1
|
Keller V, Calchera A, Otte J, Schmitt I. Genomic features of lichen-associated black fungi. IUBMB Life 2025; 77:e2934. [PMID: 39710945 DOI: 10.1002/iub.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024]
Abstract
Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles. It is presently unclear in which ways these fungi interact with other members of the lichen symbiosis. Genomic resources of lichen-associated black fungi are needed to better understand the physiological potential of these fungi and shed light on the complexity of the lichen consortium. Here, we present high-quality genomes of 14 black fungal lineages, isolated from lichens of the rock-dwelling genus Umbilicaria. Nine of the lineages belong to the Eurotiomycetes (Chaetothyriales), four to the Dothideomycetes, and one to the Arthoniomycetes, representing the first genome of a black fungus in this class. The PacBio-based assemblies are highly contiguous (5-42 contigs per genome, mean coverage of 79-502, N50 of 1.0-7.3 mega-base-pair (Mb), Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness generally ≥95.4%). Most contigs are flanked by a telomere sequence, suggesting we achieved near chromosome-level assemblies. Genome sizes range between 26 and 44 Mb. Transcriptome-based annotations yielded ~11,000-18,000 genes per genome. We analyzed genome content with respect to repetitive elements, biosynthetic genes, and effector genes. Each genome contained a polyketide synthase gene related to the dihydroxynaphthalene-melanin pathway. This research provides insights into genome content and metabolic potential of these relatively unknown, but frequently encountered lichen associates.
Collapse
Affiliation(s)
- Victoria Keller
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Siedlecki I, Kochanowski M, Pawłowska J, Reszotnik G, Okrasińska A, Wrzosek M. Ant's Nest as a microenvironment: Distinct Mucoromycota (Fungi) community of the red wood ants' ( Formica polyctena) mounds. Ecol Evol 2024; 14:e70333. [PMID: 39385841 PMCID: PMC11461907 DOI: 10.1002/ece3.70333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Many social insect species build nests, which differ from the surrounding environment and are often occupied by specific organismal communities. These organisms may interact mutualistically or parasitically with the nest-builders, or simply co-occur, being able to survive in these microenvironments. In temperate forests, red wood ants (e.g. Formica polyctena) are known to create distinct, highly developed nests, which consist of large, above-ground mounds, built primarily out of plant matter collected from the forest litter. The microorganismal communities of such mounds remain understudied. As representatives of Mucoromycota fungi commonly engage in the decomposition process of the forest litter, they would be expected to occur in the mounds. However, it is still not known whether the Mucoromycota community of these ants' nests differ from the one of the surrounding forest litter. In order to distinguish mound-associated taxa, we characterized Mucoromycota communities of Formica polyctena mounds and the surrounding forest litter. We sampled four sites, twice in a season. Sampled material was plated on agar media and emerging Mucoromycota colonies were identified based on their morphology. Fungal identification was further confirmed using DNA barcoding. In order to compare described communities, PERMANOVA test and non-metric multidimensional scaling ordinations were used. To distinguish taxa associated with the mounds, multilevel pattern analysis was performed. Our results show that the Mucoromycota community of Formica polyctena's mound differs from the community of the surrounding forest litter. While representatives of Entomortierella lignicola and Absidia cylindrospora clade were found to be associated with the mound environment, representatives of Umbelopsis curvata and Podila verticillata-humilis clade were associated with forest litter, and were rarely present in the mounds. Our findings strongly suggest that the red wood ants' nest is a specific microenvironment in the temperate forest floor, which is a preferred microhabitat for the mound-associated Mucoromycota, possibly adapted to live in proximity to ants.
