1
|
Korkmaz Y, Bełka M, Blumenstein K. How cryptic animal vectors of fungi can influence forest health in a changing climate and how to anticipate them. Appl Microbiol Biotechnol 2025; 109:65. [PMID: 40088282 PMCID: PMC11910412 DOI: 10.1007/s00253-025-13450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Fungal spores are usually dispersed by wind, water, and animal vectors. Climate change is accelerating the spread of pathogens to new regions. While well-studied vectors like bark beetles and moths contribute to pathogen transmission, other, less-recognized animal species play a crucial role at different scales. Small-scale dispersers, such as mites, rodents, squirrels, and woodpeckers, facilitate fungal spread within trees or entire forest regions. On a larger scale, birds contribute significantly to long-distance fungal dispersal, potentially aiding the establishment of invasive species across continents. These vectors remain underexplored and are often overlooked in fungal disease studies and are therefore called cryptic vectors. Understanding the full range of dispersal mechanisms is critical as climate change drive shifts in species distributions and increases vector activity. Expanding monitoring and detection tools to include these hidden carriers will improve our ability to track the distribution of fungal pathogens. Integrating targeted research, innovative technologies, and collaborative efforts across disciplines and borders is essential for enhancing disease management and mitigating fungal disease's ecological and economic impacts. KEY POINTS: • Cryptic animal vectors play a critical role in fungal spore dispersal across forests and continents. • Climate change accelerates fungal pathogen spread by altering species distributions, increasing vector activity, and facilitating long-distance dispersal. • Innovative monitoring tools, like eDNA sampling and predictive modelling, are essential to uncover cryptic vector contributions and mitigate fungal disease impacts.
Collapse
Affiliation(s)
- Yasin Korkmaz
- Faculty of Environment and Natural Resources, Chair of Pathology of Trees, University of Freiburg, Freiburg, Germany
| | - Marta Bełka
- Faculty of Forestry and Wood Technology, Forest Entomology and Pathology Department, Poznań University of Life Sciences, Poznań, Poland
| | - Kathrin Blumenstein
- Faculty of Environment and Natural Resources, Chair of Pathology of Trees, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Olsson A, Allanson A, L'Hotellier F. Haematological and serum biochemical reference interval for free-ranging northern bettongs (Bettongia tropica) in far north Queensland. Aust Vet J 2025. [PMID: 39988634 DOI: 10.1111/avj.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND The northern bettong, Bettongia tropica, is an endangered potoroid recognised as a specialist consumer of underground ectomycorrhizal fungi important to wet sclerophyll forest at the interface with tropical rainforest. In line with identified recovery objectives of re-establishing populations within the species' former range, a founder population was translocated to a feral predator-free fenced exclosure within previously occupied habitat to the south of its current range. No published reference intervals for haematology and serum biochemistry exist for this species. Establishing reference intervals provides a valuable tool for health assessment of founder animals and investigations into population health and disease during ongoing monitoring of populations. OBJECTIVE To develop reference intervals for haematology and serum biochemistry parameters in northern bettongs, Bettongia tropica. METHODS Haematological and serum biochemical reference intervals were determined from 39 healthy northern bettongs captured across the Lamb Range region of north Queensland. Routine haematological and biochemical parameters were analysed, including blood gases and lactate, which indicate metabolic changes associated with stress. RESULTS Haematological and serum biochemical parameters were similar to those reported from other potoroids, except for haematocrit and serum protein, which were elevated. Stress parameters were within normal limits. Macropod herpesvirus and Toxoplasma gondii were not detected. CONCLUSIONS Translocated northern bettongs were in good general health, and data collected at the time of capture were sufficient to establish a preliminary reference interval for the species. This provides baseline information by which to monitor health and welfare of the translocated population, and will contribute to health monitoring of other extant populations.
