1
|
Rajakaruna O, Wijayawardene NN, Udagedara S, Jayasinghe PK, Gunasekara SS, Boonyuen N, Bamunuarachchige TC, Ariyawansa KGSU. Exploring Fungal Diversity in Seagrass Ecosystems for Pharmaceutical and Ecological Insights. J Fungi (Basel) 2024; 10:627. [PMID: 39330387 PMCID: PMC11433010 DOI: 10.3390/jof10090627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Marine ecosystems are important in discovering novel fungi with interesting metabolites that have shown great potential in pharmaceutical and biotechnological industries. Seagrasses, the sole submerged marine angiosperm, host diverse fungal taxa with mostly unknown metabolic capabilities. They are considered to be one of the least studied marine fungal habitats in the world. This review gathers and analyzes data from studies related to seagrasses-associated fungi, including taxonomy and biogeography, and highlights existing research gaps. The significance of the seagrass-fungal associations remains largely unknown, and current understanding of fungal diversity is limited to specific geographical regions such as the Tropical Atlantic, Mediterranean, and Indo-Pacific. Our survey yielded 29 culture-dependent studies on seagrass-associated endophytic and epiphytic fungi, and 13 miscellaneous studies, as well as 11 meta-studies, with no pathogenic true fungi described. There is a significant opportunity to expand existing studies and conduct multidisciplinary research into novel species and their potential applications, especially from understudied geographical locations. Future research should prioritize high-throughput sequencing and mycobiome studies, utilizing both culture-dependent and -independent approaches to effectively identify novel seagrass-associated fungal taxa.
Collapse
Affiliation(s)
- Oshadi Rajakaruna
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (O.R.); (N.N.W.)
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| | - Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (O.R.); (N.N.W.)
- Tropical Microbiology Research Foundation, Pannipitiya 10230, Sri Lanka
| | | | - Prabath K. Jayasinghe
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 01500, Sri Lanka; (P.K.J.); (S.S.G.)
| | - Sudheera S. Gunasekara
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 01500, Sri Lanka; (P.K.J.); (S.S.G.)
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka
| | | |
Collapse
|
2
|
Han Q, Chen Y, Li Z, Zhang Z, Qin Y, Liu Z, Liu G. Changes in the soil fungal communities of steppe grasslands at varying degradation levels in North China. Can J Microbiol 2024; 70:70-85. [PMID: 38096505 DOI: 10.1139/cjm-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The grasslands in North China are rich in fungal resources. However, the knowledge of the structure and function of fungal communities and the role of microbial communities in vegetation restoration and succession are limited. Thus, we used an Illumina HiSeq PE250 high-throughput sequencing platform to study the changing characteristics of soil fungal communities in degraded grasslands, which were categorized as non-degraded (ND), lightly degraded, moderately degraded, and severely degraded (SD). Moreover, a correlation analysis between soil physical and chemical properties and fungal communities was completed. The results showed that the number of plant species, vegetation coverage, aboveground biomass, and diversity index decreased significantly with increasing degradation, and there were significant differences in the physical and chemical properties of the soil among the different degraded grasslands. The dominant fungal phyla in the degraded grassland were as follows: Ascomycota, 44.88%-65.03%; Basidiomycota, 12.68%-29.91%; and unclassified, 5.51%-16.91%. The dominant fungi were as follows: Mortierella, 6.50%-11.41%; Chaetomium, 6.71%-11.58%; others, 25.95%-36.14%; and unclassified, 25.56%-53.0%. There were significant differences in the microbial Shannon-Wiener and Chao1 indices between the ND and degraded meadows, and the composition and diversity of the soil fungal community differed significantly as the meadows continued to deteriorate. The results showed that pH was the most critical factor affecting soil microbial and fungal communities in SD grasslands, whereas soil microbial and fungal communities in ND grasslands were mainly affected by water content and other environmental factors.