Collapse
Affiliation(s)
- Igor Siedlecki
- Botanic Garden, Faculty of BiologyUniversity of WarsawWarsawPoland
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | | | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Gabriela Reszotnik
- Botanic Garden, Faculty of BiologyUniversity of WarsawWarsawPoland
- Faculty of Agriculture and EcologyWarsaw University of Life SciencesWarsawPoland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Marta Wrzosek
- Botanic Garden, Faculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
3
|
Barrajon-Santos V, Nepel M, Hausmann B, Voglmayr H, Woebken D, Mayer VE. Dynamics and drivers of fungal communities in a multipartite ant-plant association. BMC Biol 2024; 22:112. [PMID: 38745290 PMCID: PMC11093746 DOI: 10.1186/s12915-024-01897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Fungi and ants belong to the most important organisms in terrestrial ecosystems on Earth. In nutrient-poor niches of tropical rainforests, they have developed steady ecological relationships as a successful survival strategy. In tropical ant-plant mutualisms worldwide, where resident ants provide the host plants with defense and nutrients in exchange for shelter and food, fungi are regularly found in the ant nesting space, inhabiting ant-made dark-colored piles ("patches"). Unlike the extensively investigated fungus-growing insects, where the fungi serve as the primary food source, the purpose of this ant-fungi association is less clear. To decipher the roles of fungi in these structures within ant nests, it is crucial to first understand the dynamics and drivers that influence fungal patch communities during ant colony development. RESULTS In this study, we investigated how the ant colony age and the ant-plant species affect the fungal community in the patches. As model we selected one of the most common mutualisms in the Tropics of America, the Azteca-Cecropia complex. By amplicon sequencing of the internal transcribed spacer 2 (ITS2) region, we analyzed the patch fungal communities of 93 Azteca spp. colonies inhabiting Cecropia spp. trees. Our study demonstrates that the fungal diversity in patches increases as the ant colony grows and that a change in the prevalent fungal taxa occurs between initial and established patches. In addition, the ant species significantly influences the composition of the fungal community in established ant colonies, rather than the host plant species. CONCLUSIONS The fungal patch communities become more complex as the ant colony develops, due to an acquisition of fungi from the environment and a substrate diversification. Our results suggest a successional progression of the fungal communities in the patches during ant colony growth and place the ant colony as the main driver shaping such communities. The findings of this study demonstrate the unexpectedly complex nature of ant-plant mutualisms in tropical regions at a micro scale.
Collapse
Affiliation(s)
- Veronica Barrajon-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
| | - Maximilian Nepel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Present Address: Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Veronika E Mayer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Siedlecki I, Piątek M, Majchrowska M, Okrasińska A, Owczarek-Kościelniak M, Pawłowska J. Discovery of Formicomyces microglobosus gen. et sp. nov. strengthens the hypothesis of independent evolution of ant-associated fungi in Trichomeriaceae. Fungal Biol 2023; 127:1466-1474. [PMID: 38097320 DOI: 10.1016/j.funbio.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Different groups of fungi have been reported to interact with ants. Recent studies have shown that fungi of the order Chaetothyriales are important components of ant-fungus networks, including members of the family Trichomeriaceae, which is particularly rich in fungi isolated from carton ants nests. One of the still understudied ant-related environments are ants' infrabuccal pockets and pellets, which often contain fungal matter. The aim of this work was to determine the systematic and phylogenetic position of two slow growing strains of Trichomeriaceae isolated from infrabuccal pellets of Formica polyctena ants. Molecular analyses based on maximum likelihood and bayesian inference, using sequences of two ribosomal DNA markers: ITS and LSU have shown that the isolated strains form a monophyletic clade within the family Trichomeriaceae, sister to a clade formed by representatives of the genus Trichomerium. Morphological analyses additionally justified distinctiveness of the isolated strains, which have different morphology of conidia and conidiophores than Trichomerium representatives. Therefore, our results show that the isolated strains represent a new species within a not yet described fungal genus. Due to the strains' isolation source and their close relatedness to a fungal strain isolated from a carton nest of Lasius fuliginosus, we propose a name Formicomyces microglobosus Siedlecki & Piątek for this fungus. While our discovery strengthens a hypothesis of the multiple, independent evolution of ant-associated fungi in the family Trichomeriaceae, the ecology of F. microglobosus still remains to be characterized.
Collapse
Affiliation(s)
- Igor Siedlecki
- University of Warsaw Botanic Garden, Aleje Ujazdowskie 4, 00-478, Warsaw, Poland; Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Maria Majchrowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | | | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
5
|
Mayer VE, Voglmayr H, Blatrix R, Orivel J, Leroy C. Fungi as mutualistic partners in ant-plant interactions. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1213997. [PMID: 37850069 PMCID: PMC10577302 DOI: 10.3389/ffunb.2023.1213997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023]
Abstract
Associations between fungi and ants living in mutualistic relationship with plants ("plant-ants") have been known for a long time. However, only in recent years has the mutualistic nature, frequency, and geographical extent of associations between tropical arboreal ants with fungi of the ascomycete order Chaetothyriales and Capnodiales (belonging to the so-called "Black Fungi") become clear. Two groups of arboreal ants displaying different nesting strategies are associated with ascomycete fungi: carton-building ants that construct nest walls and galleries on stems, branches or below leaves which are overgrown by fungal hyphae, and plant-ants that make their nests inside living plants (myrmecophytes) in plant provided cavities (domatia) where ants cultivate fungi in small delimited "patches". In this review we summarize the current knowledge about these unsuspected plant-ant-fungus interactions. The data suggest, that at least some of these ant-associated fungi seem to have coevolved with ants over a long period of time and have developed specific adaptations to this lifestyle.