Collapse
Affiliation(s)
- A Olsson
- Boongarry Veterinary and Training Services, Aeroglen, Australia
| | - A Allanson
- Boongarry Veterinary and Training Services, Aeroglen, Australia
| | | |
Collapse
|
3
|
Boast AP, Wood JR, Cooper J, Bolstridge N, Perry GLW, Wilmshurst JM. DNA and spores from coprolites reveal that colourful truffle-like fungi endemic to New Zealand were consumed by extinct moa (Dinornithiformes). Biol Lett 2025; 21:20240440. [PMID: 39809323 PMCID: PMC11732427 DOI: 10.1098/rsbl.2024.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Mycovores (animals that consume fungi) are important for fungal spore dispersal, including ectomycorrhizal (ECM) fungi symbiotic with forest-forming trees. As such, fungi and their symbionts may be impacted by mycovore extinction. New Zealand (NZ) has a diversity of unusual, colourful, endemic sequestrate (truffle-like) fungi, most of which are ECM. As NZ lacks native land mammals (except bats), and sequestrate fungi are typically drab and mammal-dispersed, NZ's sequestrate fungi are hypothesized to be adapted for bird dispersal. However, there is little direct evidence for this hypothesis, as 41% of NZ's native land bird species became extinct since initial human settlement in the thirteenth century. Here, we report ancient DNA and spores from the inside of two coprolites of NZ's extinct, endemic upland moa (Megalapteryx didinus) that reveal consumption and likely dispersal of ECM fungi, including at least one colourful sequestrate species. Contemporary data from NZ show that birds rarely consume fungi and that the introduced mammals preferentially consume exotic fungi. NZ's endemic sequestrate fungi could therefore be dispersal limited compared with fungi that co-evolved with mammalian dispersers. NZ's fungal communities may thus be undergoing a gradual species turnover following avian mycovore extinction and the establishment of mammalian mycovores, potentially affecting forest resilience and facilitating invasion by exotic tree taxa.
Collapse
Affiliation(s)
| | - Jamie R. Wood
- School of Biological Sciences, Faculty of Science, Engineering and Technology, University of Adelaide, Adelaide, South Australia5005, Australia
- Environment Institute, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Jerry Cooper
- Manaaki Whenua-Landcare Research, Lincoln, Canterbury7640, New Zealand
| | - Nic Bolstridge
- Manaaki Whenua-Landcare Research, Lincoln, Canterbury7640, New Zealand
| | - George L. W. Perry
- School of Environment, Faculty of Science, University of Auckland, Auckland1010, New Zealand
| | | |
Collapse
|
4
|
Marino A, Leonardi M, Berrilli E, Garzia M, Zambonelli A, Cerretti P, Iotti M. Identification of Dipteran species inhabiting Tuber aestivum (the summer truffle) ascomata. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1239. [PMID: 39578252 DOI: 10.1007/s10661-024-13401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Tuber spp. (Ascomycota) forms hypogeous fruiting bodies (truffles) that host many microbial species as well as invertebrates which feed on them. Despite the larvae and adults of Diptera and Coleoptera are commonly found to inhabit truffles, molecular investigations assessing their occurrence are still few and the number of species is probably underestimated. In this study, 52 larvae and adults of Diptera from 23 T. aestivum ascomata collected in two provinces of northern and central Italy were molecularly characterized. The sequences fell into four Diptera families, and four taxa were identified as Cheilosia soror, Phaonia cf. trimaculata, Drosophila subobscura, and Suillia gigantea. Morphology of adults belonging to these species confirmed their identity. Additional three taxa belonging to the Helomyzidae remained unclassified. The study highlighted the coexistence of different Diptera species in the same ascoma, suggesting potential lack of competitive exclusion. Geographical distribution analysis reveals non-site specificity for most species. This research contributes insights into the diversity of Dipteran species and their interactions with truffles and lays the groundwork for their monitoring, at a time where truffle resources are threatened by anthropic and environmental factors.
Collapse
Affiliation(s)
- Alessia Marino
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Marco Leonardi
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| | - Emanuele Berrilli
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Matteo Garzia
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Pierfilippo Cerretti
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Mirco Iotti
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| |
Collapse
|
5
|
Tosa MI, Lesmeister DB, Allen JM, Levi T. Multi‐locus
DNA
metabarcoding reveals seasonality of foraging ecology of western spotted skunks in the Pacific Northwest. Ecosphere 2023. [DOI: 10.1002/ecs2.4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Marie I. Tosa
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| | - Damon B. Lesmeister
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
- Pacific Northwest Research Station U.S. Department of Agriculture Forest Service Corvallis Oregon USA
| | - Jennifer M. Allen
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| |
Collapse
|
6
|
Measuring the Impact of Conservation: The Growing Importance of Monitoring Fauna, Flora and Funga. DIVERSITY 2022. [DOI: 10.3390/d14100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on.
