1
|
Núñez-Lisboa M, Echeverría K, Willems PA, Ivanenko Y, Lacquaniti F, Dewolf AH. Understanding gait alterations: trunk flexion and its effects on walking neuromechanics. J Exp Biol 2024; 227:jeb249307. [PMID: 39212034 DOI: 10.1242/jeb.249307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Evolutionary and functional adaptations of morphology and postural tone of the spine and trunk are intrinsically shaped by the field of gravity in which humans move. Gravity also significantly impacts the timing and levels of neuromuscular activation, particularly in foot-support interactions. During step-to-step transitions, the centre of mass velocity must be redirected from downwards to upwards. When walking upright, this redirection is initiated by the trailing leg, propelling the body forward and upward before foot contact of the leading leg, defined as an anticipated transition. In this study, we investigated the neuromechanical adjustments when walking with a bent posture. Twenty adults walked on an instrumented treadmill at 4 km h-1 under normal (upright) conditions and with varying degrees of anterior trunk flexion (10, 20, 30 and 40 deg). We recorded lower-limb kinematics, ground reaction forces under each foot, and the electromyography activity of five lower-limb muscles. Our findings indicate that with increasing trunk flexion, there is a lack of these anticipatory step-to-step transitions, and the leading limb performs the redirection after the ground collision. Surprisingly, attenuating distal extensor muscle activity at the end of stance is one of the main impacts of trunk flexion. Our observations may help us to understand the physiological mechanisms and biomechanical regulations underlying our tendency towards an upright posture, as well as possible motor control disturbances in some diseases associated with trunk orientation problems.
Collapse
Affiliation(s)
- M Núñez-Lisboa
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501014, Chile
| | - K Echeverría
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501014, Chile
| | - P A Willems
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Y Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - F Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - A H Dewolf
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Varma V, Trkov M. Investigation of intersegmental coordination patterns in human walking. Gait Posture 2024; 112:88-94. [PMID: 38749294 DOI: 10.1016/j.gaitpost.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 05/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Intersegmental coordination between thigh, shank, and foot plays a crucial role in human gait, facilitating stable and efficient human walking. Limb elevation angles during the gait cycle form a planar manifold describes the by the planar covariation law, a recognized fundamental aspect of human locomotion. RESEARCH QUESTION How does the walking speed, age, BMI, and height, affect the size and orientation of the intersegmental coordination manifold and covariation plane? METHODS This study introduces novel metrics for quantifying intersegmental coordination, including the mean radius of the manifold, rotation of the manifold about the origin, and the orientation of the plane with respect to the coordinate planes. A statistical investigation is conducted on a publicly available human walking dataset for subjects aged 19-67 years, walking at speeds between 0.18 and 2.3 m s-1 to determine correlations of the proposed quantities. We used two sample t-test and ANOVA to find statistical significance of changes in the metrics with respect to gender and walking speed, respectively. Regression analysis was used to establish relationships between the introduced metrics and walking speed. RESULTS High correlations are observed between walking speed and the computed metrics, highlighting the sensitivity of these metrics to gait characteristics. Conversely, negligible correlations are found for demographic parameters like age, body mass index (BMI), and height. Male and female groups exhibit no practically significant differences in any of the considered metrics. Additionally, metrics tend to increase in magnitude as walking speed increases. SIGNIFICANCE This study contributes numerical metrics to characterize ISC of lower limbs with respect to walking speed along with regression models to estimate these metrics and related kinematic quantities. These findings hold significance for enhancing clinical gait analysis, generating optimal walking trajectories for assistive devices, prosthetics, or rehabilitation, aiming to replicate natural gaits and improve the functionality of biomechanical devices.
Collapse
Affiliation(s)
- Vaibhavsingh Varma
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Mitja Trkov
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
3
|
Xiong Q, Liu Y, Mo J, Chen Y, Zhang L, Xia Z, Yi C, Jiang S, Xiao N. Gait asymmetry in children with Duchenne muscular dystrophy: evaluated through kinematic synergies and muscle synergies of lower limbs. Biomed Eng Online 2023; 22:75. [PMID: 37525241 PMCID: PMC10388506 DOI: 10.1186/s12938-023-01134-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/01/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Gait is a complex, whole-body movement that requires the coordinated action of multiple joints and muscles of our musculoskeletal system. In the context of Duchenne muscular dystrophy (DMD), a disease characterized by progressive muscle weakness and joint contractures, previous studies have generally assumed symmetrical behavior of the lower limbs during gait. However, such a symmetric gait pattern of DMD was controversial. One aspect of this is criticized, because most of these studies have primarily focused on univariate variables, rather than on the coordination of multiple body segments and even less investigate gait symmetry under a motor synergy of view. METHODS We investigated the gait pattern of 20 patients with DMD, compared to 18 typical developing children (TD) through 3D Gait Analysis. Kinematic and muscle synergies were extracted with principal component analysis (PCA) and non-negative matrix factorization (NNMF), respectively. The synergies extracted from the left and right sides were compared with each other to obtain a symmetry value. In addition, bilateral spatiotemporal variables of gait, such as stride length, percentage of stance and swing phase, step length, and percentage of double support phase, were used for calculating the symmetry index (SI) to evaluate gait symmetry as well. RESULTS Compared with the TD group, the DMD group walked with decreased gait velocity (both p < 0.01), stride length (both p < 0.01), and step length (both p < 0.001). No significant difference was found between groups in SI of all spatiotemporal parameters extracted between the left and right lower limbs. In addition, the DMD group exhibited lower kinematic synergy symmetry values compared to the TD group (p < 0.001), while no such significant group difference was observed in symmetry values of muscle synergy. CONCLUSIONS The findings of this study suggest that DMD influences, to some extent, the symmetry of synergistic movement of multiple segments of lower limbs, and thus kinematic synergy appears capable of discriminating gait asymmetry in children with DMD when conventional spatiotemporal parameters are unchanged.
