1
|
Liu R, Huang L, Feng X, Wang D, Gunarathne R, Kong Q, Lu J, Ren X. Unraveling the effective inhibition of α-terpinol and terpene-4-ol against Aspergillus carbonarius: Antifungal mechanism, ochratoxin A biosynthesis inhibition and degradation perspectives. Food Res Int 2024; 194:114915. [PMID: 39232535 DOI: 10.1016/j.foodres.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Aspergillus carbonarius, a common food-contaminating fungus, produces ochratoxin A (OTA) and poses a risk to human health. This study aimed to assess the inhibitory activity of tea tree essential oil and its main components, Terpene-4-ol (T4), α-terpineol (αS), and 3-carene (3C) against A. carbonarius. The study showed αS and T4 were the main antifungal components of tea tree essential oil, which primarily inhibit A. carbonarius growth through cell membrane disruption, reducing antioxidant enzyme activities (catalase, peroxidase, superoxide dismutase) and interrupting the tricarboxylic acid cycle. Furthermore, αS and T4 interacted with enzymes related to OTA biosynthesis. Molecular docking and molecular dynamics show that they bound mainly to P450 with a minimum binding energy of -7.232 kcal/mol, we infered that blocking the synthesis of OTA precursor OTβ. Our hypothesis was preliminarily verified by the detection of key substances in the OTA synthesis pathway. The results of UHPLC-QTOF-MS2 analysis demonstrated that T4 achieved a degradation rate of 43 % for OTA, while αS reached 29.6 %, resulting in final breakdown products such as OTα and phenylalanine. These results indicated that α-terpinol and Terpene-4-ol have the potential to be used as naturally safe and efficient preservatives or active packaging to prevent OTA contamination.
Collapse
Affiliation(s)
- Rong Liu
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lingxuan Huang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Xuan Feng
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Di Wang
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Rasika Gunarathne
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - QingJun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Jun Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
2
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
3
|
You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2023; 63:12441-12452. [PMID: 35866524 DOI: 10.1080/10408398.2022.2101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables are susceptible to fungal infections during picking, transportation, storage and processing, which have a high potential to produce toxins. Fungi and toxins can cause acute or chronic poisoning after entering the body. In the field of fruit and vegetable preservation, technologies such as temperature control, modified atmosphere, irradiation, application of natural or chemical preservatives, and edible films are commonly used. In practical applications, according to the types, physiological differences and actual needs of fruits and vegetables, suitable preservation methods can be selected to achieve the effect of preservation and control of fungi and toxins. The starting point of fresh-keeping technology is to delay post-harvest senescence of fruits and vegetables, inhibit the respiratory intensity, and control the reproduction of microorganisms, which is important to control the reproduction of fungi and the production of toxins. From the three directions of physical, chemical and biological means, the article analyses and explores the effects of different external factors on the production of toxins and the effects of different preservation techniques on fungal growth and toxin production in fruits and vegetables, in order to provide new ideas for the preservation of fruits and vegetables and the control of harmful substances in food.
Collapse
Affiliation(s)
- Yanli You
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yunna Zhou
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Xuewu Duan
- Department of South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xin Mao
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yanshen Li
- Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
4
|
Drishya C, Yoha K, Perumal AB, Moses JA, Anandharamakrishnan C, Balasubramaniam VM. Impact of nonthermal food processing techniques on mycotoxins and their producing fungi. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Drishya
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - K.S. Yoha
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - Anand Babu Perumal
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - Jeyan A Moses
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - V. M. Balasubramaniam
- Department of Food Science and Technology & Department of Food Agricultural and Biological Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|
5
|
Mycotoxins and Climate Change. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
|
7
|
Yu J, Yang M, Han J, Pang X. Fungal and mycotoxin occurrence, affecting factors, and prevention in herbal medicines: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1925696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jingsheng Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianping Han
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Xiaohui Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Rezaie MR, Zareie N. Impact of granite irradiation on aflatoxin reduction in pistachio. Toxicon 2021; 199:7-11. [PMID: 34051219 DOI: 10.1016/j.toxicon.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
In this research with the effect of radioactive granite gamma radiation, the reduction of aflatoxin B1 in pistachios was examined in three steps. In the first step, the aflatoxin reduction in small packets by granite bed was tested. In this step, the aflatoxin level of 300 g pistachios packets was reduced up to 81.3 ± 1.5 percent by 4 kg granite bed after 4 days. After observation of aflatoxin reduction by granite bed, the second step was done with increasing the granite and pistachio mass and irradiation time. In this step, the aflatoxin level of 1 kg pistachios was reduced up to 4949 ± 2.6 percent by 6 kg granite after 9 days. According to the results, the aflatoxin reduction of 1 kg pistachios by 1 kg granite after 1 days (as aflatoxin Reduction Coefficient (ARC)) was calculated as ARC = 0.0090 ± 0.0025 (kg. day)-1. The aflatoxin types of detected in this research were B1 and B2 types that AFB2 level was much less than one. Therefore the effect of granite irradiation on AFB2 reduction wasn't considered. The final step was designed for testing the aflatoxin Reduction Coefficient (ARC). This step was shown that the confidence level between practical result and aflatoxin Reduction Coefficient (ARC) result is about 97 percent. The results indicated that the level of fat and protein of pistachios by granite gamma radiation did not change after 9 days. Therefore the granite irradiation can be used for aflatoxin reduction of pistachios.