Collapse
|
7
|
Wild Boar Effects on Fungal Abundance and Guilds from Sporocarp Sampling in a Boreal Forest Ecosystem. Animals (Basel) 2022; 12:ani12192521. [PMID: 36230261 PMCID: PMC9558969 DOI: 10.3390/ani12192521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Native wild boar populations are expanding across Europe, causing concern due to their significant soil disturbances and considerable impact on ecosystems. However, little is known about how wild boar activities affect other organisms. This study investigated the effects of wild boars on the abundance of fungal sporocarps and their respective fungal guilds (i.e., symbiotic, saprophytic and pathogenic) in boreal forests in Sweden. We selected 11 forested sites in central Sweden: six with and five without the presence of wild boar. We determined the presence or absence of wild boar and rooting intensity at each site. Simultaneously, we investigated the abundance of fungal sporocarps and their fungal guilds. We found that the presence of wild boar and rooting intensity were associated with the abundance of fungal sporocarps. Wild boar rooting was positively correlated with saprotrophic fungi and negatively with symbiotic fungi. Pathogenic fungi were more abundant in plots with no rooting but in the presence of wild boar. We conclude that wild boar represents a recurrent disturbance agent and, based on sporocarp abundance, could eventually affect entire fungal populations. Abstract Native wild boar (Sus scrofa) populations are expanding across Europe. This is cause for concern in some areas where overabundant populations impact natural ecosystems and adjacent agronomic systems. To better manage the potential for impacts, managers require more information about how the species may affect other organisms. For example, information regarding the effect of wild boar on soil fungi for management application is lacking. Soil fungi play a fundamental role in ecosystems, driving essential ecological functions; acting as mycorrhizal symbionts, sustaining plant nutrition and providing defense; as saprotrophs, regulating the organic matter decomposition; or as plant pathogens, regulating plant fitness and survival. During autumn (Sep–Nov) 2018, we investigated the effects of wild boar (presence/absence and rooting intensity) on the abundance (number of individuals) of fungal sporocarps and their functional guilds (symbiotic, saprotrophic and pathogenic). We selected eleven forested sites (400–500 × 150–200 m) in central Sweden; six with and five without the presence of wild boar. Within each forest, we selected one transect (200 m long), and five plots (2 × 2 m each) for sites without wild boar, and ten plots for sites with boars (five within and five outside wild boar disturbances), to determine the relationship between the intensity of rooting and the abundance of sporocarps for three fungal guilds. We found that the presence of wild boar and rooting intensity were associated with the abundance of sporocarps. Interestingly, this relationship varied depending on the fungal guild analyzed, where wild boar rooting had a positive correlation with saprophytic sporocarps and a negative correlation with symbiotic sporocarps. Pathogenic fungi, in turn, were more abundant in undisturbed plots (no rooting) but located in areas with the presence of wild boar. Our results indicate that wild boar activities can potentially regulate the abundance of fungal sporocarps, with different impacts on fungal guilds. Therefore, wild boar can affect many essential ecosystem functions driven by soil fungi in boreal forests, such as positive effects on energy rotation and in creating mineral availability to plants, which could lead to increased diversity of plants in boreal forests.
Collapse
|
8
|
Elliott T, Truong C, Jackson S, Zúñiga C, Trappe J, Vernes K. Mammalian mycophagy: A global review of ecosystem interactions between mammals and fungi. Fungal Syst Evol 2022; 9:99-159. [PMID: 36072820 PMCID: PMC9402283 DOI: 10.3114/fuse.2022.09.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/02/2022] [Indexed: 11/07/2022] Open
Abstract
The consumption of fungi by animals is a significant trophic interaction in most terrestrial ecosystems, yet the role mammals play in these associations has been incompletely studied. In this review, we compile 1 154 references published over the last 146 years and provide the first comprehensive global review of mammal species known to eat fungi (508 species in 15 orders). We review experimental studies that found viable fungal inoculum in the scats of at least 40 mammal species, including spores from at least 58 mycorrhizal fungal species that remained viable after ingestion by mammals. We provide a summary of mammal behaviours relating to the consumption of fungi, the nutritional importance of fungi for mammals, and the role of mammals in fungal spore dispersal. We also provide evidence to suggest that the morphological evolution of sequestrate fungal sporocarps (fruiting bodies) has likely been driven in part by the dispersal advantages provided by mammals. Finally, we demonstrate how these interconnected associations are widespread globally and have far-reaching ecological implications for mammals, fungi and associated plants in most terrestrial ecosystems. Citation: Elliott TF, Truong C, Jackson S, Zúñiga CL, Trappe JM, Vernes K (2022). Mammalian mycophagy: a global review of ecosystem interactions between mammals and fungi. Fungal Systematics and Evolution 9: 99-159. doi: 10.3114/fuse.2022.09.07.
