1
|
Lai Y, Wang S. Epigenetic Regulation in Insect-Microbe Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:293-311. [PMID: 39374433 DOI: 10.1146/annurev-ento-022724-010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insects have evolved diverse interactions with a variety of microbes, such as pathogenic fungi, bacteria, and viruses. The immune responses of insect hosts, along with the dynamic infection process of microbes in response to the changing host environment and defenses, require rapid and fine-tuned regulation of gene expression programs. Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA regulation, play important roles in regulating the expression of genes involved in insect immunity and microbial pathogenicity. This review highlights recent discoveries and insights into epigenetic regulatory mechanisms that modulate insect-microbe interactions. A deeper understanding of these regulatory mechanisms underlying insect-microbe interactions holds promise for the development of novel strategies for biological control of insect pests and mitigation of vector-borne diseases.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| | - Sibao Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| |
Collapse
|
2
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
3
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
4
|
Raethong N, Thananusak R, Cheawchanlertfa P, Prabhakaran P, Rattanaporn K, Laoteng K, Koffas M, Vongsangnak W. Functional genomics and systems biology of Cordyceps species for biotechnological applications. Curr Opin Biotechnol 2023; 81:102939. [PMID: 37075529 DOI: 10.1016/j.copbio.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/21/2023]
Abstract
The use of Cordyceps species for the manufacture of natural products has been established; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionized the optimization of Cordyceps as cell factories and drastically expanded the biotechnological potential of these fungi. Here, we present a review of systems and synthetic biology studies of Cordyceps and their implications for fungal biology and industrial applications. We summarize the current status of synthetic biology for enhancing targeted metabolites in Cordyceps species, such as cordycepin, adenosine, polysaccharide, and pentostatin. Progress in the systems and synthetic biology of Cordyceps provides a strategy for comprehensively comprehensive controlling efficient cell factories of natural bioproducts and novel synthetic biology toolbox for targeted engineering.
Collapse
Affiliation(s)
- Nachon Raethong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Pattsarun Cheawchanlertfa
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranesha Prabhakaran
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kittipong Rattanaporn
- Fermentation Technology Research Center (FTRC), Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathum Thani 12120, Thailand
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand.
| |
Collapse
|
5
|
Li YH, Chang JC, Yen MR, Huang YF, Chen TH, Chen LH, Nai YS. Whole-genome DNA methylome analysis of different developmental stages of the entomopathogenic fungus Beauveria bassiana NCHU-157 by nanopore sequencing. Front Genet 2023; 14:1085631. [PMID: 36741316 PMCID: PMC9889659 DOI: 10.3389/fgene.2023.1085631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The entomopathogenic fungus (EPF), Beauveria bassiana, is an important and commonly used EPF for microbial control. However, the role of DNA methylation has not been thoroughly studied. Therefore, the whole genomic DNA methylome of one promising EPF isolate, B. bassiana NCHU-157 (Bb-NCHU-157), was investigated by Oxford Nanopore Technologies (ONT). First, the whole genome of Bb-NCHU-157 was sequenced by next-generation sequencing (NGS) and ONT. The genome of Bb-NCHU-157 contains 16 contigs with 34.19 Mb and 50% GC content, which are composed of 10,848 putative protein-coding genes. Two putative DNA methyltransferases (DNMTs) were found, including Dim-2 and C-5 cytosine-specific DNA methylases. Both DNMTs showed higher expression levels in the mycelium stage than in the conidia stage, indicating that development of DNA methylation in Bb-NCHU-157 might occur in the mycelium stage. The global methylation level of the mycelium stage (5 mC = 4.56%, CG = 3.33%, CHG = 0.74%, CHH = 0.49%) was higher than that of the conidial stage (5 mC = 2.99%, CG = 1.99%, CHG = 0.63%, CHH = 0.37%) in both the gene and transposable element (TE) regions. Furthermore, the TE regions showed higher methylation frequencies than the gene regions, especially for CHH site methylation, suggesting regulation of genomic stabilization during mycelium development. In the gene regions, high methylation frequencies were found around the transcription start site (TSS) and transcription end site (TES). Moreover, CG and CHG methylation mainly occur in the promoter and intergenic regions, while CHH methylation occurs in the TE region. Among the methylated regions, 371, 661, and 756 differentially DNA methylated regions (DMRs) were hypermethylated in the mycelium in CG, CHG, and CHH, while only 13 and 7 DMRs were hypomethylated in the mycelium in CHG, and CHH, respectively. Genes located in the DMR shared the GO terms, DNA binding (GO: 0003677), and sequence-specific DNA binding (GO: 0043565) for hypermethylation in the mycelium, suggesting that methylation might regulate gene expression from the initial process. Evaluation of the DNA methylome in Bb-NCHU-157 by ONT provided new insight into this field. These data will be further validated, and epigenetic regulation during the development of B. bassiana will be explored.