Collapse
Affiliation(s)
- Veronika E. Mayer
- Department of Botany and Biodiversity Research – Division of Structural and Functional Botany, University of Vienna, Wien, Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research – Mycology Research Group, University of Vienna, Wien, Austria
| | - Rumsais Blatrix
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jérôme Orivel
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Céline Leroy
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
6
|
Dejean A, Azémar F, Naskrecki P, Tindo M, Rossi V, Faucher C, Gryta H. Mutualistic interactions between ants and fungi: A review. Ecol Evol 2023; 13:e10386. [PMID: 37529578 PMCID: PMC10375366 DOI: 10.1002/ece3.10386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The large amount of dead plant biomass caused by the final extinction events triggered a fungi proliferation that mostly differentiated into saprophytes degrading organic matter; others became parasites, predators, likely commensals, and mutualists. Among the last, many have relationships with ants, the most emblematic seen in the Neotropical myrmicine Attina that cultivate Basidiomycota for food. Among them, leaf-cutting, fungus-growing species illustrate an ecological innovation because they grow fungal gardens from fresh plant material rather than arthropod frass and plant debris. Myrmecophytes shelter "plant-ants" in hollow structures, the domatia, whose inner walls are lined with thin-walled Ascomycota hyphae that, in certain cases, are eaten by the ants, showing a form of convergence. Typically, these Ascomycota have antibacterial properties illustrating cases of farming for protection. Ant gardens, or mutualistic associations between certain ant species and epiphytes, shelter endophytic fungi that promote the growth of the epiphytes. Because the cell walls of certain Ascomycota hyphae remain sturdy after the death of the mycelium, they form resistant fibers used by ants to reinforce their constructions (e.g., galleries, shelters for tended hemipterans, and carton nests). Thus, we saw cases of "true" fungal agriculture involving planting, cultivating, and harvesting Basidiomycota for food with Attina. A convergence with "plant-ants" feeding on Ascomycota whose antibacterial activity is generally exploited (i.e., farming for protection). The growth of epiphytes was promoted by endophytic fungi in ant gardens. Finally, farming for structural materials occurred with, in one case, a leaf-cutting, fungus-growing ant using Ascomycota fibers to reinforce its nests.
Collapse
Affiliation(s)
- Alain Dejean
- Laboratoire Écologie Fonctionnelle et EnvironnementUniversité de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS)ToulouseFrance
- UMR EcoFoG, AgroParisTechCirad, CNRS, INRA, Université des Antilles, Université de GuyaneKourouFrance
| | - Frédéric Azémar
- Laboratoire Écologie Fonctionnelle et EnvironnementUniversité de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS)ToulouseFrance
| | - Piotr Naskrecki
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Maurice Tindo
- Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaDoualaCameroon
| | - Vivien Rossi
- Remote Sensing and Forest Ecology Lab, Higher Teacher's Training CollegeMarien Ngouabi UniversityBrazzavilleDemocratic Republic of the Congo
- R U Forests and Societies, CIRADBrazzavilleDemocratic Republic of the Congo
| | - Christian Faucher
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174) CNRSIRD, Université Toulouse 3ToulouseFrance
| | - Hervé Gryta
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174) CNRSIRD, Université Toulouse 3ToulouseFrance
| |
Collapse
|
7
|
Leroy C. Fungi in ant-plant interactions: a key to enhancing plant nutrient-acquisition strategies. THE NEW PHYTOLOGIST 2023; 238:1752-1754. [PMID: 36939144 DOI: 10.1111/nph.18830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Céline Leroy
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Campus Agronomique, Kourou, 97310, France
| |
Collapse
|
8
|
Nepel M, Pfeifer J, Oberhauser FB, Richter A, Woebken D, Mayer VE. Nitrogen fixation by diverse diazotrophic communities can support population growth of arboreal ants. BMC Biol 2022; 20:135. [PMID: 35681192 PMCID: PMC9185989 DOI: 10.1186/s12915-022-01289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Symbiotic ant-plant associations, in which ants live on plants, feed on plant-provided food, and protect host trees against threats, are ubiquitous across the tropics, with the Azteca-Cecropia associations being amongst the most widespread interactions in the Neotropics. Upon colonization of Cecropia's hollow internodes, Azteca queens form small patches with plant parenchyma, which are then used as waste piles when the colony grows. Patches-found in many ant-plant mutualisms-are present throughout the colony life cycle and may supplement larval food. Despite their initial nitrogen (N)-poor substrate, patches in Cecropia accommodate fungi, nematodes, and bacteria. In this study, we investigated the atmospheric N2 fixation as an N source in patches of early and established ant colonies. RESULTS Via 15N2 tracer assays, N2 fixation was frequently detected in all investigated patch types formed by three Azteca ant species. Quantified fixation rates were similar in early and established ant colonies and higher than in various tropical habitats. Based on amplicon sequencing, the identified microbial functional guild-the diazotrophs-harboring and transcribing the dinitrogenase reductase (nifH) gene was highly diverse and heterogeneous across Azteca colonies. The community composition differed between early and established ant colonies and partly between the ant species. CONCLUSIONS Our data show that N2 fixation can result in reasonable amounts of N in ant colonies, which might not only enable bacterial, fungal, and nematode growth in the patch ecosystems but according to our calculations can even support the growth of ant populations. The diverse and heterogeneous diazotrophic community implies a functional redundancy, which could provide the ant-plant-patch system with a higher resilience towards changing environmental conditions. Hence, we propose that N2 fixation represents a previously unknown potential to overcome N limitations in arboreal ant colonies.
