1
|
Liu J, Singh K, Huff M, Gottschalk C, Do M, Staton M, Keremane ML, Krueger R, Ramadugu C, Dardick C. Deep R-gene discovery in HLB resistant wild Australian limes uncovers evolutionary features and potentially important loci for hybrid breeding. FRONTIERS IN PLANT SCIENCE 2025; 15:1503030. [PMID: 39963358 PMCID: PMC11831368 DOI: 10.3389/fpls.2024.1503030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 02/20/2025]
Abstract
Huanglongbing (HLB) is a devastating citrus disease that threatens the citrus industry worldwide. HLB is associated with the bacteria Candidatus Liberibacter asiaticus (CLas) and as of today, there are no tools for economically viable disease management. Several wild Australian limes have been identified to be HLB resistant and their resistance is hypothesized to be conferred by resistance genes (R-genes), which mediate pathogen-specific defense responses. The aim of this study was to gain insight into the genomic features of R-genes in Australian limes, in comparison to susceptible citrus cultivars. In this study, we used five citrus genomes, including three Australian limes (Citrus australasica, C. glauca and C. inodora) and two cultivated citrus species (C. clementina and C. sinensis). Our results indicate up to 70% of the R-genes were identified in the unannotated regions in the original genome annotation of each species, owing to the use of a R-gene specific pipeline. Surprisingly, the two cultivated species harbored 15.8 to 104% more R-genes than the Australian limes. In all species, over 75% of the R-genes occurred in clusters and nearly 80% were concentrated in three chromosomes (Chr3, 5 and 7). The syntenic R-gene based phylogenic classification grouped the five species according to their HLB-resistance levels, reflecting the association between these R-genes and their distinct Australian origins. Domain structure analysis revealed substantial similarities in the R-genes between wild Australian limes and cultivated citrus. Investigation of chromosomal sites underlying Australian specific R genes revealed diversifying selection signatures on several chromosomal regions. The findings in this study will aid in the development of tools for genome-assisted breeding for HLB-resistant varieties.
Collapse
Affiliation(s)
- Jianyang Liu
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Kearneysville, WV, United States
| | - Khushwant Singh
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Matthew Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Christopher Gottschalk
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Kearneysville, WV, United States
| | - Michael Do
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Kearneysville, WV, United States
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Manjunath L. Keremane
- National Clonal Germplasm Repository for Citrus and Dates, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Riverside, CA, United States
| | - Robert Krueger
- National Clonal Germplasm Repository for Citrus and Dates, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Riverside, CA, United States
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Chris Dardick
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Kearneysville, WV, United States
| |
Collapse
|
2
|
Ijaz S, Ul Haq I, Habib Z, Muti-Ullah, Afzal I, Khan NA, Abdullah. Genome-wide identification, and gene expression analysis of NBS-LRR domain containing R genes in Chenopodium quinoa for unveiling the dynamic contribution in plant immunity against Cercospora cf. chenopodii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1129-1144. [PMID: 39100881 PMCID: PMC11291812 DOI: 10.1007/s12298-024-01475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 08/06/2024]
Abstract
The plant R genes encode the NLR proteins comprising nucleotide-binding sites (NBS) and variable-length C-terminal leucine-rich repeat domains. The proteins act as intracellular immune receptors and recognize effector proteins of phytopathogens, which convene virulence. Among stresses, diseases contribute majorly to yield loss in crop plants, and R genes confer disease resistance against phytopathogens. We investigated the NLRome of Chenopodium quinoa for intraspecific diversity, characterization, and contribution to immune response regulation against phytopathogens. One eighty-three NBS proteins were identified and grouped into four distinct classes. Exon-intron organization displayed discrimination in gene structure patterns among NLR proteins. Thirty-eight NBS proteins revealed ontology with defense response, ADP binding, and inter alia cellular components. These proteins had shown functional homology with disease-resistance proteins involved in the plant-pathogen interaction pathway. Likewise, expression analysis demonstrated that NLRs encoding genes showed differential expression patterns. However, most genes displayed high expression levels in plant defense response with varying magnitude compared to ADP binding and cellular components. Twenty-four NBS genes were selected based on Heatmap analysis for quantitative polymerase chain reaction under Cercospora disease stress, and their progressive expression pattern provides insights into their functional role under stress conditions. The protein-protein interaction analysis revealed functional enrichment of NLR proteins in regulating hypersensitive, immune, and stress responses. This study, the first to identify and characterize NBS genes in C. quinoa, reveals their contribution to disease response and divulges their dynamic involvement in inducing plant immunity against phytopathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01475-0.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| | - Zakia Habib