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Ming-Ren Yen
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Feng Huang
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan,Department of Computer Science and Engineering, Yuan-Ze University, Taoyuan City, Taiwan
| | - Tzu-Han Chen
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung City, Taiwan,Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan,*Correspondence: Yu-Shin Nai,
| |
Collapse
|
6
|
Kontogiannatos D, Koutrotsios G, Xekalaki S, Zervakis GI. Biomass and Cordycepin Production by the Medicinal Mushroom Cordyceps militaris-A Review of Various Aspects and Recent Trends towards the Exploitation of a Valuable Fungus. J Fungi (Basel) 2021; 7:jof7110986. [PMID: 34829273 PMCID: PMC8621325 DOI: 10.3390/jof7110986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cordyceps militaris is an entomopathogenic ascomycete with similar pharmacological importance to that of the wild caterpillar fungus Ophiocordyceps sinensis. C. militaris has attracted significant research and commercial interest due to its content in bioactive compounds beneficial to human health and the relative ease of cultivation under laboratory conditions. However, room for improvement exists in the commercial-scale cultivation of C. militaris and concerns issues principally related to appropriate strain selection, genetic degeneration of cultures, and substrate optimization. In particular, culture degeneration-usually expressed by abnormal fruit body formation and reduced sporulation-results in important economic losses and is holding back investors and potential growers (mainly in Western countries) from further developing this highly promising sector. In the present review, the main factors that influence the generation of biomass and metabolites (with emphasis on cordycepin biosynthesis) by C. militaris are presented and evaluated in conjunction with the use of a wide range of supplements or additives towards the enhancement of fungal productivity in large-scale cultivation processes. Moreover, physiological and genetic factors that increase or reduce the manifestation of strain degeneration in C. militaris are outlined. Finally, methodologies for developing protocols to be used in C. militaris functional biology studies are discussed.
Collapse
|
7
|
Kramer HM, Cook DE, van den Berg GCM, Seidl MF, Thomma BPHJ. Three putative DNA methyltransferases of Verticillium dahliae differentially contribute to DNA methylation that is dispensable for growth, development and virulence. Epigenetics Chromatin 2021; 14:21. [PMID: 33941240 PMCID: PMC8091789 DOI: 10.1186/s13072-021-00396-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA methylation is an important epigenetic control mechanism that in many fungi is restricted to genomic regions containing transposable elements (TEs). Two DNA methyltransferases, Dim2 and Dnmt5, are known to perform methylation at cytosines in fungi. While most ascomycete fungi encode both Dim2 and Dnmt5, only few functional studies have been performed in species containing both. METHODS In this study, we report functional analysis of both Dim2 and Dnmt5 in the plant pathogenic fungus Verticillium dahliae. RESULTS Our results show that Dim2, but not Dnmt5 or the putative sexual-cycle-related DNA methyltransferase Rid, is responsible for the majority of DNA methylation under the tested conditions. Single or double DNA methyltransferase mutants did not show altered development, virulence, or transcription of genes or TEs. In contrast, Hp1 and Dim5 mutants that are impacted in chromatin-associated processes upstream of DNA methylation are severely affected in development and virulence and display transcriptional reprogramming in specific hypervariable genomic regions (so-called adaptive genomic regions) that contain genes associated with host colonization. As these adaptive genomic regions are largely devoid of DNA methylation and of Hp1- and Dim5-associated heterochromatin, the differential transcription is likely caused by pleiotropic effects rather than by differential DNA methylation. CONCLUSION Overall, our study suggests that Dim2 is the main DNA methyltransferase in V. dahliae and, in conjunction with work on other fungi, is likely the main active DNMT in ascomycetes, irrespective of Dnmt5 presence. We speculate that Dnmt5 and Rid act under specific, presently enigmatic, conditions or, alternatively, act in DNA-associated processes other than DNA methylation.