Collapse
Affiliation(s)
- Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jieyi Mo
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yuxia Chen
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lianghong Zhang
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Zhongyan Xia
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Chen Yi
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Nong Xiao
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Nùñez-Lisboa M, Valero-Breton M, Dewolf AH. Unraveling age-related impairment of the neuromuscular system: exploring biomechanical and neurophysiological perspectives. Front Physiol 2023; 14:1194889. [PMID: 37427405 PMCID: PMC10323685 DOI: 10.3389/fphys.2023.1194889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
With extended life expectancy, the quality of life of elders is a priority. Loss of mobility, increased morbidity and risks of falls have dramatic individual and societal impacts. Here we consider the age-related modifications of gait, from a biomechanical and neurophysiological perspective. Among the many factors of frailty involved (e.g., metabolic, hormonal, immunological), loss of muscle strength and neurodegenerative changes inducing slower muscle contraction may play a key role. We highlight that the impact of the multifactorial age-related changes in the neuromuscular systems results in common features of gait in the immature gait of infants and older adults. Besides, we also consider the reversibility of age-related neuromuscular deterioration by, on the one hand, exercise training, and the other hand, novel techniques such as direct spinal stimulation (tsDCS).
Collapse
Affiliation(s)
- M. Nùñez-Lisboa
- Laboratoire de Biomécanique et Physiologie et la Locomotion, Institute of Neuroscience, Louvain-la-Neuve, Belgium
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - M. Valero-Breton
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - A. H. Dewolf
- Laboratoire de Biomécanique et Physiologie et la Locomotion, Institute of Neuroscience, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Martins VF, Gomeñuka NA, Correale L, Martinez FG, Buzzachera CF, Gonçalves AK, Peyré-Tartaruga LA. Effects of aging on arm coordination at different walking speeds. Gait Posture 2023; 103:6-11. [PMID: 37075555 DOI: 10.1016/j.gaitpost.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/19/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Previous work has shown that the mean continuous relative phase and coordination variability of lower limbs are modified in older adults when walking. RESEARCH QUESTION Here, we propose to understand the extent to which such control mechanisms for upper limbs are present during gait. Specifically, we seek to understand if aging and gait speed constraints influence the interjoint control of upper limbs during walking. METHODS This observational study evaluated thirty-three participants, divided into older (n = 20, age 66.4 ± 4.3 years; mass: 77.2 ± 14.2 kg; height: 165 ± 9.20 cm) and young adults (n = 13, age 29.5 ± 4.7 years; mass 75.5 ± 9.6 kg; height: 172 ± 6.24 cm) were asked to walk at 0.28, 0.83, 1.38 m.s-1 on a level treadmill while their segmental movements were simultaneously registered with 3D motion capture system. We calculated the mean continuous relative phase and coordination variability (continuous relative phase variability) in elbow-shoulder and shoulder-hip pairs, and a generalized estimating equation was used to test the main and interaction effects of age and speed. RESULTS Older adults had a reduced continuous relative phase (more in-phase coordination) of upper limbs at whole stance for elbow-shoulder, at loading response for shoulder-hip, at mid-stance and terminal stance for elbow-shoulder and shoulder-hip in comparison to young adults at different speeds (p < 0.05). The coordination variability of upper limbs was greater (higher continuous relative phase variability) in older than young adults at 0.28 and 1.38 m.s-1. SIGNIFICANCE These findings substantiate the altered motor control role of upper limbs in gait aging, suggesting that lower self-selected speed may be related to the reduced ability to control arm movement during the intermediate phases of gait.
