1
|
González D, Bruna P, Contreras MJ, Leal K, Urrutia CV, Núñez-Montero K, Barrientos L. Genome Mining of Pseudarthrobacter sp. So.54, a Rhizospheric Bacteria from Colobanthus quitensis Antarctic Plant. Biomolecules 2025; 15:534. [PMID: 40305262 PMCID: PMC12025171 DOI: 10.3390/biom15040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Antarctic microorganisms have genomic characteristics and biological functions to ensure survival in complex habitats, potentially representing bioactive compounds of biotechnological interest. Pseudarthrobacter sp. So.54 is an Antarctic bacteria strain isolated from the rhizospheric soil of Colobanthus quitensis. Our work aimed to study its genomic characteristics and metabolic potential, linked to environmental adaptation and the production of secondary metabolites with possible biotechnological applications. Whole-genome sequencing, assembly, phylogenetic analysis, functional annotation, and genomic islands prediction were performed to determine the taxonomic affiliation and differential characteristics of the strain So.54. Additionally, Biosynthetic Gene Clusters (BGCs) responsible for secondary metabolites production were identified. The assembled genome of strain So.54 has 3,871,805 bp with 66.0% G + C content. Phylogenetic analysis confirmed that strain So.54 belongs to the Pseudarthrobacter genus; nevertheless, its nucleotide and amino acid identity values were below the species threshold. The main metabolic pathways and 64 genomic islands associated with stress defense and environmental adaptation, such as heavy metal resistance genes, were identified. AntiSMASH analysis predicted six BGCs with low or no similarity to known clusters, suggesting potential as novel natural products. These findings indicate that strain So.54 could be a novel Pseudarthrobacter species with significant environmental adaptation and biotechnological potential.
Collapse
Affiliation(s)
- Dayaimi González
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile (C.V.U.)
- Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Avenida Alemania 0458, Temuco 4810296, Chile
| | - Pablo Bruna
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile (C.V.U.)
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - María J. Contreras
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 1090, Temuco 4800000, Chile
| | - Karla Leal
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 1090, Temuco 4800000, Chile
| | - Catherine V. Urrutia
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile (C.V.U.)
- Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Avenida Alemania 0458, Temuco 4810296, Chile
| | - Kattia Núñez-Montero
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 1090, Temuco 4800000, Chile
| | - Leticia Barrientos
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Avenida Alemania 1090, Temuco 4800000, Chile
| |
Collapse
|
2
|
Dolashki A, Abrashev R, Kaynarov D, Krumova E, Velkova L, Eneva R, Engibarov S, Gocheva Y, Miteva-Staleva J, Dishliyska V, Spasova B, Angelova M, Dolashka P. Structural and functional characterization of cold-active sialidase isolated from Antarctic fungus Penicillium griseofulvum P29. Biochem Biophys Rep 2024; 37:101610. [PMID: 38155944 PMCID: PMC10753047 DOI: 10.1016/j.bbrep.2023.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 → 3) sialyl linkages than those containing α(2 → 6) linkages. Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date.
Collapse
Affiliation(s)
- Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Stefan Engibarov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Yana Gocheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Jeny Miteva-Staleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Boryana Spasova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Maria Angelova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, 1113, Acad. G. Bonchev str., bl. 26, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Acad. Georgy Bonchev str., bl. 9, Bulgaria
| |
Collapse
|
3
|
Liu Y, Zhang N, Ma J, Zhou Y, Wei Q, Tian C, Fang Y, Zhong R, Chen G, Zhang S. Advances in cold-adapted enzymes derived from microorganisms. Front Microbiol 2023; 14:1152847. [PMID: 37180232 PMCID: PMC10169661 DOI: 10.3389/fmicb.2023.1152847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Cold-adapted enzymes, produced in cold-adapted organisms, are a class of enzyme with catalytic activity at low temperatures, high temperature sensitivity, and the ability to adapt to cold stimulation. These enzymes are largely derived from animals, plants, and microorganisms in polar areas, mountains, and the deep sea. With the rapid development of modern biotechnology, cold-adapted enzymes have been implemented in human and other animal food production, the protection and restoration of environments, and fundamental biological research, among other areas. Cold-adapted enzymes derived from microorganisms have attracted much attention because of their short production cycles, high yield, and simple separation and purification, compared with cold-adapted enzymes derived from plants and animals. In this review we discuss various types of cold-adapted enzyme from cold-adapted microorganisms, along with associated applications, catalytic mechanisms, and molecular modification methods, to establish foundation for the theoretical research and application of cold-adapted enzymes.