Collapse
Affiliation(s)
- Qiqi Han
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yuhang Chen
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zichao Li
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhuo Zhang
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yuao Qin
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhongkuan Liu
- Institute of Agro-resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Guixia Liu
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Seagrasses, seaweeds and plant debris: An extraordinary reservoir of fungal diversity in the Mediterranean Sea. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
The Culturable Mycobiota of Sediments and Associated Microplastics: From a Harbor to a Marine Protected Area, a Comparative Study. J Fungi (Basel) 2022; 8:jof8090927. [PMID: 36135652 PMCID: PMC9501098 DOI: 10.3390/jof8090927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fungi are an essential component of marine ecosystems, although little is known about their global distribution and underwater diversity, especially in sediments. Microplastics (MPs) are widespread contaminants worldwide and threaten the organisms present in the oceans. In this study, we investigated the fungal abundance and diversity in sediments, as well as the MPs, of three sites with different anthropogenic impacts in the Mediterranean Sea: the harbor of Livorno, the marine protected area “Secche della Meloria”; and an intermediate point, respectively. A total of 1526 isolates were cultured and identified using a polyphasic approach. For many of the fungal species this is the first record in a marine environment. A comparison with the mycobiota associated with the sediments and MPs underlined a “substrate specificity”, highlighting the complexity of MP-associated fungal assemblages, potentially leading to altered microbial activities and hence changes in ecosystem functions. A further driving force that acts on the fungal communities associated with sediments and MPs is sampling sites with different anthropogenic impacts.
Collapse
|
5
|
Poli A, Prigione V, Bovio E, Perugini I, Varese GC. Insights on Lulworthiales Inhabiting the Mediterranean Sea and Description of Three Novel Species of the Genus Paralulworthia. J Fungi (Basel) 2021; 7:940. [PMID: 34829227 PMCID: PMC8623521 DOI: 10.3390/jof7110940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
The order Lulworthiales, with its sole family Lulworthiaceae, consists of strictly marine genera found on a wide range of substrates such as seagrasses, seaweeds, and seafoam. Twenty-one unidentified Lulworthiales were isolated in previous surveys aimed at broadening our understanding of the biodiversity hosted in the Mediterranean Sea. Here, these organisms, mostly found in association with Posidonia oceanica and with submerged woods, were examined using thorough multi-locus phylogenetic analyses and morphological observations. Maximum-likelihood and Bayesian phylogeny based on nrITS, nrSSU, nrLSU, and four protein-coding genes led to the introduction of three novel species of the genus Paralulworthia: P. candida, P. elbensis, and P. mediterranea. Once again, the marine environment is a confirmed huge reservoir of novel fungal lineages with an under-investigated biotechnological potential waiting to be explored.
Collapse
Affiliation(s)
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy; (A.P.); (E.B.); (I.P.); (G.C.V.)
| | | | | | | |
Collapse
|
6
|
Calabon MS, Jones EBG, Promputtha I, Hyde KD. Fungal Biodiversity in Salt Marsh Ecosystems. J Fungi (Basel) 2021; 7:jof7080648. [PMID: 34436187 PMCID: PMC8399140 DOI: 10.3390/jof7080648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
This review brings together the research efforts on salt marsh fungi, including their geographical distribution and host association. A total of 486 taxa associated with different hosts in salt marsh ecosystems are listed in this review. The taxa belong to three phyla wherein Ascomycota dominates the taxa from salt marsh ecosystems accounting for 95.27% (463 taxa). The Basidiomycota and Mucoromycota constitute 19 taxa and four taxa, respectively. Dothideomycetes has the highest number of taxa, which comprises 47.12% (229 taxa), followed by Sordariomycetes with 167 taxa (34.36%). Pleosporales is the largest order with 178 taxa recorded. Twenty-seven genera under 11 families of halophytes were reviewed for its fungal associates. Juncus roemerianus has been extensively studied for its associates with 162 documented taxa followed by Phragmites australis (137 taxa) and Spartina alterniflora (79 taxa). The highest number of salt marsh fungi have been recorded from Atlantic Ocean countries wherein the USA had the highest number of species recorded (232 taxa) followed by the UK (101 taxa), the Netherlands (74 taxa), and Argentina (51 taxa). China had the highest number of salt marsh fungi in the Pacific Ocean with 165 taxa reported, while in the Indian Ocean, India reported the highest taxa (16 taxa). Many salt marsh areas remain unexplored, especially those habitats in the Indian and Pacific Oceans areas that are hotspots of biodiversity and novel fungal taxa based on the exploration of various habitats.
