1
|
Scholtmeijer K, Auxier B, Debets AJM, Aanen DK, Baars JJP, van Peer AF. An agar medium-based method for screening somatic incompatibility in Agaricus bisporus. Fungal Biol 2025; 129:101522. [PMID: 39826974 DOI: 10.1016/j.funbio.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
To visualize the nonself recognition reaction in the cultivated mushroom Agaricus bisporus, we developed a method using the azo dye Evans blue. The use of Evans blue highlights dead mycelial sections, which are produced following nonself recognition in the interaction zone between two individuals. This method can differentiate between distinct heterokaryons, as well as between closely related heterokaryons constructed from siblings. As it is known that co-cultivation of mixed individuals leads to reduced yield, we compared small-scale cultivation experiments to the results of our laboratory assay. Co-cultivation of strains whose interaction produced noticeable Evans blue staining also produced low yield when mixed. However, a combination that did not produce noticeable Evans blue staining still produced an incompatible-like phenotype (reduced yield) when mixed under cultivation conditions. Together, these results suggest that while our Evans blue assay can discriminate between self and nonself pairings, it alone does not encompass all aspects of this interaction. However, this method can facilitate future research into the genetics and physiology of the incompatibility phenotype in this economically important fungus.
Collapse
Affiliation(s)
- Karin Scholtmeijer
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Johan J P Baars
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands
| | - Arend F van Peer
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands.
| |
Collapse
|
2
|
Beijen EPW, van Maanen MH, Marian IM, Klusener JX, van Roosmalen E, Herman KC, Koster MC, Ohm RA. Transcriptomics reveals the regulation of the immune system of the mushroom-forming fungus Schizophyllum commune during interaction with four competitors. Microbiol Res 2024; 289:127929. [PMID: 39413670 DOI: 10.1016/j.micres.2024.127929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Mushroom-forming fungi frequently encounter competitors during their lifecycle, but their defense mechanisms remain largely unexplored. We studied the response of the mushroom-forming fungus Schizophyllum commune during interaction with the fungal competitors Trichoderma harzianum, Trichoderma aggressivum and Purpureocillium lilacinum and the bacterial competitor Serratia quinivorans. Transcriptomics revealed 632 up-regulated genes in the direct interaction zone, which were enriched in small secreted proteins and transporters. A set of 26 genes were up-regulated during all interactions, indicating a core transcriptomic defense response. In the non-interacting edge of the mycelium of S. commune, there were 154 up-regulated genes, suggesting that there is a systemic response due to a signal that reaches unaffected areas. The GATA zinc finger transcription factor gene gat1 was up-regulated during interaction and a Δgat1 strain displayed increased colonization by T. harzianum. Previously linked to mushroom development, this transcription factor apparently has a dual role. Moreover, 138 genes were up-regulated during both interaction and mushroom development, indicating priming of the defense response during development to prepare the fruiting body for future interactions. Overall, we unveiled a defensive response of S. commune during interaction with fungal and bacterial competitors and identified a regulator of this response.
Collapse
Affiliation(s)
- Erik P W Beijen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Marieke H van Maanen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Janieke X Klusener
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Emmeline van Roosmalen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Koen C Herman
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Margot C Koster
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
3
|
Wang Y, Yan J, Song G, Song Z, Shi M, Hu H, You L, Zhang L, Wang J, Liu Y, Cheng X, Zhang X. Transcriptome Analysis Reveals the Effect of Oyster Mushroom Spherical Virus Infection in Pleurotus ostreatus. Int J Mol Sci 2024; 25:9749. [PMID: 39273696 PMCID: PMC11396332 DOI: 10.3390/ijms25179749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Oyster mushroom spherical virus (OMSV) is a mycovirus that inhibits mycelial growth, induces malformation symptoms, and decreases the yield of fruiting bodies in Pleurotus ostreatus. However, the pathogenic mechanism of OMSV infection in P. ostreatus is poorly understood. In this study, RNA sequencing (RNA-seq) was conducted, identifying 354 differentially expressed genes (DEGs) in the mycelium of P. ostreatus during OMSV infection. Verifying the RNA-seq data through quantitative real-time polymerase chain reaction on 15 DEGs confirmed the consistency of gene expression trends. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses highlighted the pivotal role of primary metabolic pathways in OMSV infection. Additionally, significant changes were noted in the gene expression levels of carbohydrate-active enzymes (CAZymes), which are crucial for providing the carbohydrates needed for fungal growth, development, and reproduction by degrading renewable lignocellulose. The activities of carboxymethyl cellulase, laccase, and amylase decreased, whereas chitinase activity increased, suggesting a potential mechanism by which OMSV influenced mycelial growth through modulating CAZyme activities. Therefore, this study provided insights into the pathogenic mechanisms triggered by OMSV in P. ostreatus.