Collapse
Affiliation(s)
- Mohammad Raza Rezaie
- Department of Nuclear Engineering, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran.
| | - Neda Zareie
- Department of Nuclear Engineering, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
9
|
Effects of Light on the Ochratoxigenic Fungi Aspergillus ochraceus and A. carbonarius. Toxins (Basel) 2021; 13:toxins13040251. [PMID: 33807312 PMCID: PMC8065527 DOI: 10.3390/toxins13040251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Ochratoxin A (OTA) usually contaminates agricultural products such as grapes, oatmeal, coffee and spices. Light was reported as an effective strategy to control spoilage fungi and mycotoxins. This research investigated the effects of light with different wavelengths on the growth and the production of OTA in Aspergillus ochraceus and Aspergillus carbonarius. The results showed that the growth of both fungi were extremely inhibited by UV-B. Short-wavelength (blue, violet) significantly inhibited the production of OTA in both fungi, while the inhibitory effect of white was only demonstrated on A. ochraceus. These results were supported by the expression profiles of OTA biosynthetic genes of A. ochraceus and A. carbonarius. To clarify, the decrease in OTA production is induced by inhibition or degradation; therefore, the degradation of OTA under different wavelengths of light was tested. Under UV-B, the degradation rate of 10 μg/mL OTA standard pure-solution samples could reach 96.50% in 15 days, and the degradation effect of blue light was relatively weak. Furthermore, infection experiments of pears showed that the pathogenicity of both fungi was significantly decreased under UV-B radiation. Thus, these results suggested that light could be used as a potential target for strategies in the prevention and control of ochratoxigenic fungi.
Collapse
|
10
|
Zhu J, Song S, Sun Z, Lian L, Shi L, Ren A, Zhao M. Regulation of glutamine synthetase activity by transcriptional and posttranslational modifications negatively influences ganoderic acid biosynthesis in Ganoderma lucidum. Environ Microbiol 2021; 23:1286-1297. [PMID: 33438292 DOI: 10.1111/1462-2920.15400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 01/09/2021] [Indexed: 12/01/2022]
Abstract
Glutamine synthetase (GS), a central nitrogen metabolic enzyme, plays important roles in the nitrogen regulation network and secondary metabolism in fungi. However, the mechanisms by which external nitrogen sources regulate fungal GS activity have not been determined. Here, we found that GS activity was inhibited under nitrate conditions in Ganoderma lucidum. By constructing gs-silenced strains and adding 1 mM GS inhibitor to inhibit GS activity, we found that a decrease in GS activity led to a decrease in ganoderic acid biosynthesis. The transcription of gs increased approximately five fold under nitrate conditions compared with that under ammonia. Electrophoretic mobility shift and yeast one-hybrid assay showed that gs was transcriptionally regulated by AreA. Although both gs expression and GS protein content increased under nitrate conditions, the GS activity still decreased. Treatment of recombinant GS with SIN-1 (protein nitration donor) resulted in a strengthened nitration accompanied by a 71% decrease in recombinant GS activity. Furthermore, intracellular GS could be nitrated from mycelia cultivated under nitrate conditions. These results indicated that GS activity could be inhibited by NO-mediated protein nitration. Our findings provide the first insight into the role of transcriptional and posttranslational regulation of GS activity in regulating secondary metabolism in fungi.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuqi Song
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zehua Sun
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
11
|
Deng LZ, Tao Y, Mujumdar AS, Pan Z, Chen C, Yang XH, Liu ZL, Wang H, Xiao HW. Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Akbar A, Medina A, Magan N. Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms 2020; 8:E1268. [PMID: 32825420 PMCID: PMC7569885 DOI: 10.3390/microorganisms8091268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
