1
|
Di Michele M, Attina A, Roux PF, Tabet I, Laguesse S, Florido J, Houdeville M, Choquet A, Encislai B, Arena G, De Blasio C, Wendling O, Frenois FX, Papon L, Stuani L, Fuentes M, Jahannault Talignani C, Rousseau M, Guégan J, Buscail Y, Dupré P, Michaud HA, Rodier G, Bellvert F, Kulyk H, Ferraro Peyret C, Mathieu H, Close P, Rapino F, Chaveroux C, Pirot N, Rubio L, Torro A, Sorg T, Ango F, Hirtz C, Compan V, Lebigot E, Legati A, Ghezzi D, Nguyen L, David A, Sardet C, Lacroix M, Le Cam L. E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development. Nat Commun 2025; 16:67. [PMID: 39747033 PMCID: PMC11696611 DOI: 10.1038/s41467-024-55444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U34). E4F1-mediated direct transcriptional regulation of Dlat and Elp3, two genes encoding key subunits of the PDC and of the Elongator complex, respectively, ensures proper translation fidelity and cell survival in the central nervous system (CNS) during mouse embryonic development. Furthermore, analysis of PDH-deficient cells highlight a crosstalk linking the PDC to ELP3 expression that is perturbed in LS patients.
Collapse
Affiliation(s)
- Michela Di Michele
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
- Institut des Biomolécules Max Mousseron (IBMM), UMR-5247, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Aurore Attina
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Pierre-François Roux
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Imène Tabet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sophie Laguesse
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - Javier Florido
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Morane Houdeville
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Armelle Choquet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Betty Encislai
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carlo De Blasio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | | | - Laura Papon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Lucille Stuani
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Maryse Fuentes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Céline Jahannault Talignani
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Mélanie Rousseau
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Justine Guégan
- Data Analysis Core Platform, Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Buscail
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierrick Dupré
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Henri-Alexandre Michaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- SIMCaT plateform, Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Geneviève Rodier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Floriant Bellvert
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Hanna Kulyk
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Carole Ferraro Peyret
- Univ. Lyon, Claude Bernard University, LBTI UMR CNRS 5305, Faculty of Pharmacy, Lyon, France
- Hospices Civils de Lyon, AURAGEN, Edouard Herriot Hospital, Lyon, France
| | - Hugo Mathieu
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, 4000, Liège, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Francesca Rapino
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, 4000, Liège, Belgium
| | - Cédric Chaveroux
- Univ. Lyon, Claude Bernard University, LBTI UMR CNRS 5305, Faculty of Pharmacy, Lyon, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Lucie Rubio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Adeline Torro
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | - Fabrice Ango
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Elise Lebigot
- Biochemistry Department, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre, France
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Alexandre David
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
2
|
Sun S, Zhong B, Zeng X, Li J, Chen Q. Transcription factor E4F1 as a regulator of cell life and disease progression. SCIENCE ADVANCES 2023; 9:eadh1991. [PMID: 37774036 PMCID: PMC10541018 DOI: 10.1126/sciadv.adh1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
E4F transcription factor 1 (E4F1), a member of the GLI-Kruppel family of zinc finger proteins, is now widely recognized as a transcription factor. It plays a critical role in regulating various cell processes, including cell growth, proliferation, differentiation, apoptosis and necrosis, DNA damage response, and cell metabolism. These processes involve intricate molecular regulatory networks, making E4F1 an important mediator in cell biology. Moreover, E4F1 has also been implicated in the pathogenesis of a range of human diseases. In this review, we provide an overview of the major advances in E4F1 research, from its first report to the present, including studies on its protein domains, molecular mechanisms of transcriptional regulation and biological functions, and implications for human diseases. We also address unresolved questions and potential research directions in this field. This review provides insights into the essential roles of E4F1 in human health and disease and may pave the way for facilitating E4F1 from basic research to clinical applications.