Collapse
Affiliation(s)
- Yifan Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Junjie Yan
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Guoyue Song
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zhizhong Song
- School of Agriculture, Ludong University, Yantai 264025, China
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK
| | - Matthew Shi
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK
| | - Haijing Hu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lunhe You
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lu Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianrui Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yu Liu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xianhao Cheng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaoyan Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
- Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base, Yantai 264001, China
| |
Collapse
|
4
|
Wang Y, Wen Z, Yang Y, Hu X, Song Z, Hu H, Song G, You L, Wang J, Liu Y, Cheng X, Zhang X. Transmission of Oyster Mushroom Spherical Virus to Progeny via Basidiospores and Horizontally to a New Host Pleurotus floridanus. Int J Mol Sci 2024; 25:5677. [PMID: 38891868 PMCID: PMC11171830 DOI: 10.3390/ijms25115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically through sporulation in natural settings. Oyster mushroom spherical virus (OMSV) is a mycovirus that infects Pleurotus ostreatus, with horizontal transmission via hyphal anastomosis. However, whether OMSV can be vertically transmitted is unclear. This study aimed to investigate the transmission characteristics of OMSV to progeny via basidiospores and horizontally to a new host. A total of 37 single-basidiospore offspring were obtained from OMSV-infected P. ostreatus and Pleurotus pulmonarius for Western blot detection of OMSV. The OMSV-carrying rate among monokaryotic isolates was 19% in P. ostreatus and 44% in P. pulmonarius. Then, OMSV-free and OMSV-infected monokaryotic isolates were selected for hybridization with harvested dikaryotic progeny strains. Western blot analyses of the offspring revealed that the OMSV transmission efficiency was 50% in P. ostreatus and 75% in P. pulmonarius, indicating vertical transmission via sexual basidiospores. Furthermore, we observed the horizontal transfer of OMSV from P. pulmonarius to Pleurotus floridanus. OMSV infection in P. floridanus resulted in significant inhibition of mycelial growth and yield loss. This study was novel in reporting the vertical transmission of OMSV through basidiospores, and its infection and pathogenicity in a new host P. floridanus.
Collapse
Affiliation(s)
- Yifan Wang
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Zhidong Wen
- Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base, Yantai 264001, China; (Z.W.); (Y.Y.); (X.H.)
| | - Yaoyao Yang
- Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base, Yantai 264001, China; (Z.W.); (Y.Y.); (X.H.)
| | - Xiangting Hu
- Yantai Growth Drivers Conversion Research Institute and Yantai Science and Technology Achievement Transfer and Transformation Demonstration Base, Yantai 264001, China; (Z.W.); (Y.Y.); (X.H.)
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, No. 186 Hongqizhong Road, Yantai 264025, China;
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, UK
| | - Haijing Hu
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Guoyue Song
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Lunhe You
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Jianrui Wang
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Yu Liu
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Xianhao Cheng
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| | - Xiaoyan Zhang
- School of Agriculture, Ludong University, Yantai 264025, China; (Y.W.); (H.H.); (G.S.); (L.Y.); (J.W.); (Y.L.); (X.C.)