Collapse
Affiliation(s)
- H Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - David E Cook
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - Grardy C M van den Berg
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany.
| |
Collapse
|
8
|
Zhou Q, Wang J, Jiang H, Wang G, Wang Y. Deep sequencing of the Sanghuangporus vaninii transcriptome reveals dynamic landscapes of candidate genes involved in the biosynthesis of active compounds. Arch Microbiol 2021; 203:2315-2324. [PMID: 33646337 DOI: 10.1007/s00203-021-02225-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The medicinal fungus Sanghuang produces diverse bioactive compounds and is widely used in Asian countries. However, little is known about the genes and pathways involved in the biosynthesis of these active compounds. Based on our previous study providing Sanghuangporus vaninii genomic information, the transcriptomes of MY (mycelium), OY (1-year-old fruiting bodies), and TY (3-year-old fruiting bodies) were determined in this study. A significant number of genes (4774) were up- or downregulated between mycelium and fruiting bodies, but only 1422 differentially expressed genes were detected between OY and TY. 138 genes encoding P450s were identified in the fungal genome and grouped into 25 P450 families; more than 64% (88) of the genes were significantly differentially expressed between the mycelium and fruiting body, suggesting that these P450s are involved in fungal sexual development. Importantly, the expression of genes involved in bioactive compound (triterpenoids, polysaccharides, and flavonoids) biosynthesis in asexual (cultured with solid and liquid media) and sexual stages was explored and combined with transcriptome and quantitative PCR analyses. More genes involved in the biosynthesis of bioactive compounds were expressed more highly in mycelium than in fruiting bodies under liquid medium culture compared with solid medium culture, which was consistent with the yields of different bioactive compounds, suggesting that liquid fermentation of S. vaninii Kangneng can be used to obtain these bioactive compounds. A comprehensive understanding of the genomic information of S. vaninii will facilitate its potential use in pharmacological and industrial applications.
Collapse
Affiliation(s)
- Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jiuxiang Wang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Gaofei Wang
- Clinical Laboratory, The Central Hospital of Bianqiao Town, Bianqiao, 273305, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Distinct Roles of Two DNA Methyltransferases from Cryphonectria parasitica in Fungal Virulence, Responses to Hypovirus Infection, and Viral Clearance. mBio 2021; 12:mBio.02890-20. [PMID: 33563819 PMCID: PMC8545091 DOI: 10.1128/mbio.02890-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Two DNA methyltransferase (DNMTase) genes from Cryphonectria parasitica have been previously identified as CpDmt1 and CpDmt2, which are orthologous to rid and dim-2 of Neurospora crassa, respectively. While global changes in DNA methylation have been associated with fungal sectorization and CpDmt1 but not CpDmt2 has been implicated in the sporadic sectorization, the present study continues to investigate the biological functions of both DNMTase genes. Transcription of both DNMTases is regulated in response to infection with the Cryphonectria hypovirus 1 (CHV1-EP713). CpDmt1 is upregulated and CpDmt2 is downregulated by CHV1 infection. Conidium production and response to heat stress are affected only by mutation of CpDmt1, not by CpDmt2 mutation. Significant changes in virulence are observed in opposite directions; i.e., the CpDmt1-null mutant is hypervirulent, while the CpDmt2-null mutant is hypovirulent. Compared to the CHV1-infected wild type, CHV1-transferred single and double mutants show severe growth retardation: the colony size is less than 10% that of the parental virus-free null mutants, and their titers of transferred CHV1 are higher than that of the wild type, implying that no defect in viral replication occurs. However, as cultivation proceeds, spontaneous viral clearance is observed in hypovirus-infected colonies of the null mutants, which has never been reported in this fungus-virus interaction. This study demonstrates that both DNMTases are significant factors in fungal development and virulence. Each fungal DNMTase affects fungal biology in both common and separate ways. In addition, both genes are essential to the antiviral responses, including viral clearance which depends on their mutations.
Collapse
|
10
|
Hosseini S, Meunier C, Nguyen D, Reimegård J, Johannesson H. Comparative analysis of genome-wide DNA methylation in Neurospora. Epigenetics 2020; 15:972-987. [PMID: 32228351 PMCID: PMC7518705 DOI: 10.1080/15592294.2020.1741758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in genetic regulation in eukaryotes. Major progress has been made in dissecting the molecular pathways that regulate DNA methylation. Yet, little is known about DNA methylation variation over evolutionary time. Here we present an investigation of the variation of DNA methylation and transposable element (TE) content in species of the filamentous ascomycetes Neurospora. We generated genome-wide DNA methylation data at single-base resolution, together with genomic TE content and gene expression data, of 10 individuals representing five closely related Neurospora species. We found that the methylation levels were low (ranging from 1.3% to 2.5%) and varied among the genomes in a species-specific way. Furthermore, we found that the TEs over 400 bp long were targeted by DNA methylation, and in all genomes, high methylation correlated with low GC, confirming a conserved link between DNA methylation and Repeat Induced Point (RIP) mutations in this group of fungi. Both TE content and DNA methylation pattern showed phylogenetic signal, and the species with the highest TE load (N. crassa) also exhibited the highest methylation level per TE. Our results suggest that DNA methylation is an evolvable trait and indicate that the genomes of Neurospora are shaped by an evolutionary arms race between TEs and host defence.