Collapse
Affiliation(s)
- Maximilian Nepel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Josephine Pfeifer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Felix B Oberhauser
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Veronika E Mayer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
10
|
Quan Y, da Silva NM, de Souza Lima BJF, de Hoog S, Vicente VA, Mayer V, Kang Y, Shi D. Black fungi and ants: a genomic comparison of species inhabiting carton nests versus domatia. IMA Fungus 2022; 13:4. [PMID: 35256015 PMCID: PMC8900376 DOI: 10.1186/s43008-022-00091-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Some members of Chaetothyriales, an order containing potential agents of opportunistic infections in humans, have a natural habitat in nests of tropical arboreal ants. In these black fungi, two types of ant symbiosis are known, i.e. occurrence in domatia inside living plants, or as components of carton constructions made of ant-chewed plant tissue. In order to explain differences between strains from these types of association, we sequenced and annotated genomes of two newly described carton species, Incumbomyces lentus and Incumbomyces delicatus, and compared these with genomes of four domatia species and related Chaetothyriales. General genomic characteristics, CYP genes, carbohydrate-active enzymes (CAZymes), secondary metabolism, and sex-related genes were included in the study.
Collapse
|
11
|
Volatile Organic Compounds in the Azteca/ Cecropia Ant-Plant Symbiosis and the Role of Black Fungi. J Fungi (Basel) 2021; 7:jof7100836. [PMID: 34682257 PMCID: PMC8539435 DOI: 10.3390/jof7100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Black fungi of the order Chaetothyriales are grown by many tropical plant-mutualistic ants as small so-called “patches” in their nests, which are located inside hollow structures provided by the host plant (“domatia”). These fungi are introduced and fostered by the ants, indicating that they are important for the colony. As several species of Chaetothyriales tolerate, adsorb, and metabolize toxic volatiles, we investigated the composition of volatile organic compounds (VOCs) of selected domatia in the Azteca/Cecropia ant-plant mutualism. Concentrations of VOCs in ant-inhabited domatia, empty domatia, and background air were compared. In total, 211 compounds belonging to 19 chemical families were identified. Ant-inhabited domatia were dominated by ketones with 2-heptanone, a well-known ant alarm semiochemical, as the most abundant volatile. Empty domatia were characterized by relatively high concentrations of the monoterpenes d-limonene, p-cymene and β-phellandrene, as well as the heterocyclic sulphur-containing compound, benzothiazole. These compounds have biocidal properties and are primarily biosynthesized by plants as a defense mechanism. Interestingly, most of the latter compounds were present at lower concentrations in ant inhabited domatia than in non-colonized ones. We suggest that Chaetothyriales may play a role in reducing the VOCs, underlining that the mutualistic nature of these fungi as VOCs accumulation might be detrimental for the ants, especially the larvae.
Collapse
|
12
|
Greenfield MJ, Lach L, Congdon BC, Anslan S, Tedersoo L, Field M, Abell SE. Consistent patterns of fungal communities within ant-plants across a large geographic range strongly suggest a multipartite mutualism. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractIn recent decades, multipartite mutualisms involving microorganisms such as fungi have been discovered in associations traditionally thought of as bipartite. Ant-plant mutualisms were long thought to be bipartite despite fungi being noticed in an epiphytic ant-plant over 100 years ago. We sequenced fungal DNA from the three distinct domatium chambers of the epiphytic ant-plant Myrmecodia beccarii to establish if fungal communities differ by chamber type across five geographic locations spanning 675 km. The three chamber types serve different ant-associated functions including ‘waste’ chambers, where ant workers deposit waste; ‘nursery’ chambers, where the brood is kept; and ‘ventilation’ chambers, that allow air into the domatium. Overall, fungi from the order Chaetothyriales dominated the chambers in terms of the proportion of operational taxonomic units (OTUs; 13.4%) and sequence abundances of OTUs (28% of the total); however a large portion of OTUs (28%) were unidentified at the order level. Notably, the fungal community in the waste chambers differed consistently from the nursery and ventilation chambers across all five locations. We identified 13 fungal OTUs as ‘common’ in the waste chambers that were rare or in very low sequence abundance in the other two chambers. Fungal communities in the nursery and ventilation chambers overlapped more than either did with the waste chambers but were also distinct from each other. Differences in dominance of the common OTUs drove the observed patterns in the fungal communities for each of the chamber types. This suggests a multipartite mutualism involving fungi exists in this ant-plant and that the role of fungi differs among chamber types.