| |
Collapse
|
5
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
6
|
Zhang X, Hu H, Zhao Y, Wang Y, Zhang W, You L, Wang J, Liu Y, Cheng X. Oyster Mushroom Spherical Virus Crosses the Species Barrier and Is Pathogenic to a New Host Pleurotus pulmonarius. Int J Mol Sci 2023; 24:10584. [PMID: 37445762 DOI: 10.3390/ijms241310584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Oyster mushroom spherical virus (OMSV) is a mycovirus with a positive-sense single-stranded RNA genome that infects the edible mushroom Pleurotus ostreatus. OMSV is horizontally transferred from an infected strain to a cured strain via mycelia. The infection results in significant inhibition of mycelial growth, malformation of fruiting bodies, and yield loss in oyster mushrooms. This study successfully transferred OMSV from P. ostreatus to Pleurotus pulmonarius. However, transmission was not successful in other Pleurotus species including P. citrinopileatus, P. eryngii, P. nebrodensis, and P. salmoneostramineus. The successful OMSV infection in P. pulmonarius was further verified with Western blot analysis using a newly prepared polyclonal antiserum against the OMSV coat protein. Furthermore, OMSV infection reduced the mycelial growth rate of P. pulmonarius. The OMSV-infected strain demonstrated abnormal performance including twisted mushrooms or irregular edge of the cap as well as reduced yield of fruiting bodies in P. pulmonarius, compared to the OMSV-free strain. This study is the first report on the infection and pathogenicity of OMSV to the new host P. pulmonarius. The data from this study therefore suggest that OMSV is a potential threat to P. pulmonarius.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Haijing Hu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanxiang Zhao
- College of Plant Health and Medicine, Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yifan Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wenjing Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lunhe You
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianrui Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yu Liu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xianhao Cheng
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
7
|
Cao L, Zhang Q, Miao R, Lin J, Feng R, Ni Y, Li W, Yang D, Zhao X. Application of omics technology in the research on edible fungi. Curr Res Food Sci 2022; 6:100430. [PMID: 36605463 PMCID: PMC9807862 DOI: 10.1016/j.crfs.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Edible fungus is a large fungus distributed all over the world and used as food and medicine. But people's understanding of edible fungi is not as much as that of ordinary crops, so people have started a number of research on edible fungi in recent years. With the development of science and technology, omics technology has gradually walked into people's vision. Omics technology has high sensitivity and wide application range, which is favored by researchers. The application of omics technology to edible fungus research is a major breakthrough, which has transferred edible fungus research from artificial cultivation to basic research. Now omics technology in edible fungi has been flexibly combined with other research methods, involving multiple studies of edible fungus, such as genetic breeding, growth and development, stress resistance, and the use of special components in edible fungus as pharmaceutical additives. It is believed that in the future, the research of edible fungi will also be brought to a deeper level with the help of omics technology. This paper introduces the application progress of modern omics technology to the study on edible fungi and mentions the application prospect of edible fungi research with the constant development of omics technology, thereby providing ideas for the follow-up in-depth research on edible fungi.
Collapse
Affiliation(s)
- Luping Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Yanqing Ni
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Delong Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China,Corresponding author.
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China,Facility Agriculture and Equipment Research Institute, Gansu Academy of Agri-engineering Technology, Wuwei, 733006, Gansu, China,Corresponding author. Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
| |
Collapse
|
8
|
Experimental Outcrossing in Agaricus bisporus Revealed a Major and Unexpected Involvement of Airborne Mycelium Fragments. J Fungi (Basel) 2022; 8:jof8121278. [PMID: 36547611 PMCID: PMC9783782 DOI: 10.3390/jof8121278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Agaricus bisporus var. bisporus, the button mushroom, has a predominantly pseudohomothallic life cycle. Most of its spores are heterokaryotic and give rise to fertile heterokaryons. However, previous studies have suggested that outcrossing should not be rare in wild populations. In order to discover how outcrossing occurs, we experimentally favored it between aerial propagules of a fruiting donor mycelium and a delayed receiver mycelium that only invaded culture trays. Two donor/receiver pairs were studied, and potentially hybrid basidiomata collected on the receiver trays were analyzed with a mitochondrial marker, two unlinked nuclear CAPS markers, then haplotype markers based on DNA sequences obtained after PCR cloning of the rDNA ITS region and the fruk gene. For one of the two pairs, most basidiomata were hybrids between the donor and the receiver. Genotyping of the hybrids revealed only two genotypes consistent with outcrossing involving airborne mycelium fragments rather than basidiospores. The resident receiver heterokaryon that provided its mitochondria to the hybrid basidiomata is suspected to have had a trophic contribution to their growth and successful fruiting. The high level of heterozygosity and the cultivar introgression previously revealed in wild populations of this pseudohomothallic species may result from outcrossing involving airborne pieces of mycelium.