Collapse
Affiliation(s)
- Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Zhong
- Upper Airways Research Laboratory, Department of Otolaryngology–Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Yan RG, He Z, Wang FC, Li S, Shang QB, Yang QE. Transcription factor E4F1 dictates spermatogonial stem cell fate decisions by regulating mitochondrial functions and cell cycle progression. Cell Biosci 2023; 13:177. [PMID: 37749649 PMCID: PMC10521505 DOI: 10.1186/s13578-023-01134-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) provide a foundation for robust and continual spermatogenesis in mammals. SSCs self-renew to maintain a functional stem cell pool and differentiate to supply committed progenitors. Metabolism acts as a crucial determinant of stem cell fates; however, factors linking metabolic programs to SSC development and maintenance are poorly understood. RESULTS We analyzed the chromatin accessibility of undifferentiated spermatogonia at the single-cell level and identified 37 positive TF regulators that may have potential roles in dictating SSC fates. The transcription factor E4F1 is expressed in spermatogonia, and its conditional deletion in mouse germ cells results in progressive loss of the entire undifferentiated spermatogonial pool. Single-cell RNA-seq analysis of control and E4f1-deficient spermatogonia revealed that E4F1 acts as a key regulator of mitochondrial function. E4F1 binds to promotors of genes that encode components of the mitochondrial respiratory chain, including Ndufs5, Cox7a2, Cox6c, and Dnajc19. Loss of E4f1 function caused abnormal mitochondrial morphology and defects in fatty acid metabolism; as a result, undifferentiated spermatogonia were gradually lost due to cell cycle arrest and elevated apoptosis. Deletion of p53 in E4f1-deficient germ cells only temporarily prevented spermatogonial loss but did not rescue the defects in SSC maintenance. CONCLUSIONS Emerging evidence indicates that metabolic signals dictate stem cell fate decisions. In this study, we identified a list of transcription regulators that have potential roles in the fate transitions of undifferentiated spermatogonia in mice. Functional experiments demonstrated that the E4F1-mediated transcription program is a crucial regulator of metabolism and SSC fate decisions in mammals.
Collapse
Affiliation(s)
- Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei-Chen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
4
|
Multi-Level Control of the ATM/ATR-CHK1 Axis by the Transcription Factor E4F1 in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23169217. [PMID: 36012478 PMCID: PMC9409040 DOI: 10.3390/ijms23169217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
E4F1 is essential for early embryonic mouse development and for controlling the balance between proliferation and survival of actively dividing cells. We previously reported that E4F1 is essential for the survival of murine p53-deficient cancer cells by controlling the expression of genes involved in mitochondria functions and metabolism, and in cell-cycle checkpoints, including CHEK1, a major component of the DNA damage and replication stress responses. Here, combining ChIP-Seq and RNA-Seq approaches, we identified the transcriptional program directly controlled by E4F1 in Human Triple-Negative Breast Cancer cells (TNBC). E4F1 binds and regulates a limited list of direct target genes (57 genes) in these cells, including the human CHEK1 gene and, surprisingly, also two other genes encoding post-transcriptional regulators of the ATM/ATR-CHK1 axis, namely, the TTT complex component TTI2 and the phosphatase PPP5C, that are essential for the folding and stability, and the signaling of ATM/ATR kinases, respectively. Importantly, E4F1 also binds the promoter of these genes in vivo in Primary Derived Xenograft (PDX) of human TNBC. Consequently, the protein levels and signaling of CHK1 but also of ATM/ATR kinases are strongly downregulated in E4F1-depleted TNBC cells resulting in a deficiency of the DNA damage and replicative stress response in these cells. The E4F1-depleted cells fail to arrest into S-phase upon treatment with the replication-stalling agent Gemcitabine, and are highly sensitized to this drug, as well as to other DNA-damaging agents, such as Cisplatin. Altogether, our data indicate that in breast cancer cells the ATM/ATR-CHK1 signaling pathway and DNA damage-stress response are tightly controlled at the transcriptional and post-transcriptional level by E4F1.
Collapse
|
5
|
Lacroix M, Linares LK, Rueda-Rincon N, Bloch K, Di Michele M, De Blasio C, Fau C, Gayte L, Blanchet E, Mairal A, Derua R, Cardona F, Beuzelin D, Annicotte JS, Pirot N, Torro A, Tinahones FJ, Bernex F, Bertrand-Michel J, Langin D, Fajas L, Swinnen JV, Le Cam L. The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nat Commun 2021; 12:7037. [PMID: 34857760 PMCID: PMC8639890 DOI: 10.1038/s41467-021-27307-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/12/2021] [Indexed: 01/20/2023] Open
Abstract
Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.