We examined the resilience of strains of Aspergillus westerdijkiae in terms of growth and ochratoxin A (OTA) production in relation to: (a) two-way interacting climate-related abiotic factors of water activity (aw, 0.99-0.90) × temperature (25-37 °C) on green coffee and roasted coffee-based media; (b) three-way climate-related abiotic factors (temperature, 30 vs. 35 °C; water stress, 0.98-0.90 aw; CO2, 400 vs. 1000 ppm) on growth and OTA production on a 6% green coffee extract-based matrix; and (c) the effect of three-way climate-related abiotic factors on OTA production in stored green coffee beans. Four strains of A. westerdijkiae grew equally well on green or roasted coffee-based media with optimum 0.98 aw and 25-30 °C. Growth was significantly slower on roasted than green coffee-based media at 35 °C, regardless of aw level. Interestingly, on green coffee-based media OTA production was optimum at 0.98-0.95 aw and 30 °C. However, on roasted coffee-based media very little OTA was produced. Three-way climate-related abiotic factors were examined on two of these strains. These interacting factors significantly reduced growth of the A. westerdijkiae strains, especially at 35 °C × 1000 ppm CO2 and all aw levels when compared to 30 °C. At 35 °C × 1000 ppm CO2 there was some stimulation of OTA production by the two A. westerdijkiae strains, especially under water stress. In stored green coffee beans optimum OTA was produced at 0.95-0.97 aw/30 °C. In elevated CO2 and 35 °C, OTA production was stimulated at 0.95-0.90 aw.
Collapse
Affiliation(s)
| | | | - Naresh Magan
- Applied Mycology Group, School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK; (A.A.); (A.M.)
| |
Collapse
|
13
|
McCorison CB, Goodwin SB. The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light. BMC Genomics 2020; 21:513. [PMID: 32711450 PMCID: PMC7382159 DOI: 10.1186/s12864-020-06899-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness. Results There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection. Conclusions This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.
Collapse
Affiliation(s)
- Cassandra B McCorison
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA
| | - Stephen B Goodwin
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
14
|
Torres S, González-Ramírez M, Gavilán J, Paz C, Palfner G, Arnold N, Fuentealba J, Becerra J, Pérez C, Cabrera-Pardo JR. Exposure to UV-B Radiation Leads to Increased Deposition of Cell Wall-Associated Xerocomic Acid in Cultures of Serpula himantioides. Appl Environ Microbiol 2019; 85:e00870-19. [PMID: 31285193 PMCID: PMC6715839 DOI: 10.1128/aem.00870-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022] Open
Abstract
Many fungi are thought to have developed morphological and physiological adaptations to cope with exposure to UV-B radiation, but in most species, such responses and their protective effects have not been explored. Here, we study the adaptive response to UV-B radiation in the widespread, saprotrophic fungus Serpula himantioides, frequently found colonizing coniferous wood in nature. We report the morphological and chemical responses of S. himantioides to controlled intensities of UV-B radiation, under in vitro culture conditions. Ultraviolet radiation induced a decrease in the growth rate of S. himantioides but did not cause gross morphological changes. Instead, we observed accumulation of pigments near the cell wall with increasing intensities of UV-B radiation. Nuclear magnetic resonance (NMR) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses revealed that xerocomic acid was the main pigment present, both before and after UV-B exposure, increasing from 7 mg/liter to 15 mg/liter after exposure. We show that xerocomic acid is a photoprotective metabolite with strong antioxidant abilities, as evidenced by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt], and oxygen radical absorbance capacity (ORAC) assays. Finally, we assessed the capacity of xerocomic acid as a photoprotective agent on HEK293 cells and observed better photoprotective properties than those of β-carotene. Xerocomic acid is therefore a promising natural product for development as a UV-protective ingredient in cosmetic and pharmaceutical products.IMPORTANCE Our study shows the morphological and chemical responses of S. himantioides to controlled doses of UV-B radiation under in vitro culture conditions. We found that increased biosynthesis of xerocomic acid was the main strategy adopted by S. himantioides against UV-B radiation. Xerocomic acid showed strong antioxidant and photoprotective abilities, which has not previously been reported. Our results indicate that upon UV-B exposure, S. himantioides decreases its hyphal growth rate and uses this energy instead to increase the biosynthesis of xerocomic acid, which is allocated near the cell wall. This metabolic switch likely allows xerocomic acid to efficiently defend S. himantioides from UV radiation through its antioxidant and photoprotective properties. The findings further suggest that xerocomic acid is a promising candidate for development as a cosmetic ingredient to protect against UV radiation and should therefore be investigated in depth in the near future both in vitro and in vivo.