Collapse
Affiliation(s)
- T.F. Elliott
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - C. Truong
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - S.M. Jackson
- Australian Museum Research Institute, Australian Museum, 1 William St., Sydney, NSW 2010, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - C.L. Zúñiga
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - J.M. Trappe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - K. Vernes
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
9
|
Caiafa MV, Jusino MA, Wilkie AC, Díaz IA, Sieving KE, Smith ME. Discovering the role of Patagonian birds in the dispersal of truffles and other mycorrhizal fungi. Curr Biol 2021; 31:5558-5570.e3. [PMID: 34715015 DOI: 10.1016/j.cub.2021.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023]
Abstract
Dispersal is a key process that impacts population dynamics and structures biotic communities. Dispersal limitation influences the assembly of plant and microbial communities, including mycorrhizal fungi and their plant hosts. Mycorrhizal fungi play key ecological roles in forests by feeding nutrients to plants in exchange for sugars, so the dispersal of mycorrhizal fungi spores actively shapes plant communities. Although many fungi rely on wind for spore dispersal, some fungi have lost the ability to shoot their spores into the air and instead produce enclosed belowground fruiting bodies (truffles) that rely on animals for dispersal. The role of mammals in fungal spore dispersal is well documented, but the relevance of birds as dispersal agents of fungi has been understudied, despite the prominence of birds as seed dispersal vectors. Here, we use metagenomics and epifluorescence microscopy to demonstrate that two common, widespread, and endemic Patagonian birds, chucao tapaculos (Scelorchilus rubecula) and black-throated huet-huets (Pteroptochos tarnii), regularly consume mycorrhizal fungi and disperse viable spores via mycophagy. Our metagenomic analysis indicates that these birds routinely consume diverse mycorrhizal fungi, including many truffles, that are symbiotically associated with Nothofagaceae trees that dominate Patagonian forests. Epifluorescence microscopy of fecal samples confirmed that the birds dispersed copious viable spores from truffles and other mycorrhizal fungi. We show that fungi are a common food for both bird species and that this animal-fungi symbiosis is widespread and ecologically important in Patagonia. Our findings indicate that birds may also act as cryptic but critical fungal dispersal agents in other ecosystems.
Collapse
Affiliation(s)
- Marcos V Caiafa
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, USA.
| | - Michelle A Jusino
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; Center for Forest Mycology Research, USDA Forest Service, Northern Research Station, Madison, WI 53726, USA
| | - Ann C Wilkie
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Iván A Díaz
- Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
| | - Kathryn E Sieving
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Ori F, Menotta M, Leonardi M, Amicucci A, Zambonelli A, Covès H, Selosse MA, Schneider-Maunoury L, Pacioni G, Iotti M. Effect of slug mycophagy on Tuber aestivum spores. Fungal Biol 2021; 125:796-805. [PMID: 34537175 DOI: 10.1016/j.funbio.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Truffles in the genus Tuber produce subterranean fruiting bodies that are not able to actively discharge their spores in the environment. For this reason, truffles depend on mycophagous animals for reproduction. Fungus consumption (mycophagy) is a behaviour typical of both vertebrates and invertebrates. Mammals, especially rodents, are the most studied group of mycophagists and have been found to consume a great variety of fungi. Among invertebrates, mycophagy is documented in arthropods, but rarely in molluscs. In our study we assessed the effect on the morphology and mycorrhizal colonization of Tuber aestivum spores after passage through the gut of slugs (Deroceras invadens) and, for comparison, of a house mouse (Mus musculus). Light, scanning electron and atomic force microscopy revealed that the digestion, especially by slugs, freed spores from the asci and modified their morphology. These are believed to be the reasons why we observed an improvement in oak mycorrhization with the slug and rodent ingested spores in comparison to a fresh spore inoculation. We also demonstrated by molecular barcoding that slugs' guts sampled on a Tuber melanosporum truffle ground contain spores from this species and Tuber brumale, further suggesting that some invertebrates are efficient Tuber spore dispersers.
Collapse
Affiliation(s)
- Francesca Ori
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino, Italy.
| | - Marco Leonardi
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Antonella Amicucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino, Italy.
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy.
| | - Hervé Covès
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France; Arbre et Paysage 32, 93 Route de Pessan, 32000, Auch, France.