Collapse
Affiliation(s)
- Valéria Feijó Martins
- LaBiodin Biodynamics Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Luca Correale
- Department of Public Health, Experimental Medicine and Forensic Sciences, University of Pavia, Pavia, Italy
| | - Flávia Gomes Martinez
- LaBiodin Biodynamics Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cosme Franklim Buzzachera
- Department of Public Health, Experimental Medicine and Forensic Sciences, University of Pavia, Pavia, Italy
| | - Andréa Kruger Gonçalves
- LaBiodin Biodynamics Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Alexandre Peyré-Tartaruga
- LaBiodin Biodynamics Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
6
|
Ao M, Shi H, Li X, Huang H, Ao Y, Wang W. Effects of visual restoration on gait performance and kinematics of lower extremities in patients with age-related cataract. Chin Med J (Engl) 2023; 136:596-603. [PMID: 36877988 PMCID: PMC10106207 DOI: 10.1097/cm9.0000000000002509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Visual inputs are critical for locomotor navigation and sensorimotor integration in the elderly; however, the mechanism needs to be explored intensively. The present study assessed the gait pattern after cataract surgery to investigate the effects of visual restoration on locomotion. METHODS The prospective study recruited 32 patients (70.1 ± 5.2 years) with bilateral age-related cataracts in the Department of Ophthalmology at Peking University Third Hospital from October 2016 to December 2019. The temporal-spatial gait parameters and kinematic parameters were measured by the Footscan system and inertial measurement units. Paired t -test was employed to compare data normally distributed and Wilcoxon rank-sum test for non-normally distributed. RESULTS After visual restoration, the walking speed increased by 9.3% (1.19 ± 0.40 m/s vs. 1.09 ± 0.34 m/s, P =0.008) and exhibited an efficient gait pattern with significant decrease in gait cycle (1.02 ± 0.08 s vs. 1.04 ± 0.07 s, P =0.012), stance time (0.66 ± 0.06 s vs. 0.68 ± 0.06 s, P =0.045), and single support time (0.36 ± 0.03 s vs. 0.37 ± 0.02 s, P =0.011). High amplitude of joint motion was detected in the sagittal plane in the left hip (37.6° ± 5.3° vs. 35.5° ± 6.2°, P =0.014), left thigh (38.0° ± 5.2° vs. 36.4° ± 5.8°, P =0.026), left shank (71.9° ± 5.7° vs. 70.1° ± 5.6°, P =0.031), and right knee (59.1° ± 4.8° vs. 56.4° ± 4.8°, P =0.001). The motor symmetry of thigh improved from 8.35 ± 5.30% to 6.30 ± 4.73% ( P =0.042). CONCLUSIONS The accelerated gait in response to visual restoration is characterized by decreased stance time and increased range of joint motion. Training programs for improving muscle strength of lower extremities might be helpful to facilitate the adaptation to these changes in gait.
Collapse
Affiliation(s)
- Mingxin Ao
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Huijuan Shi
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Xuemin Li
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Hongshi Huang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wang
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
7
|
Are Age, Self-Selected Walking Speed, or Propulsion Force Predictors of Gait-Related Changes in Older Adults? J Appl Biomech 2023; 39:99-109. [PMID: 36898389 DOI: 10.1123/jab.2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 03/12/2023]
Abstract
There is limited research that directly compares the effect of reduced speed with reduced propulsive force production (PFP) on age-related gait changes. We aimed to determine how changes in the gait of older adults correlate with age, speed, or peak PFP over a 6-year span. We collected kinematics and kinetics of 17 older subjects at 2 time points. We determined which biomechanical variables changed significantly between visits and used linear regressions to determine whether combinations of self-selected walking speed, peak PFP, and age correlated to changes in these variables. We found a suite of gait-related changes that occurred in the 6-year period, in line with previous aging studies. Of the 10 significant changes, we found 2 with significant regressions. Self-selected walking speed was a significant indicator of step length, not peak PFP or age. Peak PFP was a significant indicator for knee flexion. None of the biomechanical changes were correlated to the chronological age of the subjects. Few gait parameters had a correlation to the independent variables, suggesting that changes in gait mechanics were not solely correlated to peak PFP, speed, and/or age. This study improves understanding of changes in ambulation that lead to age-related gait modifications.
Collapse
|
8
|
Moreira J, Silva B, Faria H, Santos R, Sousa ASP. Systematic Review on the Applicability of Principal Component Analysis for the Study of Movement in the Older Adult Population. SENSORS (BASEL, SWITZERLAND) 2022; 23:205. [PMID: 36616803 PMCID: PMC9823400 DOI: 10.3390/s23010205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Principal component analysis (PCA) is a dimensionality reduction method that has identified significant differences in older adults' motion analysis previously not detected by the discrete exploration of biomechanical variables. This systematic review aims to synthesize the current evidence regarding PCA use in the study of movement in older adults (kinematics and kinetics), summarizing the tasks and biomechanical variables studied. From the search results, 1685 studies were retrieved, and 19 studies were included for review. Most of the included studies evaluated gait or quiet standing. The main variables considered included spatiotemporal parameters, range of motion, and ground reaction forces. A limited number of studies analyzed other tasks. Further research should focus on the PCA application in tasks other than gait to understand older adults' movement characteristics that have not been identified by discrete analysis.