Collapse
Affiliation(s)
- Yehui Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Na Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Jie Ma
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Yuqi Zhou
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Qiang Wei
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yi Fang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rongzhen Zhong
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
4
|
Bodnár V, Király A, Orosz E, Miskei M, Emri T, Karányi Z, Leiter É, de Vries RP, Pócsi I. Species-specific effects of the introduction of Aspergillus nidulans gfdB in osmophilic aspergilli. Appl Microbiol Biotechnol 2023; 107:2423-2436. [PMID: 36811707 PMCID: PMC10033484 DOI: 10.1007/s00253-023-12384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
Industrial fungi need a strong environmental stress tolerance to ensure acceptable efficiency and yields. Previous studies shed light on the important role that Aspergillus nidulans gfdB, putatively encoding a NAD+-dependent glycerol-3-phosphate dehydrogenase, plays in the oxidative and cell wall integrity stress tolerance of this filamentous fungus model organism. The insertion of A. nidulans gfdB into the genome of Aspergillus glaucus strengthened the environmental stress tolerance of this xerophilic/osmophilic fungus, which may facilitate the involvement of this fungus in various industrial and environmental biotechnological processes. On the other hand, the transfer of A. nidulans gfdB to Aspergillus wentii, another promising industrial xerophilic/osmophilic fungus, resulted only in minor and sporadic improvement in environmental stress tolerance and meanwhile partially reversed osmophily. Because A. glaucus and A. wentii are phylogenetically closely related species and both fungi lack a gfdB ortholog, these results warn us that any disturbance of the stress response system of the aspergilli may elicit rather complex and even unforeseeable, species-specific physiological changes. This should be taken into consideration in any future targeted industrial strain development projects aiming at the fortification of the general stress tolerance of these fungi. KEY POINTS: • A. wentii c' gfdB strains showed minor and sporadic stress tolerance phenotypes. • The osmophily of A. wentii significantly decreased in the c' gfdB strains. • Insertion of gfdB caused species-specific phenotypes in A. wentii and A. glaucus.
Collapse
Affiliation(s)
- Veronika Bodnár
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Debrecen, Hungary
| | - Anita Király
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Orosz
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Márton Miskei
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Zsolt Karányi
- Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary.
| |
Collapse
|
5
|
Nikitin DA, Sadykova VS, Kuvarina AE, Dakh AG, Biryukov MV. Enzymatic and Antimicrobial Activities in Polar Strains of Microscopic Soil Fungi. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:380-393. [PMID: 36781534 DOI: 10.1134/s0012496622060151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 02/15/2023]
Abstract
Potential to produce inducible enzymes (several hydrolases and oxidases) and antibiotics as secondary metabolites was studied in soil micromycete strains from the Arctic (Franz Josef Land and Novaya Zemlya) and Antarctica (the oases Thala Hills, Larsemann Hills, Schirmacher, and Marie Byrd Land). Maximal esterase activity was observed in strains of two typical Antarctic species, Hyphozyma variabilis 218 and Thelebolus ellipsoideus 210 (51 and 29 nmol FDA/((g mycelium h), respectively). Cellulolytic activity was maximal (89 µmol glucose/mg biomass) in Ascochyta pisi 192. Extracellular phenol oxidase (laccase) and peroxidase activities were not detected in the strains examined. Antibacterial activity toward Bacillus subtilis ATCC 6633 was observed in 75% of the Antarctic micromycete strains. Higher-activity strains were isolated from organic-rich moist habitats with a moss or lichen cover. Maximal activities were displayed by Paecilomyces marquandii 166, Penicillium janczewskii 165, Penicillium roseopurpureum 169, and Thelebolus ellipsoideus 210. Antagonistic activity toward Antarctic bacterial strains was shown by 77% of the microfungal strains examined. Maximal inhibition was observed with strains of the typical Antarctic species Antarctomyces psychrotrophicus MT303855 and the eurytopic species Sarocladium kiliense MT303856. Antimycotic activity was observed in 42% of the strains. Both activities were detected in 38% of the Antarctic strains.