Collapse
|
13
|
The symbiosis between Philidris ants and the ant-plant Dischidia major includes fungal and algal associates. Symbiosis 2021. [DOI: 10.1007/s13199-021-00751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Quan Y, Ahmed SA, Menezes da Silva N, Al-Hatmi AMS, Mayer VE, Deng S, Kang Y, Sybren de Hoog G, Shi D. Novel black yeast-like species in chaetothyriales with ant-associated life styles. Fungal Biol 2021; 125:276-284. [PMID: 33766306 DOI: 10.1016/j.funbio.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Among ancestral fungi in Chaetothyriales, several groups have a life style in association with tropical ants, either in domatia or in carton-nests. In the present study, two strains collected from ant carton in Thailand and Malaysia were found to represent hitherto undescribed species. Morphological, physiological, phylogenetic data and basic genome information are provided for their classification. Because of the relatively large phylogenetic distances with known species confirmed by overall genome data, large subunit (LSU) and Internal Transcribed Spacer (ITS) ribosomal DNA sequences were sufficient for taxonomic circumscription of the species. The analyzed strains clustered with high statistical support as a clade in the family Trichomeriaceae. Morphologically they were rather similar, lacking sporulation in vitro. In conclusion, Incumbomyces delicatus and Incumbomyces lentus were described as new species based on morphological, physiological and phylogenetic analysis.
Collapse
Affiliation(s)
- Yu Quan
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China; College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Sarah A Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Nickolas Menezes da Silva
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Curitiba, Brazil
| | - Abdullah M S Al-Hatmi
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Ministry of Health, Directorate General of Health Services, Ibri, Oman
| | - Veronika E Mayer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Wien, Austria
| | - Shuwen Deng
- Department of Medical Microbiology, People's Hospital of Suzhou National New & Hi-Tech Industrial Development Zone, Jiangsu, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - G Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| | - Dongmei Shi
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, China.
| |
Collapse
|
15
|
Chance or Necessity-The Fungi Co-Occurring with Formica polyctena Ants. INSECTS 2021; 12:insects12030204. [PMID: 33670956 PMCID: PMC7997191 DOI: 10.3390/insects12030204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary There are about 13,800 species of ants living around the world, but only some of them have been extensively studied in the context of their non−antagonistic relationships with fungi. The best−known example is the symbiosis between leaf−cutting ants and fungi serving them as food. Others include the relationship between ants living in carton nests in the trees’ canopy with fungi increasing the durability of the nest. Do ants utilize fungi in the northern hemisphere and cooler climatic zone? This question is still open. Our goal was to study the less−obvious interactions between ants and common fungi in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants. We identified nearly 600 strains and investigated their taxonomic affinity. The most abundant fungi in F. polyctena nests are strains belonging to Penicillium—a genus well−known as an antibiotic producer. Other common and widespread fungi related to Penicillium, such as the toxin−producing Aspergillus species, were isolated very rarely. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that certain representatives of this genus may be adapted to survive in ant nests, or that they are preferentially sustained by the insects. Abstract Studies on carton nesting ants and domatia−dwelling ants have shown that ant–fungi interactions may be much more common and widespread than previously thought. Until now, studies focused predominantly on parasitic and mutualistic fungi–ant interactions occurring mostly in the tropics, neglecting less−obvious interactions involving the fungi common in ants’ surroundings in temperate climates. In our study, we characterized the mycobiota of the surroundings of Formica polyctena ants by identifying nearly 600 fungal colonies that were isolated externally from the bodies of F. polyctena workers. The ants were collected from mounds found in northern and central Poland. Isolated fungi were assigned to 20 genera via molecular identification (ITS rDNA barcoding). Among these, Penicillium strains were the most frequent, belonging to eight different taxonomic sections. Other common and widespread members of Eurotiales, such as Aspergillus spp., were isolated very rarely. In our study, we managed to characterize the genera of fungi commonly present on F. polyctena workers. Our results suggest that Penicillium, Trichoderma, Mucor, Schwanniomyces and Entomortierella are commonly present in F. polyctena surroundings. Additionally, the high diversity and high frequency of Penicillium colonies isolated from ants in this study suggest that representatives of this genus may be adapted to survive in ant nests environment better than the other fungal groups, or that they are preferentially sustained by the insects in nests.