Collapse
Affiliation(s)
- Juliana Moreira
- Center for Rehabilitation Research–Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
- Research Center in Physical Activity, Health and Leisure, Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Bruno Silva
- School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Hugo Faria
- School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Rubim Santos
- Center for Rehabilitation Research–Human Movement System (Re)habilitation Area, Department of Physics, School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Andreia S. P. Sousa
- Center for Rehabilitation Research–Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| |
Collapse
|
9
|
Abe D, Motoyama K, Tashiro T, Saito A, Horiuchi M. Effects of exercise habituation and aging on the intersegmental coordination of lower limbs during walking with sinusoidal speed change. J Physiol Anthropol 2022; 41:24. [PMID: 35676743 PMCID: PMC9175341 DOI: 10.1186/s40101-022-00298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background The time courses of the joint elevation angles of the thigh, shank, and foot in one stride during walking can be well approximated by a “plane” in a triaxial space. This intersegmental coordination (IC) of the lower limb elevation angles is referred to as the planar covariation law. We examined the effects of exercise habituation and aging on the thickness of the IC plane of the lower limbs under sinusoidal speed changing conditions. Methods Seventeen sedentary young (SY), 16 active young (AY), and 16 active elderly (AE) adults walked on a treadmill in accordance with a sinusoidal speed changing protocol at 120, 60, and 30 s periods with an amplitude of ± 0.56 m·s−1. Motion of the lower limbs from the sagittal direction was recorded to calculate the elevation angles of the lower limbs. When the best-fit IC plane was determined, the smallest standard deviation of the IC plane was considered as the anteroposterior gait variability of the lower limbs. The coefficient of variance of the step width was also quantified to evaluate the lateral step variability (CVSW). Results The standard deviation of the IC plane was significantly greater in the order of SY, AY, and AE, regardless of the sinusoidal wave periods of the changing speed. The CVSW was not significantly different among the three groups. Conclusions Exercise habituation influences anteroposterior gait variability of the lower limbs, but not lateral step variability, even in young adults. Given these, gait adaptability for sinusoidal speed changes does not always decline with aging. Trial registration UMIN000031456 (R000035911; registered February 23, 2018). Supplementary Information The online version contains supplementary material available at 10.1186/s40101-022-00298-w.
Collapse
|
10
|
Xiong Q, Wan J, Jiang S, Liu Y. Age-related differences in gait symmetry obtained from kinematic synergies and muscle synergies of lower limbs during childhood. Biomed Eng Online 2022; 21:61. [PMID: 36058910 PMCID: PMC9442939 DOI: 10.1186/s12938-022-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
The age-related changes of gait symmetry in healthy children concerning individual joint and muscle activation data have previously been widely studied. Extending beyond individual joints or muscles, identifying age-related changes in the coordination of multiple joints or muscles (i.e., muscle synergies and kinematic synergies) could capture more closely the underlying mechanisms responsible for gait symmetry development. To evaluate the effect of age on the symmetry of the coordination of multiple joints or muscles during childhood, we measured gait symmetry by kinematic and EMG data in 39 healthy children from 2 years old to 14 years old, divided into three equal age groups: preschool children (G1; 2.0-5.9 years), children (G2; 6.0-9.9 years), pubertal children (G3; 10.0-13.9 years). Participants walked barefoot at a self-selected walking speed during three-dimensional gait analysis (3DGA). Kinematic synergies and muscle synergies were extracted with principal component analysis (PCA) and non-negative matrix factorization (NNMF), respectively. The synergies extracted from the left and right sides were compared with each other to obtain a symmetry value. Statistical analysis was performed to examine intergroup differences. The results showed that the effect of age was significant on the symmetry values extracted by kinematic synergies, while older children exhibited higher kinematic synergy symmetry values compared to the younger group. However, no significant age-related changes in symmetry values of muscle synergy were observed. It is suggested that kinematic synergy of lower joints can be asymmetric at the onset of independent walking and showed improving symmetry with increasing age, whereas the age-related effect on the symmetry of muscle synergies was not demonstrated. These data provide an age-related framework and normative dataset to distinguish age-related differences from pathology in children with neuromotor disorders.
Collapse
Affiliation(s)
- Qiliang Xiong
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, Jiangxi, China. .,Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China.