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Muti-Ullah
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Irfan Afzal
- Department of Agronomy, University of Agriculture, University Road, Faisalabad, Pakistan
| | - Nasir Ahmad Khan
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| | - Abdullah
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| |
Collapse
|
3
|
von Dahlen JK, Schulz K, Nicolai J, Rose LE. Global expression patterns of R-genes in tomato and potato. FRONTIERS IN PLANT SCIENCE 2023; 14:1216795. [PMID: 37965025 PMCID: PMC10641715 DOI: 10.3389/fpls.2023.1216795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023]
Abstract
Introduction As key-players of plant immunity, the proteins encoded by resistance genes (R-genes) recognize pathogens and initiate pathogen-specific defense responses. The expression of some R-genes carry fitness costs and therefore inducible immune responses are likely advantageous. To what degree inducible resistance driven by R-genes is triggered by pathogen infection is currently an open question. Methods In this study we analyzed the expression of 940 R-genes of tomato and potato across 315 transcriptome libraries to investigate how interspecific interactions with microbes influence R-gene expression in plants. Results We found that most R-genes are expressed at a low level. A small subset of R-genes had moderate to high levels of expression and were expressed across many independent libraries, irrespective of infection status. These R-genes include members of the class of genes called NRCs (NLR required for cell death). Approximately 10% of all R-genes were differentially expressed during infection and this included both up- and down-regulation. One factor associated with the large differences in R-gene expression was host tissue, reflecting a considerable degree of tissue-specific transcriptional regulation of this class of genes. Discussion These results call into question the widespread view that R-gene expression is induced upon pathogen attack. Instead, a small core set of R-genes is constitutively expressed, imparting upon the plant a ready-to-detect and defend status.
Collapse
Affiliation(s)
- Janina K. von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
- iGRAD-Plant Graduate School, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Kerstin Schulz
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Jessica Nicolai
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Laura E. Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
4
|
Alsamman AM, Mousa KH, Nassar AE, Faheem MM, Radwan KH, Adly MH, Hussein A, Istanbuli T, Mokhtar MM, Elakkad TA, Kehel Z, Hamwieh A, Abdelsattar M, El Allali A. Identification, characterization, and validation of NBS-encoding genes in grass pea. Front Genet 2023; 14:1187597. [PMID: 37408775 PMCID: PMC10318170 DOI: 10.3389/fgene.2023.1187597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Grass pea is a promising crop with the potential to provide food and fodder, but its genomics has not been adequately explored. Identifying genes for desirable traits, such as drought tolerance and disease resistance, is critical for improving the plant. Grass pea currently lacks known R-genes, including the nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family, which plays a key role in protecting the plant from biotic and abiotic stresses. In our study, we used the recently published grass pea genome and available transcriptomic data to identify 274 NBS-LRR genes. The evolutionary relationships between the classified genes on the reported plants and LsNBS revealed that 124 genes have TNL domains, while 150 genes have CNL domains. All genes contained exons, ranging from 1 to 7. Ten conserved motifs with lengths ranging from 16 to 30 amino acids were identified. We found TIR-domain-containing genes in 132 LsNBSs, with 63 TIR-1 and 69 TIR-2, and RX-CCLike in 84 LsNBSs. We also identified several popular motifs, including P-loop, Uup, kinase-GTPase, ABC, ChvD, CDC6, Rnase_H, Smc, CDC48, and SpoVK. According to the gene enrichment analysis, the identified genes undergo several biological processes such as plant defense, innate immunity, hydrolase activity, and DNA binding. In the upstream regions, 103 transcription factors were identified that govern the transcription of nearby genes affecting the plant excretion of salicylic acid, methyl jasmonate, ethylene, and abscisic acid. According to RNA-Seq expression analysis, 85% of the encoded genes have high expression levels. Nine LsNBS genes were selected for qPCR under salt stress conditions. The majority of the genes showed upregulation at 50 and 200 μM NaCl. However, LsNBS-D18, LsNBS-D204, and LsNBS-D180 showed reduced or drastic downregulation compared to their respective expression levels, providing further insights into the potential functions of LsNBSs under salt stress conditions. They provide valuable insights into the potential functions of LsNBSs under salt stress conditions. Our findings also shed light on the evolution and classification of NBS-LRR genes in legumes, highlighting the potential of grass pea. Further research could focus on the functional analysis of these genes, and their potential use in breeding programs to improve the salinity, drought, and disease resistance of this important crop.