Collapse
Affiliation(s)
- Matthieu Lacroix
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Natalia Rueda-Rincon
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Katarzyna Bloch
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Michela Di Michele
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Carlo De Blasio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Caroline Fau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Laurie Gayte
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Emilie Blanchet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Aline Mairal
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Rita Derua
- KU Leuven-University of Leuven, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Fernando Cardona
- Department of Surgical Specialties, Biochemistry and Immunology School of Medicine, University of Malaga, Malaga, Spain
| | - Diane Beuzelin
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jean-Sebastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, Lille, France
| | - Nelly Pirot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Adeline Torro
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Francisco J Tinahones
- CIBER of Physiopathology, Obesity and Nutrition (CIBEROBN), Málaga, Spain; Unidad de Gestion Clinica de Endocrinologia y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clinico Virgen de la Victoria, Málaga, Spain
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Justine Bertrand-Michel
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Dominique Langin
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Johannes V Swinnen
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France. .,Equipe labélisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
6
|
Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK, Le Cam L. The p53 Pathway and Metabolism: The Tree That Hides the Forest. Cancers (Basel) 2021; 13:cancers13010133. [PMID: 33406607 PMCID: PMC7796211 DOI: 10.3390/cancers13010133] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The p53 pathway is a major tumor suppressor pathway that prevents the propagation of abnormal cells by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism, and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development. Converging lines of evidence support the notion that, in addition to p53, other key components of this molecular cascade are also important regulators of metabolism. Here, we illustrate the underestimated complexity of the metabolic network controlled by the p53 pathway and show how its perturbation contributes to human diseases including cancer, aging, and metabolic diseases. Abstract The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53 protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development, as well as to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although much less documented than p53 metabolic activities, converging lines of evidence indicate that other key components of this tumor suppressor pathway are also involved in cellular metabolism through p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint, the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network controlled by these p53 regulators and the mechanisms by which their activities are coordinated with p53 metabolic functions remain poorly understood. In this review, we highlight some of the metabolic pathways controlled by several central components of the p53 pathway and their role in tissue homeostasis, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Airelle Lahalle
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Matthieu Lacroix
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Carlo De Blasio
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard, T.H Chan School of Public Health, Boston, MA 02115, USA;
| | - Laetitia K. Linares
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
| | - Laurent Le Cam
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
7
|
Dang LT, Tondl M, Chiu MHH, Revote J, Paten B, Tano V, Tokolyi A, Besse F, Quaife-Ryan G, Cumming H, Drvodelic MJ, Eichenlaub MP, Hallab JC, Stolper JS, Rossello FJ, Bogoyevitch MA, Jans DA, Nim HT, Porrello ER, Hudson JE, Ramialison M. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets. BMC Genomics 2018; 19:238. [PMID: 29621972 PMCID: PMC5887194 DOI: 10.1186/s12864-018-4630-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Background A strong focus of the post-genomic era is mining of the non-coding regulatory genome in order to unravel the function of regulatory elements that coordinate gene expression (Nat 489:57–74, 2012; Nat 507:462–70, 2014; Nat 507:455–61, 2014; Nat 518:317–30, 2015). Whole-genome approaches based on next-generation sequencing (NGS) have provided insight into the genomic location of regulatory elements throughout different cell types, organs and organisms. These technologies are now widespread and commonly used in laboratories from various fields of research. This highlights the need for fast and user-friendly software tools dedicated to extracting cis-regulatory information contained in these regulatory regions; for instance transcription factor binding site (TFBS) composition. Ideally, such tools should not require prior programming knowledge to ensure they are accessible for all users. Results We present TrawlerWeb, a web-based version of the Trawler_standalone tool (Nat Methods 4:563–5, 2007; Nat Protoc 5:323–34, 2010), to allow for the identification of enriched motifs in DNA sequences obtained from next-generation sequencing experiments in order to predict their TFBS composition. TrawlerWeb is designed for online queries with standard options common to web-based motif discovery tools. In addition, TrawlerWeb provides three unique new features: 1) TrawlerWeb allows the input of BED files directly generated from NGS experiments, 2) it automatically generates an input-matched biologically relevant background, and 3) it displays resulting conservation scores for each instance of the motif found in the input sequences, which assists the researcher in prioritising the motifs to validate experimentally. Finally, to date, this web-based version of Trawler_standalone remains the fastest online de novo motif discovery tool compared to other popular web-based software, while generating predictions with high accuracy. Conclusions TrawlerWeb provides users with a fast, simple and easy-to-use web interface for de novo motif discovery. This will assist in rapidly analysing NGS datasets that are now being routinely generated. TrawlerWeb is freely available and accessible at: http://trawler.erc.monash.edu.au. Electronic supplementary material The online version of this article (10.1186/s12864-018-4630-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louis T Dang