Collapse
|
16
|
Fukuda TTH, Pereira CF, Melo WGP, Menegatti C, Andrade PHM, Groppo M, Lacava PT, Currie CR, Pupo MT. Insights Into the Ecological Role of Pseudomonas spp. in an Ant-plant Symbiosis. Front Microbiol 2021; 12:621274. [PMID: 33597940 PMCID: PMC7882492 DOI: 10.3389/fmicb.2021.621274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
In the myrmecophytic mutualistic relationship between Azteca ants and Cecropia plants both species receive protection and exchange nutrients. The presence of microorganisms in this symbiotic system has been reported, and the symbiotic role of some fungi involved in the myrmecophytic interactions has been described. In this work we focus on bacteria within this mutualism, conducting isolations and screening for antimicrobial activities, genome sequencing, and biochemical characterization. We show that Pantoea, Rhizobium, Methylobacterium, Streptomyces and Pseudomonas are the most common cultivable genera of bacteria. Interestingly, Pseudomonas spp. isolates showed potent activity against 83% of the pathogens tested in our antimicrobial activity assays, including a phytopathogenic fungus isolated from Cecropia samples. Given the predicted nitrogen limitations associated with the fungal patches within this myrmecophyte, we performed nitrogen fixation analyses on the bacterial isolates within the Proteobacteria and show the potential for nitrogen fixation in Pseudomonas strains. The genome of one Pseudomonas strain was sequenced and analyzed. The gene cluster involved in the biosynthesis of cyclic lipodepsipeptides (CLPs) was identified, and we found mutations that may be related to the loss of function in the dual epimerization/condensation domains. The compound was isolated, and its structure was determined, corresponding to the antifungal viscosinamide. Our findings of diazotrophy and production of viscosinamide in multiple Pseudomonas isolates suggests that this bacterial genus may play an important role in the Cecropia-Azteca symbiosis.
Collapse
Affiliation(s)
- Taise T H Fukuda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila F Pereira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Weilan G P Melo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carla Menegatti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo H M Andrade
- Laboratory of Microbiology and Biomolecules, Department of Morphology and Pathology, Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Milton Groppo
- Laboratory of Plant Systematics, Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo T Lacava
- Laboratory of Microbiology and Biomolecules, Department of Morphology and Pathology, Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mônica T Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Lucas JM, Madden AA, Penick CA, Epps MJ, Marting PR, Stevens JL, Fergus DJ, Dunn RR, Meineke EK. Azteca ants maintain unique microbiomes across functionally distinct nest chambers. Proc Biol Sci 2019; 286:20191026. [PMID: 31387509 DOI: 10.1098/rspb.2019.1026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The microbiome of built structures has considerable influence over an inhabitant's well-being, yet the vast majority of research has focused on human-built structures. Ants are well-known architects, capable of constructing elaborate dwellings, the microbiome of which is underexplored. Here, we explore the bacterial and fungal microbiomes in functionally distinct chambers within and outside the nests of Azteca alfari ants in Cecropia peltata trees. We predicted that A. alfari colonies (1) maintain distinct microbiomes within their nests compared to the surrounding environment, (2) maintain distinct microbiomes among nest chambers used for different functions, and (3) limit both ant and plant pathogens inside their nests. In support of these predictions, we found that internal and external nest sampling locations had distinct microbial communities, and A. alfari maintained lower bacterial richness in their 'nurseries'. While putative animal pathogens were suppressed in chambers that ants actively inhabited, putative plant pathogens were not, which does not support our hypothesis that A. alfari defends its host trees against microbial antagonists. Our results show that ants influence microbial communities inside their nests similar to studies of human homes. Unlike humans, ants limit the bacteria in their nurseries and potentially prevent the build-up of insect-infecting pathogens. These results highlight the importance of documenting how indoor microbiomes differ among species, which might improve our understanding of how to promote indoor health in human dwellings.