Collapse
Affiliation(s)
- Sara Hosseini
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Cécile Meunier
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department ECOBIO, UMR CNRS 6553, Université Rennes 1, Rennes, France
| | - Diem Nguyen
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
DNA methyltransferase implicated in the recovery of conidiation, through successive plant passages, in phenotypically degenerated Metarhizium. Appl Microbiol Biotechnol 2020; 104:5371-5383. [PMID: 32318770 DOI: 10.1007/s00253-020-10628-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Metarhizium robertsii is a fungus with two lifestyles; it is a plant root symbiont and an insect pathogen. A spontaneously phenotypically degenerated strain of M. robertsii strain ARSEF 2575 (M. robertsii lc-2575; lc = low conidiation) showed a reduction in conidiation and fungal virulence after successive subculturing on agar medium. In order to recover conidiation, we experimentally passaged M. robertsii lc-2575 through plant (soldier bean and switchgrass) root or insect (Galleria mellonella) larvae. After five passages, the resultant strains had significantly increased conidial yields on agar and increased virulence in insect bioassays. Concomitantly, DNA methyltransferase, MrDIM-2 expression was downregulated in BR5 (a strain after 5 bean root passages) and isolates after switchgrass and insect passages. Bisulfite sequencing showed little difference in overall genomic DNA methylation levels (~ 0.37%) between M. robertsii lc-2575 and BR5. However, a finer comparison of the different methylated regions (DMRs) showed that DMRs of BR5 were more abundant in the intergenic regions (69.32%) compared with that of M. robertsii lc-2575 (33.33%). The addition of DNA methyltransferase inhibitor, 5-azacytidine, to agar supported the role of DNA methyltransferases and resulted in an increase in conidiation of M. robertsii lc-2575. Differential gene expression was observed in selected DMRs in BR5 when compared with M. robertsii lc-2575. Here we implicated epigenetic regulation in the recovery of conidiation through the effects of DNA methyltransferase and that plant passage could be used as a method to recover fungal conidiation and virulence in a phenotypically degenerated M. robertsii. KEY POINTS: • Passage of Metarhizium through plant root or insect results in increased conidiation. • DNA methyltransferase is downregulated after host passage. • Bisulfite sequencing identified potentially methylated genes involved in conidiation.
Collapse
|
12
|
Epigenetic manipulation of filamentous fungi for biotechnological applications: a systematic review. Biotechnol Lett 2020; 42:885-904. [PMID: 32246346 DOI: 10.1007/s10529-020-02871-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/21/2020] [Indexed: 01/11/2023]
Abstract
The study of the epigenetic regulation of gene function has reached pivotal importance in life sciences in the last decades. The mechanisms and effects of processes such as DNA methylation, histone posttranslational modifications and non-coding RNAs, as well as their impact on chromatin structure and dynamics, are clearly involved in physiology homeostasis in plants, animals and microorganisms. In the fungal kingdom, studies on the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe contributed enormously to the elucidation of the eukaryote epigenetic landscape. Epigenetic regulation plays a central role in the expression of virulence attributes of human pathogens such as Candida albicans. In this article, we review the most recent studies on the effects of drugs capable of altering epigenetic states and on the impact of chromatin structure-related genes deletion in filamentous fungi. Emphasis is given on plant and insect pathogens, endophytes, secondary metabolites and cellulases/xylanases producing species.
Collapse
|
13
|
The Pattern and Function of DNA Methylation in Fungal Plant Pathogens. Microorganisms 2020; 8:microorganisms8020227. [PMID: 32046339 PMCID: PMC7074731 DOI: 10.3390/microorganisms8020227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023] Open
Abstract
To successfully infect plants and trigger disease, fungal plant pathogens use various strategies that are dependent on characteristics of their biology and genomes. Although pathogenic fungi are different from animals and plants in the genomic heritability, sequence feature, and epigenetic modification, an increasing number of phytopathogenic fungi have been demonstrated to share DNA methyltransferases (MTases) responsible for DNA methylation with animals and plants. Fungal plant pathogens predominantly possess four types of DNA MTase homologs, including DIM-2, DNMT1, DNMT5, and RID. Numerous studies have indicated that DNA methylation in phytopathogenic fungi mainly distributes in transposable elements (TEs), gene promoter regions, and the repetitive DNA sequences. As an important and heritable epigenetic modification, DNA methylation is associated with silencing of gene expression and transposon, and it is responsible for a wide range of biological phenomena in fungi. This review highlights the relevant reports and insights into the important roles of DNA methylation in the modulation of development, pathogenicity, and secondary metabolism of fungal plant pathogens. Recent evidences prove that there are massive links between DNA and histone methylation in fungi, and they commonly regulate fungal development and mycotoxin biosynthesis.
