61. [DOI: 10.1007/s00253-016-7551-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
|
25
|
Hao DC, Song SM, Mu J, Hu WL, Xiao PG. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization. Sci Rep 2016; 6:22006. [PMID: 27080869 PMCID: PMC4832182 DOI: 10.1038/srep22006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/03/2016] [Indexed: 01/18/2023] Open
Abstract
The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Si-Meng Song
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Jun Mu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wen-Li Hu
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Xie XG, Huang CY, Fu WQ, Dai CC. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid. Fungal Biol 2015; 120:402-13. [PMID: 26895869 DOI: 10.1016/j.funbio.2015.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/06/2015] [Accepted: 11/29/2015] [Indexed: 11/20/2022]
Abstract
The biodegradation potential of sinapic acid, one of the most representative methoxy phenolic pollutants presented in industrial wastewater, was first studied using an endophytic fungus called Phomopsis liquidambari. This strain can effectively degrade sinapic acid in flasks and in soil and the possible biodegradation pathway was first systematically proposed on the basis of the metabolite production patterns and the identification of the metabolites by GC-MS and HPLC-MS. Sinapic acid was first transformed to 2,6-dimethoxy-4-vinylphenol that was further degraded via 4-hydroxy-3,5-dimethoxybenzaldehyde, syringic acid, gallic acid, and citric acid which involved in the continuous catalysis by phenolic acid decarboxylase, laccase, and gallic acid dioxygenase. Moreover, their activities and gene expression levels exhibited a 'cascade induction' response with the changes in metabolic product concentrations and the generation of fungal laccase significantly improved the degradation process. This study is the first report of an endophytic fungus that has great potential to degrade xenobiotic sinapic acid, and also provide a basis for practical application of endophytic fungus in the bioremediation of sinapic acid-contaminated industrial wastewater and soils.
Collapse
Affiliation(s)
- Xing-Guang Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Chun-Yan Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Wan-Qiu Fu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
27
|
Drevinskas T, Mickienė R, Maruška A, Stankevičius M, Tiso N, Mikašauskaitė J, Ragažinskienė O, Levišauskas D, Bartkuvienė V, Snieškienė V, Stankevičienė A, Polcaro C, Galli E, Donati E, Tekorius T, Kornyšova O, Kaškonienė V. Downscaling the in vitro test of fungal bioremediation of polycyclic aromatic hydrocarbons: methodological approach. Anal Bioanal Chem 2015; 408:1043-53. [DOI: 10.1007/s00216-015-9191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/08/2015] [Accepted: 11/12/2015] [Indexed: 01/05/2023]
|