Collapse
Affiliation(s)
- Jane M Lucas
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA
| | - Anne A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Clint A Penick
- The Biomimicry Center, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Jane Epps
- Department of Biology, Mary Baldwin University, Staunton, VA 24401, USA
| | - Peter R Marting
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Daniel J Fergus
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA.,Natural History Museum, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Emily K Meineke
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Brinker P, Weig A, Rambold G, Feldhaar H, Tragust S. Microbial community composition of nest-carton and adjoining soil of the ant Lasius fuliginosus and the role of host secretions in structuring microbial communities. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
|
20
|
Delgado-Baquerizo M, Eldridge DJ, Hamonts K, Singh BK. Ant colonies promote the diversity of soil microbial communities. ISME JOURNAL 2019; 13:1114-1118. [PMID: 30607027 DOI: 10.1038/s41396-018-0335-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/24/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023]
Abstract
Little is known about the role of ant colonies in regulating the distribution and diversity of soil microbial communities across large spatial scales. Here, we conducted a survey across >1000 km in eastern Australia and found that, compared with surrounding bare soils, ant colonies promoted the richness (number of phylotypes) and relative abundance of rare taxa of fungi and bacteria. Ant nests were also an important reservoir for plant pathogens. Our study also provides a portfolio of microbial phylotypes only found in ant nests, and which are associated with high nutrient availability. Together, our work highlights the fact that ant nests are an important refugia for microbial diversity.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA. .,Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, 28933, Spain.
| | - David J Eldridge
- Centre for Ecosystem Studies, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kelly Hamonts
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia.,Global Centre for Land Based Innovation, University of Western Sydney, Building L9, Locked Bag 1797, Penrith South, NSW, 2751, Australia
| |
Collapse
|
21
|
Abstract
A holistic understanding of superorganism biology requires study of colony sociometry, or the quantitative relationships among growth, nest architecture, morphology, and behavior. For ant colonies that obligately nest within plant hosts, their sociometry is likely intertwined with the plant, which has implications for the evolution, strength, and stability of the mutualism. In the Azteca-Cecropia mutualism, plants provide ants with food rewards and hollow stems for nesting in return for protection from herbivores. Several interesting questions arise when considering ant-plant sociometry: are colony growth and plant growth synchronized? How do colonies distribute themselves within the stem of their host plant? How do plant traits influence worker morphology? How is collective personality related to tree structure, nest organization, and worker morphology? To address these questions, we investigated patterns within and relationships among five major sociometric categories of colonies in the field - plant traits, colony size, nest organization, worker morphology, and collective personality. We found that colony sociometry was intimately intertwined with host plant traits. Colony and plant growth rates were synchronized, suggesting that positive feedback between plant and colony growth stabilizes the mutualism. The colony's distribution inside the host tree tended to follow leaf growth, with most workers, brood, and the queen in the top half of the tree. Worker morphology correlated with plant size instead of colony size or age, which suggests that plant traits influence worker development. Colony personality was independent of colony distribution and tree structure but may correlate with worker size such that colonies with smaller, less variable workers had more aggressive personalities. This study provides insights into how ant-plant structural relationships may contribute to plant protection and the strength of mutualisms.
Collapse
|
22
|
Ant-produced chemicals are not responsible for the specificity of their Ophiocordyceps fungal pathogens. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Transmission of fungal partners to incipient Cecropia-tree ant colonies. PLoS One 2018; 13:e0192207. [PMID: 29466381 PMCID: PMC5821464 DOI: 10.1371/journal.pone.0192207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
Ascomycete fungi in the nests of ants inhabiting plants (= myrmecophytes) are very often cultivated by the ants in small patches and used as food source. Where these fungi come from is not known yet. Two scenarios of fungus recruitment are possible: (1) random infection through spores or hyphal fragments from the environment, or (2) transmission from mother to daughter colonies by the foundress queen. It is also not known at which stage of the colony life cycle fungiculture is initiated, and whether the- symbiont fungi serve as food for the ant queen. To clarify these questions, we investigated four Azteca ant species inhabiting three different Cecropia species (C. insignis, C. obtusifolia, and C. peltata). We analysed an rRNA gene fragment from 52 fungal patches produced by founding queens and compared them with those from established Azteca colonies (n = 54). The infrabuccal pockets of winged queens were dissected to investigate whether young queens carry fungi from their mother colony. Additionally, 15N labelling experiments were done to verify whether the queen feeds on the patches until she is nourished by her first worker offspring. We infer from the results that the fungi cultivated in hollow plant structures are transferred from the parental colony of the young queen. First, fungal genotypes/OTU diversity was not significantly different between foundress queen patches and established colonies, and second, hyphal parts were discovered in the infrabuccal pockets of female alates. We could show that fungiculture already starts before queens lay their eggs, and that the queens do not feed on fungal patch material but feed it to the larvae. Our findings suggest that fungiculture may be crucial for successful colony founding of arboreal ants in the tropics.