Collapse
Affiliation(s)
| | - V S Sadykova
- Gauze Institute of New Antibiotics, Russian Academy of Sciences, Moscow, Russia. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - A E Kuvarina
- Gauze Institute of New Antibiotics, Russian Academy of Sciences, Moscow, Russia
| | - A G Dakh
- Gauze Institute of New Antibiotics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
6
|
Enhancing the Productivity and Stability of Superoxide Dismutase from Saccharomyces cerevisiae TBRC657 and Its Application as a Free Radical Scavenger. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Superoxide dismutase (SOD) is crucial antioxidant enzyme that plays a role in protecting cells against harmful reactive oxygen species (ROS) which are generated inside cells. Due to its functionality, SOD is used in many applications. In this study, Saccharomyces cerevisiae TBRC657 was selected as the SOD producer due to its high SOD production. After investigating an optimized medium, the major components were found to be molasses and yeast extract, which improved SOD production up to 3.97-fold compared to a synthetic medium. In addition, the optimized medium did not require any induction, which makes it suitable for applications in large-scale production. The SOD formulation was found to increase the stability of the conformational structure and prolong shelf-life. The results show that 1.0% (w/w) trehalose was the best additive, in giving the highest melting temperature by the DSF method and maintaining its activity at more than 80% after storage for 6 months. The obtained SOD was investigated for its cytotoxicity and ROS elimination against fibroblast cells. The results indicate that the SOD enhanced the proliferation and controlled ROS level inside the cells. Thus, the SOD obtained from S. cerevisiae TBRC657 cultured in the optimized medium could be a candidate for use as a ROS scavenger, which can be applied in many industries.
Collapse
|
7
|
de Obeso Fernandez del Valle A, Scheckhuber CQ. Superoxide Dismutases in Eukaryotic Microorganisms: Four Case Studies. Antioxidants (Basel) 2022; 11:antiox11020188. [PMID: 35204070 PMCID: PMC8868140 DOI: 10.3390/antiox11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023] Open
Abstract
Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.
Collapse
|
8
|
Kumar A, Mukhia S, Kumar R. Industrial applications of cold-adapted enzymes: challenges, innovations and future perspective. 3 Biotech 2021; 11:426. [PMID: 34567931 DOI: 10.1007/s13205-021-02929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review covers the aspect concerning the novel techniques for enzyme discovery from nature.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002 India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|
9
|
Krumova E, Abrashev R, Dishliyska V, Stoyancheva G, Kostadinova N, Miteva-Staleva J, Spasova B, Angelova M. Cold-active catalase from the psychrotolerant fungus Penicillium griseofulvum. J Basic Microbiol 2021; 61:782-794. [PMID: 34309887 DOI: 10.1002/jobm.202100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Cold-active catalase (CAT) elicits great interest because of its vast prospective at the medical, commercial, and biotechnological levels. The study paper reports the production of cold-active CAT by the strain Penicillium griseofulvum P29 isolated from Antarctic soil. Improved enzyme production was achieved by optimization of medium and culture conditions. Maximum CAT was demonstrated under low glucose content (2%), 10% inoculum size, temperature 20°C, and dissolved oxygen concentration (DO) 40%. An effective laboratory technology based on changing the oxidative stress level through an increase of DO in the bioreactor was developed. The used strategy resulted in a 1.7- and 1.4-fold enhanced total enzyme activity and maximum enzyme productivity. The enzyme was purified and characterized. P. griseofulvum P29 CAT was most active at approximately 20°C and pH 6.0. Its thermostability was in the range between 5°C and 40°C.
Collapse
Affiliation(s)
- Ekaterina Krumova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Radoslav Abrashev
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vladislava Dishliyska
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Galina Stoyancheva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nedelina Kostadinova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jeny Miteva-Staleva
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Boryana Spasova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Angelova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
10
|
Qiu W, Li J, Wei Y, Fan F, Jiang J, Liu M, Han X, Tian C, Zhang S, Zhuo R. Genome sequencing of Aspergillus glaucus 'CCHA' provides insights into salt-stress adaptation. PeerJ 2020; 8:e8609. [PMID: 32140304 PMCID: PMC7045888 DOI: 10.7717/peerj.8609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Aspergillus, as a genus of filamentous fungi, has members that display a variety of different behavioural strategies, which are affected by various environmental factors. The decoded genomic sequences of many species vary greatly in their evolutionary similarities, encouraging studies on the functions and evolution of the Aspergillus genome in complex natural environments. Here, we present the 26 Mb de novo assembled high-quality reference genome of Aspergillus glaucus 'China Changchun halophilic Aspergillus' (CCHA), which was isolated from the surface of plants growing near a salt mine in Jilin, China, based on data from whole-genome shotgun sequencing using Illumina Solexa technology. The sequence, coupled with data from comprehensive transcriptomic survey analyses, indicated that the redox state and transmembrane transport might be critical molecular mechanisms for the adaptation of A. glaucus 'CCHA' to the high-salt environment of the saltern. The isolation of salt tolerance-related genes, such as CCHA-2114, and their overexpression in Escherichia coli demonstrated that A. glucus 'CCHA' is an excellent organism for the isolation and identification of salt tolerant-related genes. These data expand our understanding of the evolution and functions of fungal and microbial genomes, and offer multiple target genes for crop salt-tolerance improvement through genetic engineering.