Collapse
|
14
|
Wang C, Feng J, Chen Y, Li D, Liu L, Wu Y, Zhang S, Du S, Zhang Y. Revealing mitogenome-wide DNA methylation and RNA editing of three Ascomycotina fungi using SMRT sequencing. Mitochondrion 2020; 51:88-96. [PMID: 31923469 DOI: 10.1016/j.mito.2020.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Beauveria bassiana, Cordyceps militaris and Ophiocordyceps sinensis (Ascomycotina) are traditional Chinese medicines. Here, mitogenomes of these three Ascomycotina fungi were sequenced and de-novo assembled using single-molecule real-time sequencing. The results showed that their complete mitogenomes were 31,258, 31,854 and 157,584 bp, respectively, with sequencing depth approximately 278,760×, 326,283× and 69,385×. Types of repeat sequences were mainly (AA)n, (AAT)n, (TA)n and (TATT)n. DNA methylation motifs were revealed in DNA modifications of these three fungi. We discovered new models of RNA editing through analysis of transcriptomes from B. bassiana and C. militaris. These data lay a solid foundation for further genetic and biological studies about these three fungi, especially for elucidating the mitogenome evolution and exploring the regulatory mechanism of adapting environment.
Collapse
Affiliation(s)
- Chaoxia Wang
- Management Center of Tianjin Modern Agricultural Science and Technology Innovation Base, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; Tianjin Lakeside Powergene Science Development Co. Ltd, Tianjin 300309, China.
| | - Jianhua Feng
- Tianjin Lakeside Powergene Science Development Co. Ltd, Tianjin 300309, China
| | - Yujiao Chen
- Tuke (Tianjing) Pharmaceutical Technology Co. Ltd, Tianjin 300457, China
| | - Dongmei Li
- Tianjin Lakeside Powergene Science Development Co. Ltd, Tianjin 300309, China
| | - Li Liu
- Tuke (Tianjing) Pharmaceutical Technology Co. Ltd, Tianjin 300457, China
| | - Yuqian Wu
- Gui'an Precision Medicine Academy Co. Ltd, GuiZhou 550029, China
| | - Shujun Zhang
- Research Center of Human Genome, Tianjin University, Tianjin 300309, China
| | - Simiao Du
- Zheng Yuan Tang (Tianjin) Biotechnology Co. Ltd, Tianjin 300457, China
| | - Yaozhou Zhang
- Research Center of Human Genome, Tianjin University, Tianjin 300309, China; Tianjin International Joint Academy of Biomedical, Tianjin 300457, China.
| |
Collapse
|
15
|
Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Adenosine Biosynthesis in Anamorph Strain of Caterpillar Fungus. BIOMED RESEARCH INTERNATIONAL 2020; 2019:1864168. [PMID: 31915684 PMCID: PMC6935459 DOI: 10.1155/2019/1864168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/28/2019] [Indexed: 01/19/2023]
Abstract
Caterpillar fungus is a well-known fungal Chinese medicine. To reveal molecular changes during early and late stages of adenosine biosynthesis, transcriptome analysis was performed with the anamorph strain of caterpillar fungus. A total of 2,764 differentially expressed genes (DEGs) were identified (p ≤ 0.05, |log2 Ratio| ≥ 1), of which 1,737 were up-regulated and 1,027 were down-regulated. Gene expression profiling on 4–10 d revealed a distinct shift in expression of the purine metabolism pathway. Differential expression of 17 selected DEGs which involved in purine metabolism (map00230) were validated by qPCR, and the expression trends were consistent with the RNA-Seq results. Subsequently, the predicted adenosine biosynthesis pathway combined with qPCR and gene expression data of RNA-Seq indicated that the increased adenosine accumulation is a result of down-regulation of ndk, ADK, and APRT genes combined with up-regulation of AK gene. This study will be valuable for understanding the molecular mechanisms of the adenosine biosynthesis in caterpillar fungus.