Collapse
Affiliation(s)
- Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence:
| |
Collapse
|
7
|
Hardoim CCP, Lôbo-Hajdu G, Custódio MR, Hardoim PR. Prokaryotic, Fungal, and Unicellular Eukaryotic Core Communities Across Three Sympatric Marine Sponges From the Southwestern Atlantic Coast Are Dominated Largely by Deterministic Assemblage Processes. Front Microbiol 2021; 12:674004. [PMID: 34168631 PMCID: PMC8217869 DOI: 10.3389/fmicb.2021.674004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to harbor a diverse and complex microbiota; however, a vast majority of surveys have been investigating the prokaryotic communities in the north hemisphere and Australia. In addition, the mechanisms of microbial community assembly are poorly understood in this pivotal player of the ecosystem. Thus, this survey addressed the holobiome of the sponge species in the São Paulo region (Brazil) for the first time and investigated the contribution of neutral and niche processes of prokaryotic, fungal, and unicellular eukaryotic assemblage in three sympatric species Aplysina caissara, Aplysina fulva, and Tedania ignis along with environmental samples. The compositions of the holobiome associated with the sponges and detected in environmental samples were strikingly different. Remarkably, between 47 and 88% of the assigned operational taxonomic units (OTUs) were specifically associated with sponge species. Moreover, around 77, 69, and 53% of the unclassified OTUs from prokaryotic, fungal, and unicellular eukaryotic communities, respectively, showed less than 97% similarity with well-known databases, suggesting that sponges from the southwestern Atlantic coast are an important source of microbial novelty. These values are even higher, around 80 and 61% of the unclassified OTUs, when excluding low abundance samples from fungal and unicellular eukaryotic datasets, respectively. Host species were the major driver shaping the sponge-associated microbial community. Deterministic processes were primarily responsible for the assembly of microbial communities in all sponge species, while neutral processes of prokaryotic and fungal community assembly were also detected in the sympatric A. caissara and T. ignis replicates, respectively. Most of the species-rich sponge-associated lineages from this region are also found in the Northern seas and many of them might play essential roles in the symbioses, such as biosynthesis of secondary metabolites that exhibit antimicrobial and antiviral activities, as well as provide protection against host predation. Overall, in this study the microbiota was assembled by interactions with the host sponge in a deterministic-based manner; closely related sponge species shared a strong phylogenetic signal in their associated prokaryotic and fungal community traits and Brazilian sponges were a reservoir of novel microbial species.
Collapse
Affiliation(s)
| | - Gisele Lôbo-Hajdu
- Department of Genetic, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Márcio R. Custódio
- Department of Physiology, Biosciences Institute and NP-Biomar, Center for Marine Biology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
8
|
Kaewkrajay C, Putchakarn S, Limtong S. Cultivable yeasts associated with marine sponges in the Gulf of Thailand, South China Sea. Antonie Van Leeuwenhoek 2021; 114:253-274. [PMID: 33575960 DOI: 10.1007/s10482-021-01518-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/17/2021] [Indexed: 11/30/2022]
Abstract
Marine sponges harbor numerous microorganisms, among which sponge-associated yeasts are the least explored. To gain greater knowledge of sponge-associated yeasts, an investigation was therefore performed on marine sponges in Sattahip Bay, Gulf of Thailand, South China Sea. Seventy-one (71) marine sponge samples were collected at sites near Samae-san, Mu, and Khram islands, and were subsequently identified as 17 sponge species in 14 genera. Eighty-seven (87) yeast strains were isolated from 42 samples. The identification of yeasts by similarity analysis of the D1/D2 domain sequences of the large subunit rRNA gene revealed that 64% of the yeast strains obtained belonged to the phylum Basidiomycota, while the remaining strains belonged to the phylum Ascomycota. The strains that belonged to Ascomycota comprised 11 known yeast species in five genera (Candida, Kodamaea, Magnusiomyces, Meyerozyma, and Pichia). The strains belonging to the phylum Basidiomycota comprised 14 known yeast species in eight genera (Cutaneotrichosporon, Cystobasidium, Naganishia, Papiliotrema, Rhodosporidiobolus, Rhodotorula, Trichosporon, and Vishniacozyma). In addition, three strains represented a potential novel species closest to Cys. slooffiae; one strain represented a potential novel species closest to R. toruloides; and one strain represented a potential novel species closest to V. foliicola. The species with the highest occurrence was Rhodotorula mucilaginosa. No marked difference was found in the principal coordinates analysis of the ordinations of yeast communities from the three sampling sites. The estimation using EstimateS software showed that the expected species richness was higher than the observed species richness. As the marine sponge-yeast association remains unclear, more systematic investigations should be carried out.