Collapse
Affiliation(s)
- Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Feiyu Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shihong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Bhatia K, Mal G, Bhar R, Jyoti, Attri C, Seth A. Purification and characterization of thermostable superoxide dismutase from Anoxybacillus gonensis KA 55 MTCC 12684. Int J Biol Macromol 2018; 117:1133-1139. [DOI: 10.1016/j.ijbiomac.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
|
12
|
Cold active pectinase, amylase and protease production by yeast isolates obtained from environmental samples. Extremophiles 2018. [DOI: 10.1007/s00792-018-1020-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Duarte AWF, Dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ, Wentzel LCP, Lario LD, Rodrigues A, Pagnocca FC, Pessoa Junior A, Durães Sette L. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 2017; 38:600-619. [PMID: 29228814 DOI: 10.1080/07388551.2017.1379468] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antarctica is the coldest, windiest, and driest continent on Earth. In this sense, microorganisms that inhabit Antarctica environments have to be adapted to harsh conditions. Fungal strains affiliated with Ascomycota and Basidiomycota phyla have been recovered from terrestrial and marine Antarctic samples. They have been used for the bioprospecting of molecules, such as enzymes. Many reports have shown that these microorganisms produce cold-adapted enzymes at low or mild temperatures, including hydrolases (e.g. α-amylase, cellulase, chitinase, glucosidase, invertase, lipase, pectinase, phytase, protease, subtilase, tannase, and xylanase) and oxidoreductases (laccase and superoxide dismutase). Most of these enzymes are extracellular and their production in the laboratory has been carried out mainly under submerged culture conditions. Several studies showed that the cold-adapted enzymes exhibit a wide range in optimal pH (1.0-9.0) and temperature (10.0-70.0 °C). A myriad of methods have been applied for cold-adapted enzyme purification, resulting in purification factors and yields ranging from 1.70 to 1568.00-fold and 0.60 to 86.20%, respectively. Additionally, some fungal cold-adapted enzymes have been cloned and expressed in host organisms. Considering the enzyme-producing ability of microorganisms and the properties of cold-adapted enzymes, fungi recovered from Antarctic environments could be a prolific genetic resource for biotechnological processes (industrial and environmental) carried out at low or mild temperatures.
Collapse
Affiliation(s)
- Alysson Wagner Fernandes Duarte
- a Universidade Federal de Alagoas, Campus Arapiraca , Arapiraca , Brazil.,b Divisão de Recursos Microbianos , Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas , Paulínia , Brazil
| | - Juliana Aparecida Dos Santos
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Marina Vitti Vianna
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Juliana Maíra Freitas Vieira
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Vitor Hugo Mallagutti
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Fabio José Inforsato
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Lia Costa Pinto Wentzel
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Luciana Daniela Lario
- d Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario , Rosario , Argentina.,e Departamento de Tecnologia Bioquímico-Farmacêutica , Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Andre Rodrigues
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Fernando Carlos Pagnocca
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Adalberto Pessoa Junior
- e Departamento de Tecnologia Bioquímico-Farmacêutica , Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Lara Durães Sette
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| |
Collapse
|
14
|
Wang Y, Han H, Cui B, Hou Y, Wang Y, Wang Q. A glutathione peroxidase from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506: Cloning and heterologous expression of the gene and characterization of recombinant enzyme. Bioengineered 2017; 8:742-749. [PMID: 28873004 DOI: 10.1080/21655979.2017.1373534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A glutathione peroxidase (GPx) gene, designated as PsGPx, was cloned from Antarctic psychrotrophic bacterium Pseudoalteromonas sp. ANT506 and expressed in Escherichia coli. The full-length PsGPx contained a 585-bp encoding 194 amino acids with predicted molecular masses of approx. 21.7 kDa. Multiple sequence alignments revealed that PsGPx belonged to the thioredoxin-like superfamily. PsGPx was heterologously overexpressed in E. coli, purified and characterized. The maximum catalytic temperature and pH value for recombinant PsGPx (rPsGPx) were 30°C and pH 9.0, respectively. rPsGPx retained 45% of the maximum activity at 0°C and exhibited high thermolability with a half-life of approx. 40 min at 40°C. In addition, the enzymatic activity of rPsGPx was still manifested under 3 M NaCl. The Km and Vmax values of the recombinant enzyme using GSH and H2O2 as substrates were 1.73 mM and 16.28 nmol/mL/min versus 2.46 mM and 21.50 nmol/mL/min, respectively.