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mostafa M. Faheem
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Monica H. Adly
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Tamer Ahmed Elakkad
- Department of Genetics and Genetic Engineering, Faculty of Agriculture at Moshtohor, Benha University, Benha, Egypt
- Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
5
|
Jan N, Rather AMUD, John R, Chaturvedi P, Ghatak A, Weckwerth W, Zargar SM, Mir RA, Khan MA, Mir RR. Proteomics for abiotic stresses in legumes: present status and future directions. Crit Rev Biotechnol 2023; 43:171-190. [PMID: 35109728 DOI: 10.1080/07388551.2021.2025033] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legumes are the most important crop plants in agriculture, contributing 27% of the world's primary food production. However, productivity and production of Legumes is reduced due to increasing environmental stress. Hence, there is a pressing need to understand the molecular mechanism involved in stress response and legumes adaptation. Proteomics provides an important molecular approach to investigate proteins involved in stress response. Both the gel-based and gel-free-based techniques have significantly contributed to understanding the proteome regulatory network in leguminous plants. In the present review, we have discussed the role of different proteomic approaches (2-DE, 2 D-DIGE, ICAT, iTRAQ, etc.) in the identification of various stress-responsive proteins in important leguminous crops, including soybean, chickpea, cowpea, pigeon pea, groundnut, and common bean under variable abiotic stresses including heat, drought, salinity, waterlogging, frost, chilling and metal toxicity. The proteomic analysis has revealed that most of the identified differentially expressed proteins in legumes are involved in photosynthesis, carbohydrate metabolism, signal transduction, protein metabolism, defense, and stress adaptation. The proteomic approaches provide insights in understanding the molecular mechanism of stress tolerance in legumes and have resulted in the identification of candidate genes used for the genetic improvement of plants against various environmental stresses. Identifying novel proteins and determining their expression under different stress conditions provide the basis for effective engineering strategies to improve stress tolerance in crop plants through marker-assisted breeding.
Collapse
Affiliation(s)
- Nelofer Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | | | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Faculty of Horticulture, SKUAST-Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Jammu, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| |
Collapse
|
6
|
Nucleotide-Binding Leucine-Rich Repeat Genes CsRSF1 and CsRSF2 Are Positive Modulators in the Cucumis sativus Defense Response to Sphaerotheca fuliginea. Int J Mol Sci 2021; 22:ijms22083986. [PMID: 33924330 PMCID: PMC8069588 DOI: 10.3390/ijms22083986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cucumber powdery mildew caused by Sphaerotheca fuliginea is a leaf disease that seriously affects cucumber's yield and quality. This study aimed to report two nucleotide-binding site-leucine-rich repeats (NBS-LRR) genes CsRSF1 and CsRSF2, which participated in regulating the resistance of cucumber to S. fuliginea. The subcellular localization showed that the CsRSF1 protein was localized in the nucleus, cytoplasm, and cell membrane, while the CsRSF2 protein was localized in the cell membrane and cytoplasm. In addition, the transcript levels of CsRSF1 and CsRSF2 were different between resistant and susceptible cultivars after treatment with exogenous substances, such as abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), ethephon (ETH), gibberellin (GA) and hydrogen peroxide (H2O2). The expression analysis showed that the transcript levels of CsRSF1 and CsRSF2 were correlated with plant defense response against S. fuliginea. Moreover, the silencing of CsRSF1 and CsRSF2 impaired host resistance to S. fuliginea, but CsRSF1 and CsRSF2 overexpression improved resistance to S. fuliginea in cucumber. These results showed that CsRSF1 and CsRSF2 genes positively contributed to the resistance of cucumber to S. fuliginea. At the same time, CsRSF1 and CsRSF2 genes could also regulate the expression of defense-related genes. The findings of this study might help enhance the resistance of cucumber to S. fuliginea.