| | - Jinliang Wan
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Shaofeng Jiang
- Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, Jiangxi, China.,Department of Biomedical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yuan Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Ghahramani M, Mason B, Pearsall P, Spratford W. An Analysis of Lower Limb Coordination Variability in Unilateral Tasks in Healthy Adults: A Possible Prognostic Tool. Front Bioeng Biotechnol 2022; 10:885329. [PMID: 35782503 PMCID: PMC9247147 DOI: 10.3389/fbioe.2022.885329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Interlimb coordination variability analysis can shed light into the dynamics of higher order coordination and motor control. However, it is not clear how the interlimb coordination of people with no known injuries change in similar activities with increasing difficulty. This study aimed to ascertain if the interlimb coordination variability range and patterns of healthy participants change in different unilateral functional tasks with increasing complexity and whether leg dominance affects the interlimb coordination variability. In this cross-sectional study fourteen younger participants with no known injuries completed three repeated unilateral sit-to-stands (UniSTS), step-ups (SUs), and continuous-hops (Hops). Using four inertial sensors mounted on the lower legs and thighs, angular rotation of thighs and shanks were recorded. Using Hilbert transform, the phase angle of each segment and then the continuous relative phase (CRP) of the two segments were measured. The CRP is indicative of the interlimb coordination. Finally, the linear and the nonlinear shank-thigh coordination variability of each participant in each task was calculated. The results show that the linear shank-thigh coordination variability was significantly smaller in the SUs compared to both UniSTS and Hops in both legs. There were no significant differences found between the latter two tests in their linear coordination variability. However, Hops were found to have significantly larger nonlinear shank-thigh coordination variability compared to the SUs and the UniSTS. This can be due to larger vertical and horizontal forces required for the task and can reveal inadequate motor control during the movement. The combination of nonlinear and linear interlimb coordination variability can provide more insight into human movement as they measure different aspects of coordination variability. It was also seen that leg dominance does not affect the lower limb coordination variability in participants with no known injuries. The results should be tested in participants recovering from lower limb injuries.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Human-Centred Technology Research Centre, Faculty of Science and Technology University of Canberra, Canberra, NSW, Australia
- *Correspondence: Maryam Ghahramani,
| | - Billy Mason
- Faculty of Health, University of Canberra, Canberra, NSW, Australia
- University of Canberra Research Institute for Sport and Exercise Science, Canberra, NSW, Australia
| | - Patrick Pearsall
- School of Information Technology and Systems, Faculty of Science and Technology University of Canberra, Canberra, NSW, Australia
| | - Wayne Spratford
- Faculty of Health, University of Canberra, Canberra, NSW, Australia
- University of Canberra Research Institute for Sport and Exercise Science, Canberra, NSW, Australia
| |
Collapse
|
12
|
Ghahramani M, Rojas RF, Stirling D. Chest and pelvis coordination during functional reach test: A possible indication of balance deficiency in older adults. J Biomech 2022; 141:111177. [PMID: 35738059 DOI: 10.1016/j.jbiomech.2022.111177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Falls in older adults represent the most common cause of injuries and a major cause of mortality in this vulnerable population. The morbidity and mortality rate of falls among older people makes balance analysis in older adults very important. Therefore, this study aims to explore different metrics that can potentially be used to identify early indications of balance loss and fall risk. To that end, the motion strategies and chest and pelvis coordination of a group of younger, a group of older non-faller and a group of older faller participants while conducting the functional reach test were investigated. To analyse the motion strategies of the different participant groups, four metrics of maximum angular rotation of chest, maximum angular rotation of pelvis, time warped chest and pelvis angular rotation difference, and the mean continuous relative phase of the chest and pelvis were assessed. In this study younger participants are found to have larger maximum chest rotation, maximum pelvis rotation, and time warped chest and pelvis angular rotation difference compared to older participants. However, these metrics were not significantly different in older non-fallers compared to older fallers. Meanwhile, the mean continuous relative phase of the chest and pelvis was the only metric found to be significantly different among all three participant groups. This metric is indicative of the chest and pelvis coordination which is associated with the ability to construct proper coordination and maintain balance. The mean continuous relative phase yielded the sensitivity of 92.3% and specificity of 73.7% in recognizing older fallers from older non-fallers. The results suggest that this metric might be useful in identifying the risk of falling in older population, thus, it should be further studied in a prospective study.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Faculty of Science and Technology, University of Canberra, Australia.
| | | | - David Stirling
- Faculty of Engineering and Information Sciences, University of Wollongong, Australia
| |
Collapse
|
13
|
In response to the article published by Dewolf et al, entitled: "Effect of walking speed on the intersegmental coordination of lower-limb segments in elderly adults", Gait & Posture (2019). Gait Posture 2022; 95:228-229. [PMID: 31521448 DOI: 10.1016/j.gaitpost.2019.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/24/2019] [Indexed: 02/02/2023]
|
14
|
Relation between Step-To-Step Transition Strategies and Walking Pattern in Older Adults. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In older adults, two different modes of step-to-step transition have been observed: an anticipated mode when the redirection of the centre of mass of the body (COM) begins before double stance and another when the transition begins during double stance. However, the impact of transition mode on gait kinetics and kinematics has not been investigated. Age and step-to-step-transition-related differences in intersegmental coordination and in the COM trajectory during walking were identified. Fifteen young (24.1 ± 0.7 y.o.) and thirty-six older adults (74.5 ± 5.0 y.o.) walked on a treadmill at 1.11 m s−1 and 1.67 m s−1. Lower-limb motion and ground reaction force were recorded. The COM dynamics were evaluated by measuring the pendulum-like exchange of the COM energies. While all young adults and 21 of the older adults used an anticipated transition, 15 older adults presented a non-anticipated transition. Previously documented changes of intersegmental coordination with age were accentuated in older adults with non-anticipated transition (p < 0.001). Moreover, older adults with non-anticipated transition had a smaller pendulum-like energy exchange than older adults with anticipated transition (p = 0.03). The timing of COM redirection is linked to kinematic and mechanic modification of gait and could potentially be used as a quantitative assessment of age-related decline in gait.