Collapse
Affiliation(s)
- Yatong Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Han Han
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Bingqing Cui
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Yanhua Hou
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Yifan Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| | - Quanfu Wang
- a School of Marine and Technology , Harbin Institute of Technology , Weihai , Shandong , P.R. China
| |
Collapse
|
15
|
Ünlü AE, Takaç S. Improvement of superoxide dismutase activity using experimental design and radical promoters. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1353923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ayşe Ezgi Ünlü
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Serpil Takaç
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Kan G, Wen H, Wang X, Zhou T, Shi C. Cloning and characterization of iron-superoxide dismutase in Antarctic yeast strain Rhodotorula mucilaginosa AN5. J Basic Microbiol 2017. [PMID: 28639705 DOI: 10.1002/jobm.201700165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel superoxide dismutase gene from Antarctic yeast Rhodotorula mucilaginosa AN5 was cloned, sequenced, and then expressed in Escherichia coli. The R. mucilaginosa AN5 SOD (RmFeSOD) gene was 639 bp open reading frame in length, which encoded a protein of 212 amino acids with a deduced molecular mass of 23.5 kDa and a pI of 7.89. RmFeSOD was identified as iron SOD type with a natural status of homodimer. The recombinant RmFeSOD showed good pH stability in the pH 1.0-9.0 after 1 h incubation. Meanwhile, it was found to behave relatively high thermostability, and maintained more than 80% activity at 50 °C for 1 h. By addition of 1 mM metal ions, the enzyme activity increased by Zn2+ , Cu2+ , Mn2+ , and Fe3+ , and inhibited only by Mg2+ . RmFeSOD showed relatively low tolerance to some compounds, such as PMSF, SDS, Tween-80, Triton X-100, DMSO, β-ME, and urea. However, DTT showed no inhibition to enzyme activity. Using copper stress experiment, the RmFeSOD recombinant E. coli exhibited better growth than non-recombinant bacteria, which revealed that RmFeSOD might play an important role in the adaptability of heavy metals.
Collapse
Affiliation(s)
- Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Hua Wen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Ting Zhou
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| |
Collapse
|
17
|
Wang Y, Wang Q, Wang Y, Han H, Hou Y, Shi Y. Statistical optimization for the production of recombinant cold-adapted superoxide dismutase in E. coli using response surface methodology. Bioengineered 2017; 8:693-699. [PMID: 28471292 PMCID: PMC5736329 DOI: 10.1080/21655979.2017.1303589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cold-adapted superoxide dismutase (SOD) with higher catalytic activity at lower temperature has great amount of applications in many aspects as an industrial enzyme. The application of recombinant enzyme in gene engineering and microbial fermentation technology is an effective way to obtain high-yield product. In this study, to obtain the recombinant SOD in E. coli (rPsSOD) with the highest activity, the Box-Behnken design was first applied to optimize the important parameters (lactose, tryptone and Tween-80) affecting the activity of rPsSOD. The results showed that the optimal fermentation conditions were Tween-80 (0.047%), tryptone (6.16 g/L), lactose (11.38 g/L). The activity of rPsSOD was 71.86 U/mg (1.54 times) as compared with non-optimized conditions. Such an improved production will facilitate the application of the cold-adapted rPsSOD.
Collapse
Affiliation(s)
- Yatong Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , P.R. China
| | - Quanfu Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , P.R. China
| | - Yifan Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , P.R. China
| | - Han Han
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , P.R. China
| | - Yanhua Hou
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , P.R. China
| | - Yonglei Shi
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , P.R. China
| |
Collapse
|