Collapse
|
7
|
Pratap A, Das A, Kumar S, Gupta S. Current Perspectives on Introgression Breeding in Food Legumes. FRONTIERS IN PLANT SCIENCE 2020; 11:589189. [PMID: 33552095 PMCID: PMC7858677 DOI: 10.3389/fpls.2020.589189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Food legumes are important for defeating malnutrition and sustaining agri-food systems globally. Breeding efforts in legume crops have been largely confined to the exploitation of genetic variation available within the primary genepool, resulting in narrow genetic base. Introgression as a breeding scheme has been remarkably successful for an array of inheritance and molecular studies in food legumes. Crop wild relatives (CWRs), landraces, and exotic germplasm offer great potential for introgression of novel variation not only to widen the genetic base of the elite genepool for continuous incremental gains over breeding cycles but also to discover the cryptic genetic variation hitherto unexpressed. CWRs also harbor positive quantitative trait loci (QTLs) for improving agronomic traits. However, for transferring polygenic traits, "specialized population concept" has been advocated for transferring QTLs from CWR into elite backgrounds. Recently, introgression breeding has been successful in developing improved cultivars in chickpea (Cicer arietinum), pigeonpea (Cajanus cajan), peanut (Arachis hypogaea), lentil (Lens culinaris), mungbean (Vigna radiata), urdbean (Vigna mungo), and common bean (Phaseolus vulgaris). Successful examples indicated that the usable genetic variation could be exploited by unleashing new gene recombination and hidden variability even in late filial generations. In mungbean alone, distant hybridization has been deployed to develop seven improved commercial cultivars, whereas in urdbean, three such cultivars have been reported. Similarly, in chickpea, three superior cultivars have been developed from crosses between C. arietinum and Cicer reticulatum. Pigeonpea has benefited the most where different cytoplasmic male sterility genes have been transferred from CWRs, whereas a number of disease-resistant germplasm have also been developed in Phaseolus. As vertical gene transfer has resulted in most of the useful gene introgressions of practical importance in food legumes, the horizontal gene transfer through transgenic technology, somatic hybridization, and, more recently, intragenesis also offer promise. The gains through introgression breeding are significant and underline the need of bringing it in the purview of mainstream breeding while deploying tools and techniques to increase the recombination rate in wide crosses and reduce the linkage drag. The resurgence of interest in introgression breeding needs to be capitalized for development of commercial food legume cultivars.
Collapse
Affiliation(s)
- Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Arpita Das
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Office, Rabat, Morocco
- *Correspondence: Sanjeev Gupta,
| | - Sanjeev Gupta
- ICAR-Indian Institute of Pulses Research, Kanpur, India
- Shiv Kumar,
| |
Collapse
|
8
|
Liu JJ, Xiang Y. Characterization of the western white pine TIR-NBS-LRR ( PmTNL2) gene by transcript profiling and promoter analysis. Genome 2019; 62:477-488. [PMID: 31132323 DOI: 10.1139/gen-2019-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteins with nucleotide-binding site (NBS) and leucine-rich repeats (LRRs) have been reported to play important roles in plant disease resistance, growth, and development. However, no comprehensive analysis of this protein family has been performed in conifers. Here we report that the Pinus monticola PmTNL2 gene is a member of the NBS-LRR superfamily. Quantitative reverse transcription-PCR (qRT-PCR) analysis revealed that the PmTNL2 transcript was expressed in a tissue-specific pattern with extensive regulation by various environmental stimuli in western white pine seedlings, suggesting its wide involvement in stress defense and diverse developmental processes. In silico analysis of the PmTNL2 promoter region revealed multiple cis-regulatory elements characterized with potential functions for development-, light-, and stress-regulated transcript expression. Expression patterns were largely confirmed by PmTNL2 promoter-directed reporter gene expression using stable transgenic Arabidopsis plants. Notably, the PmTNL2 promoter activity was highly expressed in shoot apical and floral meristems and was induced strongly with vascular specificity by pathogen infection. Our data has provided a fundamental insight into both expression regulation and putative functions of the PmTNL2 gene in the context of plant growth and development, as well as in responses to environmental stressors. Promoter application as a potential tool for tree improvement was further discussed.