Collapse
|
16
|
Lou H, Lin J, Guo L, Wang X, Tian S, Liu C, Zhao Y, Zhao R. Advances in research on Cordyceps militaris degeneration. Appl Microbiol Biotechnol 2019; 103:7835-7841. [DOI: 10.1007/s00253-019-10074-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
|
17
|
Transcriptome Changes during Major Developmental Transitions Accompanied with Little Alteration of DNA Methylome in Two Pleurotus Species. Genes (Basel) 2019; 10:genes10060465. [PMID: 31212970 PMCID: PMC6627472 DOI: 10.3390/genes10060465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Pleurotus tuoliensis (Pt) and P. eryngii var. eryngii (Pe) are important edible mushrooms. The epigenetic and gene expression signatures characterizing major developmental transitions in these two mushrooms remain largely unknown. Here, we report global analyses of DNA methylation and gene expression in both mushrooms across three major developmental transitions, from mycelium to primordium and to fruit body, by whole-genome bisulfite sequencing (WGBS) and RNA-seq-based transcriptome profiling. Our results revealed that in both Pt and Pe the landscapes of methylome are largely stable irrespective of genomic features, e.g., in both protein-coding genes and transposable elements (TEs), across the developmental transitions. The repressive impact of DNA methylation on expression of a small subset of genes is likely due to TE-associated effects rather than their own developmental dynamics. Global expression of gene orthologs was also broadly conserved between Pt and Pe, but discernible interspecific differences exist especially at the fruit body formation stage, and which are primarily due to differences in trans-acting factors. The methylome and transcriptome repertories we established for the two mushroom species may facilitate further studies of the epigenetic and transcriptional regulatory mechanisms underpinning gene during development in Pleurotus and related genera.
Collapse
|
18
|
Bewick AJ, Hofmeister BT, Powers RA, Mondo SJ, Grigoriev IV, James TY, Stajich JE, Schmitz RJ. Diversity of cytosine methylation across the fungal tree of life. Nat Ecol Evol 2019; 3:479-490. [PMID: 30778188 PMCID: PMC6533610 DOI: 10.1038/s41559-019-0810-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/13/2019] [Indexed: 12/22/2022]
Abstract
The generation of thousands of fungal genomes is leading to a better understanding of genes and genomic organization within the kingdom. However, the epigenome, which includes DNA and chromatin modifications, remains poorly investigated in fungi. Large comparative studies in animals and plants have deepened our understanding of epigenomic variation, particularly of the modified base 5-methylcytosine (5mC), but taxonomic sampling of disparate groups is needed to develop unifying explanations for 5mC variation. Here we utilize the largest phylogenetic resolution of 5mC methyltransferases (5mC MTases) and genome evolution to better understand levels and patterns of 5mC across fungi. We show that extant 5mC MTase genotypes are descendent from ancestral maintenance and de novo genotypes, whereas the 5mC MTases DIM-2 and RID are more recently derived, and that 5mC levels are correlated with 5mC MTase genotype and transposon content. Our survey also revealed that fungi lack canonical gene body methylation, which distinguishes fungal epigenomes from certain insect and plant species. However, some fungal species possess independently derived clusters of contiguous 5mC encompassing many genes. In some cases, DNA repair pathways and the N6-methyladenine (6mA) DNA modification negatively coevolved with 5mC pathways, which additionally contributed to interspecific epigenomic variation across fungi.
Collapse
Affiliation(s)
- Adam J Bewick
- Department of Genetics, University of Georgia, Athens, GA, USA.
| | | | - Rob A Powers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, Berkeley, CA, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | | |
Collapse
|
19
|
Study of the whole genome, methylome and transcriptome of Cordyceps militaris. Sci Rep 2019; 9:898. [PMID: 30696919 PMCID: PMC6351555 DOI: 10.1038/s41598-018-38021-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
The complete genome of Cordyceps militaris was sequenced using single-molecule real-time (SMRT) sequencing technology at a coverage over 300×. The genome size was 32.57 Mb, and 14 contigs ranging from 0.35 to 4.58 Mb with an N50 of 2.86 Mb were assembled, including 4 contigs with telomeric sequences on both ends and an additional 8 contigs with telomeric sequences on either the 5′ or 3′ end. A methylome database of the genome was constructed using SMRT and m4C and m6A methylated nucleotides, and many unknown modification types were identified. The major m6A methylation motif is GA and GGAG, and the major m4C methylation motif is GC or CG/GC. In the C. militaris genome DNA, there were four types of methylated nucleotides that we confirmed using high-resolution LCMS-IT-TOF. Using PacBio Iso-Seq, a total of 31,133 complete cDNA sequences were obtained in the fruiting body. The conserved domains of the nontranscribed regions of the genome include TATA boxes, which are the initial regions of genome replication. There were 406 structural variants between the HN and CM01 strains, and there were 1,114 structural variants between the HN and ATCC strains.