Collapse
Affiliation(s)
- Chutima Kaewkrajay
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Lad Yao, Chatuchak, Bangkok, 10900, Thailand.,Division of Microbiology, Faculty of Science and Technology, Phranakhon Si Ayutthaya Rajabhat University, Phranakhon Si Ayutthaya, 13000, Thailand
| | - Sumaitt Putchakarn
- Institute of Marine Science, Burapha University, Saensook, Mueang, Chonburi, 20131, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Lad Yao, Chatuchak, Bangkok, 10900, Thailand. .,Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
9
|
Poli A, Bovio E, Ranieri L, Varese GC, Prigione V. Fungal Diversity in the Neptune Forest: Comparison of the Mycobiota of Posidonia oceanica, Flabellia petiolata, and Padina pavonica. Front Microbiol 2020; 11:933. [PMID: 32528431 PMCID: PMC7265640 DOI: 10.3389/fmicb.2020.00933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Fungi are widely distributed in the Oceans, interact with other organisms and play roles that range from pathogenic to mutualistic. The present work focuses on the characterization of the cultivable mycobiota associated with the seagrass Posidonia oceanica (L.) Delile collected off the Elba Island (Italy). We identified 102 taxa (mainly Ascomycota) by the mean of a polyphasic approach. Leaves, rhizomes, roots and matte were characterized by unique mycobiota revealing a "plant-part-specificity." The comparison with the mycobiota associated with the green alga Flabellia petiolata and the brown alga Padina pavonica underlined a "substrate specificity." Indeed, despite being part of the same phytocoenosis, these photosynthetic organisms recruit different fungal communities. The mycobiota seems to be necessary for the host's defense and protection, playing, in this way, remarkable ecological roles. Among the 61 species detected in association with P. oceanica (including two species belonging to the newly introduced genus Paralulworthia), 37 were reported for the first time from the Mediterranean Sea.
Collapse
Affiliation(s)
| | | | | | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis, University of Torino, Turin, Italy
| | | |
Collapse
|
10
|
News from the Sea: A New Genus and Seven New Species in the Pleosporalean Families Roussoellaceae and Thyridariaceae. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12040144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nineteen fungal strains associated with the seagrass Posidonia oceanica, with the green alga Flabellia petiolata, and the brown alga Padina pavonica were collected in the Mediterranean Sea. These strains were previously identified at the family level and hypothesised to be undescribed species. Strains were examined by deep multi-loci phylogenetic and morphological analyses. Maximum-likelihood and Bayesian phylogenies proved that Parathyridariella gen. nov. is a distinct genus in the family Thyriadriaceae. Analyses based on five genetic markers revealed seven new species: Neoroussoella lignicola sp. nov., Roussoella margidorensis sp. nov., R. mediterranea sp. nov., and R. padinae sp. nov. within the family Roussellaceae, and Parathyridaria flabelliae sp. nov., P. tyrrhenica sp. nov., and Parathyridariella dematiacea gen. nov. et sp. nov. within the family Thyridariaceae.