Collapse
Affiliation(s)
- Jun-Jun Liu
- a Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Yu Xiang
- b Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| |
Collapse
|
9
|
Liu Z, Xie J, Wang H, Zhong X, Li H, Yu J, Kang J. Identification and expression profiling analysis of NBS-LRR genes involved in Fusarium oxysporum f.sp. conglutinans resistance in cabbage. 3 Biotech 2019; 9:202. [PMID: 31065502 PMCID: PMC6500516 DOI: 10.1007/s13205-019-1714-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022] Open
Abstract
As one of the most important resistance (R) gene families in plants, the NBS-LRR genes, encoding proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains, play significant roles in resisting pathogens. The published genomic data for cabbage (Brassica oleracea L.) provide valuable data to identify and characterize the genomic organization of cabbage NBS-LRR genes. Ultimately, we identified 105 TIR (N-terminal Toll/interleukin-1 receptor)-NBS-LRR (TNL) genes and 33 CC (coiled-coil)-NBS-LRR (CNL) genes. Further research indicated that 50.7% of the 138 NBS-LRR genes exist in 27 clusters and there are large differences among the gene structures and protein characteristics. Conserved motif and phylogenetic analysis showed that the structures of TNLs and CNLs were similar, with some differences. These NBS-LRRs are evolved under negative selection and mostly arose from whole-genome duplication events during evolution. Tissue-expression profiling of NBS-LRR genes revealed that 37.1% of the TNL genes are highly or specifically expressed in roots, especially the genes on chromosome 7 (76.5%). Digital gene expression and reverse transcription PCR analyses revealed the expression patterns of the NBS-LRR genes upon challenge by Fusarium oxysporum f.sp. conglutinans: nine genes were upregulated, and five were downregulated. The major resistance gene Foc1 probably works together with the other four genes in the same cluster to resist F. oxysporum infection.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070 People’s Republic of China
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070 People’s Republic of China
| | - Huiping Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| | - Xionghui Zhong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| | - Hailong Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070 People’s Republic of China
| | - Jungen Kang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097 People’s Republic of China
| |
Collapse
|
10
|
Neupane S, Andersen EJ, Neupane A, Nepal MP. Genome-Wide Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.). Genes (Basel) 2018; 9:genes9080384. [PMID: 30061549 PMCID: PMC6115920 DOI: 10.3390/genes9080384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Nucleotide Binding Site—Leucine-Rich Repeat (NBS-LRR) genes encode disease resistance proteins involved in plants’ defense against their pathogens. Although sunflower is affected by many diseases, only a few molecular details have been uncovered regarding pathogenesis and resistance mechanisms. Recent availability of sunflower whole genome sequences in publicly accessible databases allowed us to accomplish a genome-wide identification of Toll-interleukin-1 receptor-like Nucleotide-binding site Leucine-rich repeat (TNL), Coiled Coil (CC)-NBS-LRR (CNL), Resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) and NBS-LRR (NL) protein encoding genes. Hidden Markov Model (HMM) profiling of 52,243 putative protein sequences from sunflower resulted in 352 NBS-encoding genes, among which 100 genes belong to CNL group including 64 genes with RX_CC like domain, 77 to TNL, 13 to RNL, and 162 belong to NL group. We also identified signal peptides and nuclear localization signals present in the identified genes and their homologs. We found that NBS genes were located on all chromosomes and formed 75 gene clusters, one-third of which were located on chromosome 13. Phylogenetic analyses between sunflower and Arabidopsis NBS genes revealed a clade-specific nesting pattern in CNLs, with RNLs nested in the CNL-A clade, and species-specific nesting pattern for TNLs. Surprisingly, we found a moderate bootstrap support (BS = 50%) for CNL-A clade being nested within TNL clade making both the CNL and TNL clades paraphyletic. Arabidopsis and sunflower showed 87 syntenic blocks with 1049 high synteny hits between chromosome 5 of Arabidopsis and chromosome 6 of sunflower. Expression data revealed functional divergence of the NBS genes with basal level tissue-specific expression. This study represents the first genome-wide identification of NBS genes in sunflower paving avenues for functional characterization and potential crop improvement.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