Collapse
|
15
|
Chang CM, Tsai CH, Lu MK, Tseng HC, Lu G, Liu BL, Lin HC. The neuromuscular responses in patients with Parkinson's disease under different conditions during whole-body vibration training. BMC Complement Med Ther 2022; 22:2. [PMID: 34980075 PMCID: PMC8722001 DOI: 10.1186/s12906-021-03481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/03/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Whole-body vibration (WBV) training can provoke reactive muscle response and thus exert beneficial effects in various neurological patients. This study aimed to investigate the muscles activation and acceleration transmissibility of the lower extremity to try to understand the neuromuscular control in the Parkinson's disease (PD) patients under different conditions of the WBV training, including position and frequency. METHODS Sixteen PD patients and sixteen controls were enrolled. Each of them would receive two WBV training sessions with 3 and 20 Hz mechanical vibration in separated days. In each session, they were asked to stand on the WBV machine with straight and then bended knee joint positions, while the vibration stimulation was delivered or not. The electromyographic (EMG) signals and the segmental acceleration from the lower extremity were recorded and processed. The amplitude, co-contraction indexes (CCI), and normalized median frequency slope (NMFS) from the EMG signals, and the acceleration transmissibility were calculated. RESULTS The results showed larger rectus femoris (RF) amplitudes under 3 Hz vibration than those in 20 Hz and no vibration conditions; larger tibialis anterior (TA) in 20 Hz than in no vibration; larger gastrocnemius (GAS) in 20 Hz than in 3 Hz and no vibration. These results indicated that different vibration frequencies mainly induced reactive responses in different muscles, by showing higher activation of the knee extensors in 3 Hz and of the lower leg muscles in 20 Hz condition, respectively. Comparing between groups, the PD patients reacted to the WBV stimulation by showing larger muscle activations in hamstring (HAM), TA and GAS, and smaller CCI in thigh than those in the controls. In bended knee, it demonstrated a higher RF amplitude and a steeper NMFS but smaller HAM activations than in straight knee position. The higher acceleration transmissibility was found in the control group, in the straight knee position and in the 3 Hz vibration conditions. CONCLUSION The PD patients demonstrated altered neuromuscular control compared with the controls in responding to the WBV stimulations, with generally higher EMG amplitude of lower extremity muscles. For designing WBV strengthening protocol in the PD population, the 3 Hz with straight or flexed knee protocol was recommended to recruit more thigh muscles; the bended knee position with 20 Hz vibration was for the shank muscles.
Collapse
Affiliation(s)
- Chia-Ming Chang
- Department of Physical Therapy, China Medical University, No. 100, Sec. 1, Jingmao Rd, Taichung, Taiwan, 406040, R.O.C
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Division of Parkinson's Disease and Movement Disorders, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Division of Parkinson's Disease and Movement Disorders, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsin-Chun Tseng
- Department of Physical Therapy, China Medical University, No. 100, Sec. 1, Jingmao Rd, Taichung, Taiwan, 406040, R.O.C
| | - Grace Lu
- Department of Physical Therapy, China Medical University, No. 100, Sec. 1, Jingmao Rd, Taichung, Taiwan, 406040, R.O.C
| | - Bey-Ling Liu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Hsiu-Chen Lin
- Department of Physical Therapy, China Medical University, No. 100, Sec. 1, Jingmao Rd, Taichung, Taiwan, 406040, R.O.C.
| |
Collapse
|
16
|
Dewolf AH, Sylos-Labini F, Cappellini G, Zhvansky D, Willems PA, Ivanenko Y, Lacquaniti F. Neuromuscular Age-Related Adjustment of Gait When Moving Upwards and Downwards. Front Hum Neurosci 2021; 15:749366. [PMID: 34744664 PMCID: PMC8566537 DOI: 10.3389/fnhum.2021.749366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Locomotor movements are accommodated to various surface conditions by means of specific locomotor adjustments. This study examined underlying age-related differences in neuromuscular control during level walking and on a positive or negative slope, and during stepping upstairs and downstairs. Ten elderly and eight young adults walked on a treadmill at two different speeds and at three different inclinations (0°, +6°, and −6°). They were also asked to ascend and descend stairs at self-selected speeds. Full body kinematics and surface electromyography of 12 lower-limb muscles were recorded. We compared the intersegmental coordination, muscle activity, and corresponding modifications of spinal motoneuronal output in young and older adults. Despite great similarity between the neuromuscular control of young and older adults, our findings highlight subtle age-related differences in all conditions, potentially reflecting systematic age-related adjustments of the neuromuscular control of locomotion across various support surfaces. The main distinctive feature of walking in older adults is a significantly wider and earlier activation of muscles innervated by the sacral segments. These changes in neuromuscular control are reflected in a reduction or lack of propulsion observed at the end of stance in older adults at different slopes, with the result of a delay in the timing of redirection of the centre-of-mass velocity and of an unanticipated step-to-step transition strategy.