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Markus Tondl
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Man Ho H Chiu
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Jerico Revote
- eResearch, Monash University, Clayton, VIC, Australia
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Vincent Tano
- Department of Biochemistry and Molecular Biology, Bio21 Institute and Cell Signalling Research Laboratories, The University of Melbourne, Melbourne, VIC, Australia
| | - Alex Tokolyi
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Florence Besse
- CNRS, Inserm, Institute of Biology Valrose, Université Côte d'Azur, Parc Valrose, Nice, France
| | - Greg Quaife-Ryan
- School of Biomedical Sciences, The University of Queensland, QLD, Brisbane, Australia
| | - Helen Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mark J Drvodelic
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Michael P Eichenlaub
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Jeannette C Hallab
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Julian S Stolper
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, Bio21 Institute and Cell Signalling Research Laboratories, The University of Melbourne, Melbourne, VIC, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Hieu T Nim
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia.,Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, QLD, Brisbane, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
8
|
Imai Y, Baudat F, Taillepierre M, Stanzione M, Toth A, de Massy B. The PRDM9 KRAB domain is required for meiosis and involved in protein interactions. Chromosoma 2017; 126:681-695. [PMID: 28527011 PMCID: PMC5688218 DOI: 10.1007/s00412-017-0631-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
Abstract
PR domain-containing protein 9 (PRDM9) is a major regulator of the localization of meiotic recombination hotspots in the human and mouse genomes. This role involves its DNA-binding domain, which is composed of a tandem array of zinc fingers, and PRDM9-dependent trimethylation of histone H3 at lysine 4. PRDM9 is a member of the PRDM family of transcription regulators, but unlike other family members, it contains a Krüppel-associated box (KRAB)-related domain that is predicted to be a potential protein interaction domain. Here, we show that truncation of the KRAB domain of mouse PRDM9 leads to loss of PRDM9 function and altered meiotic prophase and gametogenesis. In addition, we identified proteins that interact with the KRAB domain of PRDM9 in yeast two-hybrid assay screens, particularly CXXC1, a member of the COMPASS complex. We also show that CXXC1 interacts with IHO1, an essential component of the meiotic double-strand break (DSB) machinery. As CXXC1 is orthologous to Saccharomyces cerevisiae Spp1 that links DSB sites to the DSB machinery on the chromosome axis, we propose that these molecular interactions involved in the regulation of meiotic DSB formation are conserved in mouse meiosis.
Collapse
Affiliation(s)
- Yukiko Imai
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 141 rue de la cardonille, 34396, Montpellier cedex 05, France
| | - Frédéric Baudat
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 141 rue de la cardonille, 34396, Montpellier cedex 05, France
| | | | - Marcello Stanzione
- Faculty of Medicine at the TU Dresden, Institute of Physiological Chemistry, Fetscherstraße 74, 01307, Dresden, Germany
| | - Attila Toth
- Faculty of Medicine at the TU Dresden, Institute of Physiological Chemistry, Fetscherstraße 74, 01307, Dresden, Germany
| | - Bernard de Massy
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 141 rue de la cardonille, 34396, Montpellier cedex 05, France.
| |
Collapse
|
9
|
E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A 2016; 113:10998-1003. [PMID: 27621446 DOI: 10.1073/pnas.1602754113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial pyruvate dehydrogenase (PDH) complex (PDC) acts as a central metabolic node that mediates pyruvate oxidation and fuels the tricarboxylic acid cycle to meet energy demand. Here, we reveal another level of regulation of the pyruvate oxidation pathway in mammals implicating the E4 transcription factor 1 (E4F1). E4F1 controls a set of four genes [dihydrolipoamide acetlytransferase (Dlat), dihydrolipoyl dehydrogenase (Dld), mitochondrial pyruvate carrier 1 (Mpc1), and solute carrier family 25 member 19 (Slc25a19)] involved in pyruvate oxidation and reported to be individually mutated in human metabolic syndromes. E4F1 dysfunction results in 80% decrease of PDH activity and alterations of pyruvate metabolism. Genetic inactivation of murine E4f1 in striated muscles results in viable animals that show low muscle PDH activity, severe endurance defects, and chronic lactic acidemia, recapitulating some clinical symptoms described in PDC-deficient patients. These phenotypes were attenuated by pharmacological stimulation of PDH or by a ketogenic diet, two treatments used for PDH deficiencies. Taken together, these data identify E4F1 as a master regulator of the PDC.
Collapse
|
10
|
|