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France; Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Laure Schneider-Maunoury
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France.
| | - Giovanni Pacioni
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| |
Collapse
|
11
|
Komur P, Chachuła P, Kapusta J, Wierzbowska IA, Rola K, Olejniczak P, Mleczko P. What determines species composition and diversity of hypogeous fungi in the diet of small mammals? A comparison across mammal species, habitat types and seasons in Central European mountains. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Elliott TF, Vernes K. Notes on the diets of four rodent species from Goodenough Island. AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am20022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Goodenough Island is in the Milne Bay Province of Papua New Guinea and is located off of New Guinea’s eastern coast. Goodenough Island has a unique yet poorly studied mammal community. Previous dietary study of mycophagous New Guinean forest wallabies showed that Goodenough Island’s endemic black forest wallaby (Dorcopsis atrata) ate at least 12 taxa of fungi. Using spirit collections at the Australian Museum in Sydney, we evaluated and compared fungal diversity in rodent diets on the same island. We sampled diets of four Goodenough Island rodent species (Chiruromys forbesi, Paramelomys platyops, Rattus exulans and Rattus mordax) and show that fungi are dietary components for three of these mammals.
Collapse
|
13
|
Elliott TF, Travouillon KJ, Warburton NM, Danks MA, Vernes K. New Guinean bandicoots: new insights into diet, dentition and digestive tract morphology and a dietary review of all extant non-Australian Peramelemorphia. AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am21015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Elliott TF, Vernes K. Camera trap detection of mycophagy among co‐occurring vertebrates. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Todd F. Elliott
- Ecosystem Management University of New England Armidale New South Wales2351Australia
| | - Karl Vernes
- Ecosystem Management University of New England Armidale New South Wales2351Australia
| |
Collapse
|
15
|
Danks MA, Simpson N, Elliott TF, Paine CET, Vernes K. Modeling mycorrhizal fungi dispersal by the mycophagous swamp wallaby ( Wallabia bicolor). Ecol Evol 2020; 10:12920-12928. [PMID: 33304504 PMCID: PMC7713961 DOI: 10.1002/ece3.6873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Despite the importance of mammal-fungal interactions, tools to estimate the mammal-assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modeled the probability of spore dispersal by combining animal movement data from GPS telemetry with data on spore gut-retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of meters-and occasionally up to 1,265 m-from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modeling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal-fungi interactions in other ecosystems.
Collapse
Affiliation(s)
- Melissa A. Danks
- Centre for Ecosystem ManagementEdith Cowan UniversityJoondalupWAAustralia
| | - Natalie Simpson
- Environmental and Rural ScienceUniversity of New EnglandArmidaleNSWAustralia
| | - Todd F. Elliott
- Environmental and Rural ScienceUniversity of New EnglandArmidaleNSWAustralia
| | - C. E. Timothy Paine
- Environmental and Rural ScienceUniversity of New EnglandArmidaleNSWAustralia
| | - Karl Vernes
- Environmental and Rural ScienceUniversity of New EnglandArmidaleNSWAustralia
| |
Collapse
|
16
|
Maclagan SJ, Coates T, O’Malley A, Ritchie EG. Dietary variation of an endangered mycophagous mammal in novel and remnant habitats in a peri‐urban landscape. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah J. Maclagan
- Centre of Integrative Ecology School of Life and Environmental Sciences Deakin University BurwoodVictoria3125Australia
| | - Terry Coates
- Royal Botanic Gardens Victoria CranbourneVictoriaAustralia
| | | | - Euan G. Ritchie
- Centre of Integrative Ecology School of Life and Environmental Sciences Deakin University BurwoodVictoria3125Australia
| |
Collapse
|
17
|
Elliott TF, Georgiev AV, Lokasola AL, Smith ME. Hysterangium bonobo: A newly described truffle species that is eaten by bonobos in the Democratic Republic of Congo. Mycologia 2020; 112:1203-1211. [PMID: 32886571 DOI: 10.1080/00275514.2020.1790234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many animals have been shown to eat fungi and most truffle-like fungi depend on animals for spore dispersal via mycophagy. Although these interactions are widespread, they are understudied in many habitats. In this study, we show that bonobos (Pan paniscus) forage and feed on an undescribed truffle species in the rainforests of the Democratic Republic of Congo. Based on morphological and molecular assessment of collections, we show that the species eaten by bonobos is a previously undescribed taxon described here as Hysterangium bonobo. This species is known in the local Bantu language (Bongando) as simbokilo and is used for baiting traps to catch several species of small mammals. Our findings highlight the need for further research into mycophagy and systematics of sequestrate fungi in Africa.