Collapse
Affiliation(s)
- Arthur H Dewolf
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Dmitry Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - Patrick A Willems
- Laboratoire de Physiologie et Biomecanique de la Locomotion, Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
17
|
Wang J, Stephenson ML, Hass CJ, Janelle CM, Tillman MD. Carrying Asymmetric Loads While Walking on a Treadmill Interferes with Lower Limb Coordination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094549. [PMID: 33922977 PMCID: PMC8123349 DOI: 10.3390/ijerph18094549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the effect of different load carriage modes on coordinative patterns in the lower extremities during walking. Twenty-five university students walked on a treadmill at their preferred pace under three different load conditions: symmetric load (5% of body mass in messenger bags on each shoulder hanging vertically and against the hips), asymmetric load 1 (10% of body mass in a messenger bag on one shoulder hanging vertically against the ipsilateral hip), and asymmetric load 2 (10% of body mass in a messenger bag on one shoulder with the bag draped across the trunk to the contralateral hip). Altered thigh-shank and shank-foot couplings were found for the loaded side during the stance of gait when comparing the asymmetric 1 and 2 to the symmetric load. In addition, thigh-thigh coupling was changed during gait when comparing the asymmetric load 2 and symmetric load. However, we did not find any significant differences in intralimb and interlimb couplings between the two different asymmetric load conditions. The results suggest potential benefits when carrying symmetrical loads in order to decrease abnormal limb coordination in daily activities. Thus, it may be advisable to distribute load more symmetrically to avoid abnormal gait.
Collapse
Affiliation(s)
- Junsig Wang
- Department of Orthopaedic Surgery, University of Arkansas for Medical Science, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-246-4439
| | - Mitchell L. Stephenson
- Department of Health and Human Performance, University of Montana Western, Dillon, MT 59725, USA;
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (C.J.H.); (C.M.J.)
| | - Christopher M. Janelle
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (C.J.H.); (C.M.J.)
| | - Mark D. Tillman
- Brooks Rehabilitation College of Healthcare Sciences, Jacksonville University, Jacksonville, FL 32211, USA;
| |
Collapse
|
18
|
Huang B, Xiong C, Chen W, Liang J, Sun BY, Gong X. Common kinematic synergies of various human locomotor behaviours. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210161. [PMID: 33996133 PMCID: PMC8059590 DOI: 10.1098/rsos.210161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Humans show a variety of locomotor behaviours in daily living, varying in locomotor modes and interaction styles with the external environment. However, how this excellent motor ability is formed, whether there are some invariants underlying various locomotor behaviours and simplifying their generation, and what factors contribute to the invariants remain unclear. Here, we find three common kinematic synergies that form the six joint motions of one lower limb during walking, running, hopping and sitting-down-standing-up (movement variance accounted for greater than 90%), through identifying the coordination characteristics of 36 lower limb motor tasks in diverse environments. This finding supports the notion that humans simplify the generation of various motor behaviours through re-using several basic motor modules, rather than developing entirely new modules for each behaviour. Moreover, a potential link is also found between these synergies and the unique biomechanical characteristics of the human musculoskeletal system (muscular-articular connective architecture and bone shape), and the patterns of inter-joint coordination are consistent with the energy-saving mechanism in locomotion by using biarticular muscles as efficient mechanical energy transducers between joints. Altogether, our work helps understand the formation mechanisms of human locomotion from a holistic viewpoint and evokes inspirations for the development of artificial limbs imitating human motor ability.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Robotics Research (IR2), State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Caihua Xiong
- Institute of Robotics Research (IR2), State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Wenbin Chen
- Institute of Robotics Research (IR2), State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jiejunyi Liang
- Institute of Robotics Research (IR2), State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bai-Yang Sun
- Institute of Robotics Research (IR2), State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xuan Gong
- Institute of Robotics Research (IR2), State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
19
|
Lower-Extremity Intra-Joint Coordination and Its Variability between Fallers and Non-Fallers during Gait. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Falling is one of the most common causes of hip fracture and death in older adults. A comparison of the biomechanics of the gait in fallers and non-fallers older adults, especially joint coordination and coordination variability, enables the understanding of mechanisms that underpin falling. Therefore, we compared lower-extremity intra-joint coordination and its variability between fallers and non-fallers older adults during gait. A total of 26 older adults, comprising 13 fallers, took part in this study. The participants walked barefoot at a self-selected speed on a 10-m walkway. Gait kinematics in the dominant leg during 10 cycles were captured with 10 motion tracking cameras at a sampling rate of 100 Hz. Spatiotemporal gait parameters, namely, cadence, walking speed, double support time, stride time, width, and length, as well as intra-joint coordination and coordination variability in the sagittal plane were compared between the two groups. Results showed that fallers walked with significant lower cadence, walking speed, and stride length but greater double support and stride time than non-fallers. Significant differences in the ankle-to-knee, knee-to-hip, and ankle-to-hip coordination patterns between fallers and non-fallers and less coordination variability in fallers compared to non-fallers in some instants of the gait cycles were observed. The differences in spatiotemporal gait parameters in fallers compared to non-fallers may indicate an adaptation resulting from decreased efficiency to decrease the risk of falling. Moreover, the differences in segment coordination and its variability may indicate an inconsistency in neuromuscular control. It may also indicate reduced ability to control the motion of the leg in preparation for foot contact with the ground and the knee and ankle motions during loading response. Finally, such differences may show less control in generating power during the push-off phase in fallers.