Collapse
Affiliation(s)
- Solange Torres
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mariela González-Ramírez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian Paz
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Goetz Palfner
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - José Becerra
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Claudia Pérez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jaime R Cabrera-Pardo
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Departamento de Química, Facultad de Ciencias, Universidad del Bio-Bio, Concepción, Chile
| |
Collapse
|
15
|
Hosseini FS, Akhavan HR, Maghsoudi H, Hajimohammadi-Farimani R, Balvardi M. Effects of a rotational UV-C irradiation system and packaging on the shelf life of fresh pistachio. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5229-5238. [PMID: 31021408 DOI: 10.1002/jsfa.9763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In this study, fresh pistachio was exposed to UV-C irradiation (2.1 and 4.5 kJ m-2 ) in a rotating cylindrical system with seven germicidal UV-C lamps and immediately packed in perforated and non-perforated polyethylene terephthalate (PET). The fruit were evaluated for weight loss, total phenolic content, enzyme activities, color indices (L*, a*, b* and browning index), and microbial counts during 35 days of storage at 4 °C. RESULTS UV-C treatment caused a significant decrease (P < 0.05) in the weight loss of fresh pistachios compared to the control. The activity of catalase and peroxidase enzymes was significantly higher (P < 0.05) in irradiated samples packed in non-perforated PET in comparison to those of untreated samples. Irradiation did not inhibit the activity of polyphenol oxidase in treated samples, although a slight decrease in polyphenol oxidase activity was observed in irradiated samples compared to control. The fruit treated with 2.1 kJ m-2 of UV-C and the control packed in non-perforated PET were lighter (L*), redder (a*), and less yellow (b*) compared to 4.5 kJ m-2 treated samples. Furthermore, a dose of 4.5 kJ m-2 UV-C significantly decreased sensory attributes of fresh pistachios compared to the other irradiation level and control. CONCLUSION UV-C irradiation at a dose of 2.1 kJ m-2 and packing in non-perforated PET are recommended for fresh pistachio preservation based on the physicochemical, microbial, and sensory parameters. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fereshteh-Sadat Hosseini
- Department of Mechanical Engineering of Bio-systems, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid-Reza Akhavan
- Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hossein Maghsoudi
- Department of Mechanical Engineering of Bio-systems, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Hajimohammadi-Farimani
- Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Balvardi
- Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
16
|
De Middeleer G, Leys N, Sas B, De Saeger S. Fungi and Mycotoxins in Space-A Review. ASTROBIOLOGY 2019; 19:915-926. [PMID: 30973270 DOI: 10.1089/ast.2018.1854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fungi are not only present on Earth but colonize spacecraft and space stations as well. This review provides an extensive overview of the large and diverse group of fungal species that have been found in space, as well as those corresponding detection methods used and the existing and potential future prevention and control strategies. Many of the identified fungal species in space, such as Aspergillus flavus and Alternaria sp., are mycotoxigenic; thus, they are potential mycotoxin producers. This indicates that, although the fungal load in space stations tends to be non-alarming, the effects should not be underestimated, since the effect of the space environment on mycotoxin production should be sufficiently studied as well. However, research focused on mycotoxin production under conditions found on space stations is essentially nonexistent, since these kinds of spaceflight experiments are rare. Consequently, it is recommended that detection and monitoring systems for fungi and mycotoxins in space are at some point prioritized such that investigations into the impact of the space environment on mycotoxin production is addressed.