Collapse
|
20
|
Shao Y, Tang J, Chen S, Wu Y, Wang K, Ma B, Zhou Q, Chen A, Wang Y. milR4 and milR16 Mediated Fruiting Body Development in the Medicinal Fungus Cordyceps militaris. Front Microbiol 2019; 10:83. [PMID: 30761116 PMCID: PMC6362416 DOI: 10.3389/fmicb.2019.00083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
Cordyceps militaris readily performs sexual reproduction, thus providing a remarkably rich model for understanding the processes involved in sexual development. It could regulate expression of human genes by diet-derived miRNA-like RNAs (milRNAs). However, the study of miRNAs in C. militaris has been limited. In the present study, genes encoding Dicers, Argonautes, and RNA-dependent RNA polymerases were identified. Illumina deep sequencing was performed to characterize the milRNAs in C. militaris at asexual and sexual development stages. Total 38 milRNAs were identified and five milRNAs were validated by northern blot and qRT-PCR, out of which, 19 were specific for sexual development. Importantly, the fungi could not form fruiting bodies after disruption of milR4, while the perithecium was formed in advance after over-expression of milR4. Abnormal pale yellow fruiting body primordium, covered with abnormal primordium, was formed in the strain with miR16 disruption. Although no milR4 or milR16 target genes were identified, differential expression of many different genes involved in mycelium growth and sexual development (mating process, mating signaling, and fruiting body development) among these mutants were found. Overall, milRNAs play vital roles in sexual development in C. militaris.
Collapse
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Jin Tang
- Jiangsu Xuzhou Technician Institute, Xuzhou, China
| | - Shanglong Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Yonghua Wu
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Kun Wang
- Jiangsu KONEN Biological Engineering Co., Ltd., Nanjing, China
| | - Bin Ma
- Jiangsu KONEN Biological Engineering Co., Ltd., Nanjing, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China.,Key Laboratory of Crop Quality Improvement of Anhui Province/Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
21
|
Genome-wide analysis of DNA methylation in subcultured Cordyceps militaris. Arch Microbiol 2019; 201:369-375. [PMID: 30680410 DOI: 10.1007/s00203-019-01621-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/03/2023]
Abstract
The entomopathogenic mushroom Cordyceps militaris is a storehouse of various medicinal compounds and pharmacological effects. However, the high frequency of strain degeneration during subculture and preservation severely limits the large-scale production of C. militaris. DNA methylation is an important epigenomic modification involved in gene regulation. In this study, we used bisulfite sequencing for DNA methylation profiling of wild-type and mutant C. militaris. The differentially methylated regions (DMRs) of the two types were analyzed using Gene Ontology (GO) clustering and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. DNA methylation levels of the wild-type and mutant-type C. militaris were 0.48% and 0.56%, respectively. Methylation appeared at CHH dinucleotides in 58.62% and 58.20% of all methylated cytosine sites in the wild and mutant types, respectively. In all, 188 DMRs were identified from the wild and mutant types. Most of the DMRs ranged from 200 to 350 bp in length. KEGG pathways of the expression of DMR-related genes, which are involved in pyruvate metabolism, glycerophospholipid metabolism, DNA replication, and N-glycan biosynthesis. This contributes to the knowledge and understanding of the possible mechanisms of C. militaris strain degeneration.
Collapse
|
22
|
Hao DC, Xiao PG. Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
23
|
Li R, Zhou S, Li Y, Shen X, Wang Z, Chen B. Comparative Methylome Analysis Reveals Perturbation of Host Epigenome in Chestnut Blight Fungus by a Hypovirus. Front Microbiol 2018; 9:1026. [PMID: 29875746 PMCID: PMC5974932 DOI: 10.3389/fmicb.2018.01026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
In eukaryotic genomes, DNA methylation is an important type of epigenetic modification that plays crucial roles in many biological processes. To investigate the impact of a hypovirus infection on the methylome of Cryphonectria parasitica, the chestnut blight fungus, whole-genome bisulfite sequencing (WGBS) was employed to generate single-base resolution methylomes of the fungus with/without hypovirus infection. The results showed that hypovirus infection alters methylation in all three contexts (CG, CHG, and CHH), especially in gene promoters. A total of 600 differentially methylated regions (DMRs) were identified, of which 144 could be annotated to functional genes. RNA-seq analysis revealed that DNA methylation in promoter is negatively correlated with gene expression. Among DMRs, four genes were shown to be involved in conidiation, orange pigment production, and virulence. Taken together, our DNA methylomes analysis provide valuable insights into the understanding of the relationship between DNA methylation and hypovirus infection, as well as phenotypic traits in C. parasitica.