Collapse
|
20
|
Dewolf AH, Sylos-Labini F, Cappellini G, Ivanenko Y, Lacquaniti F. Age-related changes in the neuromuscular control of forward and backward locomotion. PLoS One 2021; 16:e0246372. [PMID: 33596223 PMCID: PMC7888655 DOI: 10.1371/journal.pone.0246372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
Previous studies found significant modification in spatiotemporal parameters of backward walking in healthy older adults, but the age-related changes in the neuromuscular control have been considered to a lesser extent. The present study compared the intersegmental coordination, muscle activity and corresponding modifications of spinal montoneuronal output during both forward and backward walking in young and older adults. Ten older and ten young adults walked forward and backward on a treadmill at different speeds. Gait kinematics and EMG activity of 14 unilateral lower-limb muscles were recorded. As compared to young adults, the older ones used shorter steps, a more in-phase shank and foot motion, and the activity profiles of muscles innervated from the sacral segments were significantly wider in each walking condition. These findings highlight age-related changes in the neuromuscular control of both forward and backward walking. A striking feature of backward walking was the differential organization of the spinal output as compared to forward gait. In addition, the resulting spatiotemporal map patterns also characterized age-related changes of gait. Finally, modifications of the intersegmental coordination with aging were greater during backward walking. On the whole, the assessment of backward walk in addition to routine forward walk may help identifying or unmasking neuromuscular adjustments of gait to aging.
Collapse
Affiliation(s)
- Arthur H. Dewolf
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| | | | - Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
21
|
Dewolf AH, Sylos-Labini F, Cappellini G, Lacquaniti F, Ivanenko Y. Emergence of Different Gaits in Infancy: Relationship Between Developing Neural Circuitries and Changing Biomechanics. Front Bioeng Biotechnol 2020; 8:473. [PMID: 32509753 PMCID: PMC7248179 DOI: 10.3389/fbioe.2020.00473] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
How does gait-specific pattern generation evolve in early infancy? The idea that neural and biomechanical mechanisms underlying mature walking and running differ to some extent and involve distinct spinal and supraspinal neural circuits is supported by various studies. Here we consider the issue of human gaits from the developmental point of view, from neonate stepping to adult mature gaits. While differentiating features of the walk and run are clearly distinct in adults, the gradual and progressive developmental bifurcation between the different gaits suggests considerable sharing of circuitry. Gaits development and their biomechanical determinants also depend on maturation of the musculoskeletal system. This review outlines the possible overlap in the neural and biomechanical control of walking and running in infancy, supporting the idea that gaits may be built starting from common, likely phylogenetically conserved elements. Bridging connections between movement mechanics and neural control of locomotion could have profound clinical implications for technological solutions to understand better locomotor development and to diagnose early motor deficits. We also consider the neuromuscular maturation time frame of gaits resulting from active practice of locomotion, underlying plasticity of development.
Collapse
Affiliation(s)
- Arthur Henri Dewolf
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
22
|
Day KA, Bastian AJ. Providing low-dimensional feedback of a high-dimensional movement allows for improved performance of a skilled walking task. Sci Rep 2019; 9:19814. [PMID: 31875040 PMCID: PMC6930294 DOI: 10.1038/s41598-019-56319-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/30/2019] [Indexed: 12/28/2022] Open
Abstract
Learning a skilled movement often requires changing multiple dimensions of movement in a coordinated manner. Serial training is one common approach to learning a new movement pattern, where each feature is learned in isolation from the others. Once one feature is learned, we move on to the next. However, when learning a complex movement pattern, serial training is not only laborious but can also be ineffective. Often, movement features are linked such that they cannot simply be added together as we progress through training. Thus, the ability to learn multiple features in parallel could make training faster and more effective. When using visual feedback as the tool for changing movement, however, such parallel training may increase the attentional load of training and impair performance. Here, we developed a novel visual feedback system that uses principal component analysis to weight four features of movement to create a simple one-dimensional 'summary' of performance. We used this feedback to teach healthy, young participants a modified walking pattern and compared their performance to those who received four concurrent streams of visual information to learn the same goal walking pattern. We demonstrated that those who used the principal component-based visual feedback improved their performance faster and to a greater extent compared to those who received concurrent feedback of all features. These results suggest that our novel principal component-based visual feedback provides a method for altering multiple features of movement toward a prescribed goal in an intuitive, low-dimensional manner.
Collapse
Affiliation(s)
- Kevin A Day
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amy J Bastian
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|