Collapse
|
11
|
Bovio E, Sfecci E, Poli A, Gnavi G, Prigione V, Lacour T, Mehiri M, Varese GC. The culturable mycobiota associated with the Mediterranean sponges Aplysina cavernicola, Crambe crambe and Phorbas tenacior. FEMS Microbiol Lett 2019; 366:5710934. [PMID: 31960895 DOI: 10.1093/femsle/fnaa014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/20/2020] [Indexed: 01/15/2023] Open
Abstract
Marine fungi are part of the huge and understudied biodiversity hosted in the sea. To broaden the knowledge on fungi inhabiting the Mediterranean Sea and their role in sponge holobiont, three sponges namely Aplysina cavernicola, Crambe crambe and Phorbas tenacior were collected in Villefranche sur Mer, (France) at about 25 m depth. The fungal communities associated with the sponges were isolated using different techniques to increase the numbers of fungi isolated. All fungi were identified to species level giving rise to 19, 13 and 3 species for P. tenacior, A. cavernicola and C. crambe, respectively. Of note, 35.7% and 50.0% of the species detected were either reported for the first time in the marine environment or in association with sponges. The mini-satellite analysis confirmed the uniqueness of the mycobiota of each sponge, leading to think that the sponge, with its metabolome, may shape the microbial community.
Collapse
Affiliation(s)
- Elena Bovio
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy.,University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Estelle Sfecci
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Anna Poli
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Giorgio Gnavi
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Valeria Prigione
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | | | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, Nice 60103, France
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, Mycotheca Universitatis Taurinensis (MUT), University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|
12
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Bovio E, Garzoli L, Poli A, Luganini A, Villa P, Musumeci R, McCormack GP, Cocuzza CE, Gribaudo G, Mehiri M, Varese GC. Marine Fungi from the Sponge Grantia compressa: Biodiversity, Chemodiversity, and Biotechnological Potential. Mar Drugs 2019; 17:E220. [PMID: 30978942 PMCID: PMC6520677 DOI: 10.3390/md17040220] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic resistance and viruses with high epidemic potential made unexplored marine environments an appealing target source for new metabolites. Marine fungi represent one of the most suitable sources for the discovery of new compounds. Thus, the aim of this work was (i) to isolate and identify fungi associated with the Atlantic sponge Grantia compressa; (ii) to study the fungal metabolites by applying the OSMAC approach (one strain; many compounds); (iii) to test fungal compounds for their antimicrobial activities. Twenty-one fungal strains (17 taxa) were isolated from G. compressa. The OSMAC approach revealed an astonishing metabolic diversity in the marine fungus Eurotium chevalieri MUT 2316, from which 10 compounds were extracted, isolated, and characterized. All metabolites were tested against viruses and bacteria (reference and multidrug-resistant strains). Dihydroauroglaucin completely inhibited the replication of influenza A virus; as for herpes simplex virus 1, total inhibition of replication was observed for both physcion and neoechinulin D. Six out of 10 compounds were active against Gram-positive bacteria with isodihydroauroglaucin being the most promising compound (minimal inhibitory concentration (MIC) 4-64 µg/mL) with bactericidal activity. Overall, G. compressa proved to be an outstanding source of fungal diversity. Marine fungi were capable of producing different metabolites; in particular, the compounds isolated from E. chevalieri showed promising bioactivity against well-known and emerging pathogens.
Collapse
Affiliation(s)
- Elena Bovio
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy.
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, 60103 Nice, France.
| | - Laura Garzoli
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy.
| | - Anna Poli
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy.
| | - Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.
| | - Pietro Villa
- Laboratory of Clinical Microbiology and Virology, Department of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| | - Rosario Musumeci
- Laboratory of Clinical Microbiology and Virology, Department of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| | - Grace P McCormack
- Zoology, Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Clementina E Cocuzza
- Laboratory of Clinical Microbiology and Virology, Department of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.
| | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Nice Institute of Chemistry, UMR 7272, Marine Natural Products Team, 60103 Nice, France.
| | - Giovanna C Varese
- Mycotheca Universitatis Taurinensis, Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy.
| |
Collapse
|