Collapse
Affiliation(s)
- Todd F Elliott
- Ecosystem Management, University of New England , Armidale, New South Wales 2351, Australia
| | | | - Albert Lotana Lokasola
- Vie Sauvage, Kokolopori Bonobo Reserve, Province Equateur , Democratic Republic of Congo
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida , Gainesville, Florida 32611
| |
Collapse
|
18
|
Elliott TF, Townley S, Johnstone C, Meek P, Gynther I, Vernes K. The endangered Hastings River mouse ( Pseudomys oralis) as a disperser of ectomycorrhizal fungi in eastern Australia. Mycologia 2020; 112:1075-1085. [PMID: 32678700 DOI: 10.1080/00275514.2020.1777383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rodents are the most widespread and diverse order of vertebrate mycophagists and are key to the dispersal of mycorrhizal fungi. Rodents consume and subsequently disperse fungi through their feces on every continent except Antarctica. This study examines the fungal taxa consumed by the Hastings River mouse (Pseudomys oralis), an endangered Australian endemic rodent from the family Muridae. We analyzed 251 fecal samples collected over a 19-year period between 1993 and 2012 at sites throughout the distribution of the animal in New South Wales and Queensland. We show that at least 16 genera of mycorrhizal fungi are eaten by this species and that it is therefore playing an important role as a vector of ectomycorrhizal truffle-like fungi in eastern Australia. Similar to the fungal diets of other mammals in eastern Australia, seasonal fungal consumption was greatest in autumn and winter. The dietary diversity of P. oralis also appeared to follow a geographic trend from south to north; samples collected at sites in the southern part of the species' range had greater diversity than those from sites in the northern part of the range, and overall, diets from southern sites yielded more fungal taxa than did northern sites. This study provides novel insights into the diet of P. oralis and highlights the importance of previously overlooked ecosystem services this species provides through its dispersal of mycorrhizal fungi.
Collapse
Affiliation(s)
- Todd F Elliott
- Ecosystem Management, School of Environmental and Rural Science, University of New England , Armidale, NSW 2351, Australia
| | - Sally Townley
- Coffs Harbour City Council , Corner Coff and Castle Streets, Coffs Harbour, NSW 2450, Australia
| | - Charmaine Johnstone
- Ecosystem Management, School of Environmental and Rural Science, University of New England , Armidale, NSW 2351, Australia
| | - Paul Meek
- Ecosystem Management, School of Environmental and Rural Science, University of New England , Armidale, NSW 2351, Australia.,Vertebrate Pest Research Unit , New South Wales Department of Primary Industries, Corner Gordon and Hood St, Coffs Harbour, NSW 2450, Australia
| | - Ian Gynther
- Threatened Species Operations, Department of Environment and Science, Bellbowrie, QLD 4070, Australia.,Biodiversity and Geosciences Program , Queensland Museum, South Brisbane, QLD 4101, Australia
| | - Karl Vernes
- Ecosystem Management, School of Environmental and Rural Science, University of New England , Armidale, NSW 2351, Australia
| |
Collapse
|
19
|
Stephens RB, Rowe RJ. The underappreciated role of rodent generalists in fungal spore dispersal networks. Ecology 2020; 101:e02972. [PMID: 31943145 DOI: 10.1002/ecy.2972] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/26/2019] [Indexed: 11/12/2022]
Abstract
Animals are often the primary dispersers of seeds and fungal spores. Specialist species that consume fruits or fungal fruiting bodies (sporocarps) as their main food source are thought to play a more important role in dispersal networks compared to generalist species. However, dispersal networks are often based on occurrence data, overlooking the influence of animal abundance and dispersal effectiveness on network interactions. Using rodent-mycorrhizal fungi networks, we determined how diet specialization and abundance influence the role of rodent species in dispersing fungal spores in temperate forests of northern New Hampshire, USA. We tracked the interactions of five rodent species and 34 fungal taxa over a 3-yr period across hardwood, mixed, and softwood forest stands. We accounted for fluctuations in rodent abundance and differences in the number of spores dispersed in rodent scat. Myodes gapperi, a fungal specialist, dispersed a more diverse spore community than rodent generalists and was consistently the most important disperser in forest types with high fungal availability. Nevertheless, during years when generalist species such as Tamias striatus and Peromyscus maniculatus reached high abundance, their relative importance (species strength) in networks approached or even surpassed that of M. gapperi, particularly in forest types where M. gapperi was less common and fungal availability was low. Increased numbers of generalists enhanced network interaction diversity and the number of fungal taxa dispersed, the timing of which was coincident with seedling establishment following masting, a stage when inoculation by mycorrhizal fungi is critical for growth and survival. Our findings suggest that although specialists play key roles in dispersing mycorrhizal fungal spores, generalists play a heretofore underappreciated role.