Collapse
Affiliation(s)
- Gilke De Middeleer
- 1Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Natalie Leys
- 2Microbiology Unit, Interdisciplinary BioSciences Expert Group, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Benedikt Sas
- 3Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- 1Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Shanakhat H, Sorrentino A, Raiola A, Reverberi M, Salustri M, Masi P, Cavella S. Technological properties of durum wheat semolina treated by heating and UV irradiation for reduction of mycotoxin content. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hina Shanakhat
- Department of Agricultural SciencesUniversity of Naples Federico II Naples Italy
| | - Angela Sorrentino
- Centre for Food Innovation and Development in the Food IndustryUniversity of Naples Federico II Naples Italy
| | - Assunta Raiola
- Centre for Food Innovation and Development in the Food IndustryUniversity of Naples Federico II Naples Italy
| | | | - Manuel Salustri
- Department of Environmental BiologyUniversity “Sapienza” Rome Italy
| | - Paolo Masi
- Department of Agricultural SciencesUniversity of Naples Federico II Naples Italy
- Centre for Food Innovation and Development in the Food IndustryUniversity of Naples Federico II Naples Italy
| | - Silvana Cavella
- Department of Agricultural SciencesUniversity of Naples Federico II Naples Italy
- Centre for Food Innovation and Development in the Food IndustryUniversity of Naples Federico II Naples Italy
| |
Collapse
|
18
|
Shanakhat H, Sorrentino A, Raiola A, Romano A, Masi P, Cavella S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4003-4013. [PMID: 29412472 DOI: 10.1002/jsfa.8933] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Mycotoxins are secondary metabolites produced by moulds in food that are considered a substantial issue in the context of food safety, due to their acute and chronic toxic effects on animals and humans. Therefore, new accurate methods for their identification and quantification are constantly developed in order to increase the performance of extraction, improve the accuracy of identification and reduce the limit of detection. At the same time, several industrial practices have shown the ability to reduce the level of mycotoxin contamination in food. In particular, a decrease in the amount of mycotoxins could result from standard processes naturally used for food processing or by procedures strategically introduced during processing, with the specific aim of reducing the amount of mycotoxins. In this review, the current methods adopted for accurate analyses of mycotoxins in cereals (aflatoxins, ochratoxins, trichothecenes, fumonisins) are discussed. In addition, both conventional and innovative strategies adopted to obtain safer finished products from common cereals intended for human consumption will be explored and analysed. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hina Shanakhat
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Sorrentino
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Assunta Raiola
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Paolo Masi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Silvana Cavella
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Ma N, Wu Y, Xie F, Du K, Wang Y, Shi L, Ji L, Liu T, Ma X. Dimethyl fumarate reduces the risk of mycotoxins via improving intestinal barrier and microbiota. Oncotarget 2018; 8:44625-44638. [PMID: 28574825 PMCID: PMC5546506 DOI: 10.18632/oncotarget.17886] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
The effects of dimethyl fumarate (DMF) on mycotoxins and animal growth performance are well documented. However, its mechanism of anti-mildew effects is still unknown. The current study investigated how DMF detoxified the mycotoxin and improved the growth performance using BALB/c mice model, especially its effects on intestinal barrier function and gut micro-ecology. Our study also compared with the ultraviolet radiation (UR) treatment, a traditional anti-mildew control (TC). The results indicated that the DMF treatment had a lower contents of mycotoxin, better growth performance and improved mucosal morphology (P < 0.05), accompanied with the decreased intestinal permeability and the tighter gut barrier. Moreover, the efficiency of DMF was better than TC (P < 0.05). 16S rRNA gene sequence analysis revealed that the richness and diversity of bacteria was increased in DMF treatment. The most abundant OTUs belonged to Firmicutes and Bacteroidetes, and their changes in DMF were more moderate than the TC group, suggesting a more stable micro-ecology and the positive impact of DMF on the biodiversity of intestine. Specifically, the increased abundance of bacteria producing short-chain fatty acids (SCFAs), such as Gemella, Roseburia, Bacillus and Bacteroides in DMF group and prebiotics such as Lactobacillus in TC group, suggested a more healthier microbial composition and distribution. These findings supported that DMF had significant effects on animal's growth performance and intestinal barrier function by modulating the pathway of nutrient absorption and increasing the diversity and balance of gut microbes, which also illuminate that DMF is more efficient than traditional anti-mildew method.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Fei Xie
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Kexin Du