Collapse
Affiliation(s)
- Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,Department of Biotechnology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Sisi Zhou
- Department of Biotechnology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yongbing Li
- Department of Biotechnology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiaorui Shen
- Department of Biotechnology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.,Department of Biotechnology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Yin J, Xin X, Weng Y, Gui Z. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS One 2017; 12:e0186279. [PMID: 29073171 PMCID: PMC5657973 DOI: 10.1371/journal.pone.0186279] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The entomopathogenic mushroom Cordyceps militaris is an important medicinal and food resource owing to its various medicinal components and pharmacological effects. However, the high frequency of strain degeneration during subculture seriously restricts the large-scale production of C. militaris, and the mechanism underlying strain degeneration remains unclear. In this study, we artificially cultured C. militaris for six generations and compared changes during fruiting body growth. The transcriptome of six generations of C. militaris strains were sequenced with the Illumine Hiseq4000. RESULTS The subcultured C. militaris strains degenerated beginning at the third generation, with incomplete fruiting body growth beginning at the fourth generation. Over 9,015 unigenes and 731 new genes were identified. In addition, 35,323 alternative splicing (AS) events were detected in all samples, and more AS events occurred in the second, fourth and sixth generations. Compared with the first generation, the third generation (degenerated strain) included 2,498 differentially expressed genes (DEGs) including 1,729 up-regulated and 769 down-regulated genes. This number was higher than the number of DEGs in the second (1,892 DEGs), fourth (2,006 DEGs), fifth (2,273 DEGs) and sixth (2,188 DEGs) generations. Validation of RNA-seq by qRT-PCR showed that the expression patterns of 51 DEGs were in accordance with the transcriptome data. CONCLUSION Our results suggest that the mechanism of C. militaris strain degeneration is associated with gene involved in toxin biosynthesis, energy metabolism, and DNA methylation and chromosome remodeling.
Collapse
Affiliation(s)
- Juan Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Yujie Weng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
25
|
Li W, Wang Y, Zhu J, Wang Z, Tang G, Huang B. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii. Fungal Biol 2017; 121:293-303. [DOI: 10.1016/j.funbio.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022]
|
26
|
Wang Y, Wang T, Qiao L, Zhu J, Fan J, Zhang T, Wang ZX, Li W, Chen A, Huang B. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii. Appl Microbiol Biotechnol 2017; 101:4215-4226. [PMID: 28238081 DOI: 10.1007/s00253-017-8197-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/04/2017] [Accepted: 02/11/2017] [Indexed: 12/31/2022]
Abstract
DNA methylation is an important epigenetic mark in mammals, plants, and fungi and depends on multiple genetic pathways involving de novo and maintenance DNA methyltransferases (DNMTases). Metarhizium robertsii, a model system for investigating insect-fungus interactions, has been used as an environmentally friendly alternative to chemical insecticides. However, little is known concerning the molecular basis for DNA methylation. Here, we report on the roles of two DNMTases (MrRID and MrDIM-2) by characterizing ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 mutants. The results showed that approximately 71, 10, and 8% of mC sites remained in the ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 strains, respectively, compared with the wild-type (WT) strain. Further analysis showed that MrRID regulates the specificity of DNA methylation and MrDIM-2 is responsible for most DNA methylation, implying an interaction or cooperation between MrRID and MrDIM-2 for DNA methylation. Moreover, the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains showed more defects in radial growth and conidial production compared to the WT. Under ultraviolet (UV) irradiation or heat stress, an obvious reduction in spore viability was observed for all the mutant strains compared to the WT. The spore median lethal times (LT50s) for the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains in the greater wax moth, Galleria mellonella, were decreased by 47.7 and 65.9%, respectively, which showed that MrDIM-2 is required for full fungal virulence. Our data advances the understanding of the function of DNMTase in entomopathogenic fungi, which should contribute to future epigenetic investigations in fungi.
Collapse
Affiliation(s)
- Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Tiantian Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Lintao Qiao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Jianyu Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Jinrui Fan
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Tingting Zhang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Zhang-Xun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.,School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Wanzhen Li
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.,Engineering Technology Research Center of Microbial Fermentation Anhui Province, Anhui Polytechnic University, Wuhu, 241000, China
| | - Anhui Chen
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.,Department of Food and Biology, Xuzhou Institute of Technology, Xuzhou, 221008, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
27
|
Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus Cordyceps militaris. Sci Rep 2017; 7:40219. [PMID: 28071691 PMCID: PMC5223169 DOI: 10.1038/srep40219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022] Open
Abstract
Cordyceps militaris is a fungus used for developing health food, but knowledge about its intraspecific differentiation is limited due to lack of efficient markers. Herein, we assembled the mitochondrial genomes of eight C. militaris strains and performed a comparative mitochondrial genomic analysis together with three previously reported mitochondrial genomes of the fungus. Sizes of the 11 mitochondrial genomes varied from 26.5 to 33.9 kb mainly due to variable intron contents (from two to eight introns per strain). Nucleotide variability varied according to different regions with non-coding regions showing higher variation frequency than coding regions. Recombination events were identified between some locus pairs but seemed not to contribute greatly to genetic variations of the fungus. Based on nucleotide diversity fluctuations across the alignment of all mitochondrial genomes, molecular markers with the potential to be used for future typing studies were determined.
Collapse
|