11
|
Jha UC. Current advances in chickpea genomics: applications and future perspectives. PLANT CELL REPORTS 2018; 37:947-965. [PMID: 29860584 DOI: 10.1007/s00299-018-2305-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 05/27/2023]
Abstract
Chickpea genomics promises to illuminate our understanding of genome organization, structural variations, evolutionary and domestication-related insights and fundamental biology of legume crops. Unprecedented advancements of next generation sequencing (NGS) technologies have enabled in decoding of multiple chickpea genome sequences and generating huge genomic resources in chickpea both at functional and structural level. This review is aimed to update the current progress of chickpea genomics ranging from high density linkage map development, genome-wide association studies (GWAS), functional genomics resources for various traits, emerging role of abiotic stress responsive coding and non-coding RNAs after the completion of draft chickpea genome sequences. Additionally, the current efforts of whole genome re-sequencing (WGRS) approach of global chickpea germplasm to capture the global genetic diversity existing in the historically released varieties across the world and increasing the resolution of the previously identified candidate gene(s) of breeding importance have been discussed. Thus, the outcomes of these genomics resources will assist in genomics-assisted selection and facilitate breeding of climate-resilient chickpea cultivars for sustainable agriculture.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| |
Collapse
|
12
|
Cloning and Functional Analysis of Phosphoethanolamine Methyltransferase Promoter from Maize (Zea mays L.). Int J Mol Sci 2018; 19:ijms19010191. [PMID: 29316727 PMCID: PMC5796140 DOI: 10.3390/ijms19010191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
Betaine, a non-toxic osmoprotectant, is believed to accumulate considerably in plants under stress conditions to maintain the osmotic pressure and promote a variety of processes involved in growth and development. Phosphoethanolamine N-methyltransferase (PEAMT), a key enzyme for betaine synthesis, is reported to be regulated by its upstream promoter. In the present investigation, by using the transgenic approach, a 1048 bp long promoter region of ZmPEAMT gene from Zea mays was cloned and functionally characterized in tobacco. Computational analysis affirmed the existence of abiotic stress responsive cis-elements like ABRE, MYC, HST, LST etc., as well as pathogen, wound and phytohormone responsive motifs. For transformation in tobacco, four 5′-deletion constructs of 826 bp (P2), 642 bp (P3), 428 bp (P4) and 245 bp (P5) were constructed from the 1048 bp (P1) promoter fragment. The transgenic plants generated through a single event exhibited a promising expression of GUS reporter protein in the leaf tissues of treated with salt, drought, oxidative and cold stress as well as control plants. The GUS expression level progressively reduced from P1 to P5 in the leaf tissues, whereas a maximal expression was observed with the P3 construct in the leaves of control plants. The expression of GUS was noted to be higher in the leaves of osmotically- or salt-treated transgenic plants than that in the untreated (control) plants. An effective expression of GUS in the transgenic plants manifests that this promoter can be employed for both stress-inducible and constitutive expression of gene(s). Due to this characteristic, this potential promoter can be effectively used for genetic engineering of several crops.
Collapse
|