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Linxin Shi
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Linbao Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.,Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Udomkun P, Wiredu AN, Nagle M, Müller J, Vanlauwe B, Bandyopadhyay R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application - A review. Food Control 2017; 76:127-138. [PMID: 28701823 PMCID: PMC5484778 DOI: 10.1016/j.foodcont.2017.01.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 01/14/2017] [Indexed: 12/29/2022]
Abstract
Aflatoxins are mainly produced by certain strains of Aspergillus flavus, which are found in diverse agricultural crops. In many lower-income countries, aflatoxins pose serious public health issues since the occurrence of these toxins can be considerably common and even extreme. Aflatoxins can negatively affect health of livestock and poultry due to contaminated feeds. Additionally, they significantly limit the development of international trade as a result of strict regulation in high-value markets. Due to their high stability, aflatoxins are not only a problem during cropping, but also during storage, transport, processing, and handling steps. Consequently, innovative evidence-based technologies are urgently required to minimize aflatoxin exposure. Thus far, biological control has been developed as the most innovative potential technology of controlling aflatoxin contamination in crops, which uses competitive exclusion of toxigenic strains by non-toxigenic ones. This technology is commercially applied in groundnuts maize, cottonseed, and pistachios during pre-harvest stages. Some other effective technologies such as irradiation, ozone fumigation, chemical and biological control agents, and improved packaging materials can also minimize post-harvest aflatoxins contamination in agricultural products. However, integrated adoption of these pre- and post-harvest technologies is still required for sustainable solutions to reduce aflatoxins contamination, which enhances food security, alleviates malnutrition, and strengthens economic sustainability.
Collapse
Affiliation(s)
- Patchimaporn Udomkun
- International Institute of Tropical Agriculture (IITA), Bukavu, The Democratic Republic of Congo
| | | | - Marcus Nagle
- Universität Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Stuttgart, Germany
| | - Joachim Müller
- Universität Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Stuttgart, Germany
| | - Bernard Vanlauwe
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | |
Collapse
|
21
|
Akbar A, Medina A, Magan N. Impact of interacting climate change factors on growth and ochratoxin A production by Aspergillus section Circumdati and Nigri species on coffee. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2016.2041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to evaluate the effect of interacting climate change (CC) factors (water stress [water activity, aw; 0.99-0.90]); temperature [30, 35 °C]; and elevated CO2 [400 and 1000 ppm] on (1) lag phases prior to growth, (2) growth and (3) ochratoxin A (OTA) production by species of Aspergillus sections Circumdati and Nigri on coffee-based media and stored coffee beans. The lag phases, prior to growth, of all strains/species were slightly increased as aw, temperature and CO2 were modified. The interacting CC factors showed that most strains/species examined grew well at 30 °C and slightly less so at 35 °C except for Aspergillus niger (A 1911) which could tolerate the higher temperature. In addition, the interaction of elevated CO2 (1000 ppm) + temperature (35 °C) increased OTA production when compared with 30 °C but only for strains of Aspergillus westerdijkiae (B2), Aspergillus ochraceus (ITAL 14) and Aspergillus steynii (CBS 112814). Most of the strains had optimum growth at 0.95 aw at 35 °C, while at 30 °C the optimum was at 0.98 aw. On stored coffee beans there was only a significant stimulation of OTA production by A. westerdijkiae strains in elevated CO2 (1000) at 0.90 aw. These results suggest differential effects of CC factors on OTA production by species in the Sections Circumdati and Nigri in stored coffee and that for most species there is a reduction in toxin production.
Collapse
Affiliation(s)
- A. Akbar
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 AL5, United Kingdom
| | - A. Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 AL5, United Kingdom
| | - N. Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 AL5, United Kingdom
| |
Collapse
|
22
|
Effect of different light wavelengths on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae. Fungal Biol 2016; 120:745-51. [DOI: 10.1016/j.funbio.2016.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022]
|
23
|
García-Cela ME, Marín S, Reyes M, Sanchis V, Ramos AJ. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2249-2256. [PMID: 26178018 DOI: 10.1002/jsfa.7343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. RESULTS Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. CONCLUSION Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia.
Collapse
Affiliation(s)
- Maria Esther García-Cela
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Monica Reyes
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Vicent Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| |
Collapse
|