Collapse
Affiliation(s)
- Ryan B Stephens
- Natural Resources and the Environment, University of New Hampshire, 114 James Hall, 56 College Road, Durham, New Hampshire, 03824, USA
| | - Rebecca J Rowe
- Natural Resources and the Environment, University of New Hampshire, 114 James Hall, 56 College Road, Durham, New Hampshire, 03824, USA
| |
Collapse
|
20
|
Vašutová M, Mleczko P, López-García A, Maček I, Boros G, Ševčík J, Fujii S, Hackenberger D, Tuf IH, Hornung E, Páll-Gergely B, Kjøller R. Taxi drivers: the role of animals in transporting mycorrhizal fungi. MYCORRHIZA 2019; 29:413-434. [PMID: 31292712 DOI: 10.1007/s00572-019-00906-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 05/24/2023]
Abstract
Dispersal of mycorrhizal fungi via animals and the importance for the interacting partners' life history as well as for ecosystems is an understudied topic. In this review, we describe the available evidence and the most important knowledge gaps and finally suggest ways to gain the missing information. So far, 33 articles have been published proving a successful transfer of mycorrhizal propagules by animals. The vast majority of research on invertebrates was focused on arbuscular mycorrhizal (AM) fungi, whereas papers on vertebrates (mainly rodents and artiodactyls) equally addressed ectomycorrhizal (ECM) and AM fungi. Effective dispersal has been mostly shown by the successful inoculation of bait plants and less commonly by spore staining or germination tests. Based on the available data and general knowledge on animal lifestyles, collembolans and oribatid mites may be important in transporting ECM fungal propagules by ectozoochory, whereas earthworms, isopods, and millipedes could mainly transfer AM fungal spores in their gut systems. ECM fungal distribution may be affected by mycophagous dipterans and their hymenopteran parasitoids, while slugs, snails, and beetles could transport both mycorrhizal groups. Vertebrates feeding on fruit bodies were shown to disperse mainly ECM fungi, while AM fungi are transported mostly accidentally by herbivores. The important knowledge gaps include insufficient information on dispersal of fungal propagules other than spores, the role of invertebrates in the dispersal of mycorrhizal fungi, the way in which propagules pass through food webs, and the spatial distances reached by different dispersal mechanisms both horizontally and vertically.
Collapse
Affiliation(s)
- Martina Vašutová
- Global Change Research Institute, Czech Academy of Sciences, Lipová 1789/9, 37005, České Budějovice, Czech Republic.
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Piotr Mleczko
- Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 3, 30-387, Kraków, Poland
| | - Alvaro López-García
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Irena Maček
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
| | - Gergely Boros
- Department of Zoology and Animal Ecology, Szent István University, Páter Károly u. 1., Gödöllö, Hungary
| | - Jan Ševčík
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic
| | - Saori Fujii
- Insect Ecology Laboratory, Department of Forest Entomology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | | | - Ivan H Tuf
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Elisabeth Hornung
- Department of Ecology, Institute for Biology, University of Veterinary Medicine Budapest, Rottenbiller str. 50, Budapest, 1077, Hungary
| | - Barna Páll-Gergely
- Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó str. 15, Budapest, 1022, Hungary
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Elliott TF, Jusino MA, Trappe JM, Lepp H, Ballard GA, Bruhl JJ, Vernes K. A global review of the ecological significance of symbiotic associations between birds and fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00436-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Elliott TF, Elliott K. Vertebrate consumption and dispersal of the Nothofagaceae associated ascomycete Cyttaria. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Todd F. Elliott
- Ecosystem Management; University of New England; Armidale New South Wales 2351 Australia
| | - Kelsey Elliott
- Integrative Studies Department; Warren Wilson College; Asheville North Carolina USA
| |
Collapse
|
23
|
Nuske SJ, Anslan S, Tedersoo L, Bonner MTL, Congdon BC, Abell SE. The endangered northern bettong, Bettongia tropica
, performs a unique and potentially irreplaceable dispersal function for ectomycorrhizal truffle fungi. Mol Ecol 2018; 27:4960-4971. [DOI: 10.1111/mec.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Susan J. Nuske
- College of Science and Engineering; Australian Tropical Herbarium; Centre for Tropical Environmental and Sustainability Science; James Cook University; Cairns Queensland Australia
- Department of Forest Ecology and Management; Swedish University of Agricultural Science; Umeå Sweden
| | - Sten Anslan