Collapse
|
9
|
Interspecific spread of dsRNA mycoviruses in entomogenous fungi Beauveria spp. Virus Res 2022; 322:198933. [PMID: 36165923 DOI: 10.1016/j.virusres.2022.198933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022]
Abstract
Mycoviruses can spread interspecifically and intraspecifically in plant pathogenic fungi, as well as spreading intraspecifically in entomogenous fungi, especially Beauveria bassiana. However, whether mycoviruses are common in Beauveria spp. and can spread interspecifically between Beauveria species are unclear. Herein, four Beauveria species, but not B. bassiana, were randomly selected for double stranded RNA (dsRNA) detection. Furthermore, two previously reported dsRNA mycoviruses from B. bassiana, BbCV-2 and BbPmV-4, were used to study the interspecific transmission among B. bassiana, B. amorpha, and B. aranearum, using hyphal anastomosis and a novel insect coinfection transmission method. The results showed that dsRNA mycoviruses exist universally in Beauveria spp. and could spread interspecifically between different Beauveria species. The transmission efficiency from B. bassiana to the other two Beauveria species was significantly higher than that of the reverse transmission. Both viruses could stably and vertically spread in B. amorpha and B. aranearum, which affected their growth rate and colony morphology.
Collapse
|
10
|
Jo IH, Kim J, An H, Lee HY, So YS, Ryu H, Sung GH, Shim D, Chung JW. Pseudo-Chromosomal Genome Assembly in Combination with Comprehensive Transcriptome Analysis in Agaricus bisporus Strain KMCC00540 Reveals Mechanical Stimulus Responsive Genes Associated with Browning Effect. J Fungi (Basel) 2022; 8:886. [PMID: 36012874 PMCID: PMC9410529 DOI: 10.3390/jof8080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Agaricus bisporus is one of the world's most popular edible mushrooms, including in South Korea. We performed de novo genome assembly with a South Korean white-colored cultivar of A. bisporus, KMCC00540. After generating a scaffold-level genomic sequence, we inferred chromosome-level assembly by genomic synteny analysis with the representative A. bisporus strains H97 and H39. The KMCC00540 genome had 13 pseudochromosomes comprising 33,030,236 bp mostly covering both strains. A comparative genomic analysis with cultivar H97 indicated that most genomic regions and annotated proteins were shared (over 90%), ensuring that our cultivar could be used as a representative genome. However, A. bisporus suffers from browning even from only a slight mechanical stimulus during transportation, which significantly lowers its commercial value. To identify which genes respond to a mechanical stimulus that induces browning, we performed a time-course transcriptome analysis based on the de novo assembled genome. Mechanical stimulus induces up-regulation in long fatty acid ligase activity-related genes, as well as melanin biosynthesis genes, especially at early time points. In summary, we assembled the chromosome-level genomic information on a Korean strain of A. bisporus and identified which genes respond to a mechanical stimulus, which provided key hints for improving the post-harvest biological control of A. bisporus.
Collapse
Affiliation(s)
- Ick-Hyun Jo
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Jaewook Kim
- Department of Biological Science, Chungnam National University, Daejeon 34134, Korea
| | - Hyejin An
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| | - Hwa-Yong Lee
- Department of Forest Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju 28644, Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, College of Medicine Catholic Kwandong University, Incheon 21431, Korea
| | - Donghwan Shim
- Department of Biological Science, Chungnam National University, Daejeon 34134, Korea
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
11
|
Zhang Y, Gao J, Li Y. Diversity of mycoviruses in edible fungi. Virus Genes 2022; 58:377-391. [PMID: 35668282 DOI: 10.1007/s11262-022-01908-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Mycoviruses (fungal viruses) are widespread in all major taxonomic groups of fungi. Although most mycovirus infections are latent, some mycoviruses, such as La France isometric virus, mushroom virus X, and oyster mushroom spherical virus, can cause severe diseases in edible fungi and lead to significant production losses. Recently, deep sequencing has been employed as a powerful research tool to identify new mycoviruses and to enhance our understanding of virus diversity and evolution. An increasing number of novel mycoviruses that can infect edible fungi have been reported, including double-stranded (ds) RNA, positive-sense ( +)ssRNA, and negative-sense (-)ssRNA viruses. To date, approximately 60 mycoviruses have been reported in edible fungi. In this review, we summarize the recent advances in the diversity and evolution of mycoviruses that can infect edible fungi. We also discuss mycovirus transmission, co-infections, and genetic variations, as well as the methods used to detect and control of mycoviruses in edible fungi, and provide insights for future research on mushroom viral diseases.
Collapse
Affiliation(s)
- Yanjing Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jie Gao
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|