Collapse
|
24
|
Pringle EG, Moreau CS. Community analysis of microbial sharing and specialization in a Costa Rican ant-plant-hemipteran symbiosis. Proc Biol Sci 2018; 284:rspb.2016.2770. [PMID: 28298351 DOI: 10.1098/rspb.2016.2770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023] Open
Abstract
Ants have long been renowned for their intimate mutualisms with trophobionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of microbes between interacting macroorganisms, affects the composition and function of symbiotic microbial communities. Here we approached this question by investigating symbiosis within symbiosis. Ant-plant-hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and quantitative PCR to examine community structure of both bacteria and fungi in a Neotropical ant-plant-scale-insect symbiosis. Both phloem-feeding scale insects and honeydew-feeding ants make use of microbial symbionts to subsist on phloem-derived diets of suboptimal nutritional quality. Among the insects examined here, Cephalotes ants and pseudococcid scale insects had the most specialized bacterial symbionts, whereas Azteca ants appeared to consume or associate with more fungi than bacteria, and coccid scale insects were associated with unusually diverse bacterial communities. Despite these differences, we also identified apparent sharing of microbes among the macro-partners. How microbial exchanges affect the consumer-resource interactions that shape the evolution of ant-plant-hemipteran symbioses is an exciting question that awaits further research.
Collapse
Affiliation(s)
- Elizabeth G Pringle
- Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA .,Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA
| | - Corrie S Moreau
- Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
25
|
Vasse M, Voglmayr H, Mayer V, Gueidan C, Nepel M, Moreno L, de Hoog S, Selosse MA, McKey D, Blatrix R. A phylogenetic perspective on the association between ants (Hymenoptera: Formicidae) and black yeasts (Ascomycota: Chaetothyriales). Proc Biol Sci 2018; 284:rspb.2016.2519. [PMID: 28298348 DOI: 10.1098/rspb.2016.2519] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/14/2016] [Indexed: 11/12/2022] Open
Abstract
The frequency and the geographical extent of symbiotic associations between ants and fungi of the order Chaetothyriales have been highlighted only recently. Using a phylogenetic approach based on seven molecular markers, we showed that ant-associated Chaetothyriales are scattered through the phylogeny of this order. There was no clustering according to geographical origin or to the taxonomy of the ant host. However, strains tended to be clustered according to the type of association with ants: strains from ant-made carton and strains from plant cavities occupied by ants ('domatia') rarely clustered together. Defining molecular operational taxonomic units (MOTUs) with an internal transcribed spacer sequence similarity cut-off of 99% revealed that a single MOTU could be composed of strains collected from various ant species and from several continents. Some ant-associated MOTUs also contained strains isolated from habitats other than ant-associated structures. Altogether, our results suggest that the degree of specialization of the interactions between ants and their fungal partners is highly variable. A better knowledge of the ecology of these interactions and a more comprehensive sampling of the fungal order are needed to elucidate the evolutionary history of mutualistic symbioses between ants and Chaetothyriales.
Collapse
Affiliation(s)
- Marie Vasse
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul Valéry Montpellier-EPHE, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Hermann Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Veronika Mayer
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Cécile Gueidan
- National Facilities and Collections, National Research Collections Australia, Australian National Herbarium, CSIRO, PO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Maximilian Nepel
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria.,Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Leandro Moreno
- CBS Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands
| | - Sybren de Hoog
- CBS Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier (CP50), 75005 Paris, France.,Department of Plant Taxonomy and Nature Conservation, University of Gdansk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Doyle McKey
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul Valéry Montpellier-EPHE, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Rumsaïs Blatrix
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul Valéry Montpellier-EPHE, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
26
|
Moussa TAA, Al-Zahrani HS, Kadasa NMS, Moreno LF, Gerrits van den Ende AHG, de Hoog GS, Al-Hatmi AMS. Nomenclatural notes on Nadsoniella
and the human opportunist black yeast genus Exophiala. Mycoses 2017; 60:358-365. [DOI: 10.1111/myc.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Tarek A. A. Moussa
- Biological Sciences Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Biological Sciences Department; Faculty of Science; University of Jeddah; Jeddah Saudi Arabia
- Botany and Microbiology Department; Faculty of Science; Cairo University; Giza Egypt
| | - Hassan S. Al-Zahrani
- Biological Sciences Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Naif M. S. Kadasa
- Biological Sciences Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Leandro F. Moreno
- CBS-KNAW Fungal Biodiversity Centre; Utrecht The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam The Netherlands
| | | | - G. Sybren de Hoog
- Biological Sciences Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- CBS-KNAW Fungal Biodiversity Centre; Utrecht The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam The Netherlands
| | - Abdullah M. S. Al-Hatmi
- CBS-KNAW Fungal Biodiversity Centre; Utrecht The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam The Netherlands
- Directorate General of Health Services; Ibri Hospital; Ministry of Health; Ibri Oman
| |
Collapse
|