- Institute of Ecology and Earth Sciences; University of Tartum; Tartu Estonia
| | - Leho Tedersoo
- Natural History Museum and Institute of Ecology and Earth Sciences; University of Tartu; Tartu Estonia
| | - Mark T. L. Bonner
- Department of Forest Ecology and Management; Swedish University of Agricultural Science; Umeå Sweden
| | - Brad C. Congdon
- College of Science and Engineering; Centre for Tropical Environmental and Sustainability Science; James Cook University; Cairns Queensland Australia
| | - Sandra E. Abell
- College of Science and Engineering; Australian Tropical Herbarium; Centre for Tropical Environmental and Sustainability Science; James Cook University; Cairns Queensland Australia
| |
Collapse
|
24
|
Neilly H, Schwarzkopf L. Heavy livestock grazing negatively impacts a marsupial ecosystem engineer. J Zool (1987) 2018. [DOI: 10.1111/jzo.12533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- H. Neilly
- Centre Tropical Biodiversity and Climate Change College of Science and Engineering James Cook University Townsville QLD Australia
| | - L. Schwarzkopf
- Centre Tropical Biodiversity and Climate Change College of Science and Engineering James Cook University Townsville QLD Australia
| |
Collapse
|
25
|
Nuske S, Vernes K, May T, Claridge A, Congdon B, Krockenberger A, Abell S. Data on the fungal species consumed by mammal species in Australia. Data Brief 2017; 12:251-260. [PMID: 28462363 PMCID: PMC5402625 DOI: 10.1016/j.dib.2017.03.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 11/18/2022] Open
Abstract
The data reported here support the manuscript Nuske et al. (2017) [1]. Searches were made for quantitative data on the occurrence of fungi within dietary studies of Australian mammal species. The original location reported in each study was used as the lowest grouping variable within the dataset. To standardise the data and compare dispersal events from populations of different mammal species that might overlap, data from locations were further pooled and averaged across sites if they occurred within 100 km of a random central point. Three locations in Australia contained data on several (>7) mycophagous mammals, all other locations had data on 1–3 mammal species. Within these three locations, the identity of the fungi species was compared between mammal species’ diets. A list of all fungi species found in Australian mammalian diets is also provide along with the original reference and fungal synonym names.
Collapse
Affiliation(s)
- S.J. Nuske
- College of Science and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, QLD 4878, Australia
- Corresponding author.
| | - K. Vernes
- Ecosystem Management, University of New England, Armidale, NSW 2351, Australia
| | - T.W. May
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | - A.W. Claridge
- Office of Environment and Heritage, NSW National Parks and Wildlife Service, Nature Conservation Section, P.O. Box 733, Queanbeyan, NSW 2620, Australia
- School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at Canberra, Northcott Drive, Canberra, ACT 2600, Australia
| | - B.C. Congdon
- College of Science and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, QLD 4878, Australia
| | - A. Krockenberger
- Division of Research and Innovation, James Cook University, Cairns, QLD 4878, Australia
| | - S.E. Abell
- College of Science and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
26
|
Zosky KL, Wayne AF, Bryant KA, Calver MC, Scarff FR. Diet of the critically endangered woylie (Bettongia penicillata ogilbyi) in south-western Australia. AUST J ZOOL 2017. [DOI: 10.1071/zo17080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To assist the management of the critically endangered woylie (Bettongia penicillata ogilbyi), a quantitative study of its diet was conducted across five of the larger subpopulations in south-western Australia. There was a close match between dietary composition established from foregut contents and faecal pellets. Woylies were predominantly mycophagous in all subpopulations, but consumed a broad diet including invertebrates, seeds and other plant material. Individuals in a high-density, fenced subpopulation ate significantly less fungi than free-ranging animals from lower-density subpopulations. Dietary composition did not vary significantly amongst subpopulations in the Upper Warren region, where a range of population densities was observed. Altogether, 79 fungal spore classes were identified, including at least 15 genera from 14 families. Sampling across one year showed that fungi made up a larger fraction of the diet in autumn or winter, and greater diversities of fungi were consumed at these times than at other times of year. This information is essential to provide valuable ecological context for effective population management of woylies, as well as identification and conservation of important habitats.
Collapse
|