1
|
Li S, Qi B, Peng X, Wang W, Wang W, Liu P, Liu B, Peng Z, Wang Q, Li Y. Genome size and GC content of myxomycetes. Eur J Protistol 2023; 90:125991. [PMID: 37331249 DOI: 10.1016/j.ejop.2023.125991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023]
Abstract
More than 1272 myxomycetes species have been described, accounting for more than half of all Amoebozoa species. However, the genome size of only three myxomycetes species has been reported. Therefore, we used flow cytometry to present an extensive survey and a phylogeny-based analysis of genome size and GC content evolution in 144 myxomycetes species. The genome size of myxomycetes ranged from 18.7 Mb to 470.3 Mb, and the GC content ranged from 38.7% to 70.1%. Bright-spored clade showed larger genome sizes and more intra-order genome size variations than the dark-spored clade. GC content and genome size were positively correlated in both bright-spored and dark-spored clades, and spore size was positively correlated with genome size and GC content in the bright-spored clade. We provided the first genome size data set in Myxomycetes, and our results will provide helpful information for future Myxomycetes studies, such as genome sequencing.
Collapse
Affiliation(s)
- Shu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Xueyan Peng
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Wei Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Wan Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Pu Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun, China.
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Pincheira‐Donoso D, Harvey LP, Johnson JV, Hudson D, Finn C, Goodyear LEB, Guirguis J, Hyland EM, Hodgson DJ. Genome size does not influence extinction risk in the world's amphibians. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Lilly P. Harvey
- School of Science and Technology Nottingham Trent University Nottingham UK
| | - Jack V. Johnson
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Dave Hudson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Catherine Finn
- School of Biological Sciences Queen's University Belfast Belfast UK
| | | | - Jacinta Guirguis
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Edel M. Hyland
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Dave J. Hodgson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences University of Exeter Penryn UK
| |
Collapse
|
3
|
Merrill CB, Pabon MA, Montgomery AB, Rodan AR, Rothenfluh A. Optimized assay for transposase-accessible chromatin by sequencing (ATAC-seq) library preparation from adult Drosophila melanogaster neurons. Sci Rep 2022; 12:6043. [PMID: 35411004 PMCID: PMC9001676 DOI: 10.1038/s41598-022-09869-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Assay for transposase-accessible chromatin by sequencing (ATAC-seq) is rapidly becoming the assay of choice to investigate chromatin-mediated gene regulation, largely because of low input requirements, a fast workflow, and the ability to interrogate the entire genome in an untargeted manner. Many studies using ATAC-seq use mammalian or human-derived tissues, and established protocols work well in these systems. However, ATAC-seq is not yet widely used in Drosophila. Vinegar flies present several advantages over mammalian systems that make them an excellent model for ATAC-seq studies, including abundant genetic tools that allow straightforward targeting, transgene expression, and genetic manipulation that are not available in mammalian models. Because current ATAC-seq protocols are not optimized to use flies, we developed an optimized workflow that accounts for several complicating factors present in Drosophila. We examined parameters affecting nuclei isolation, including input size, freezing time, washing, and possible confounds from retinal pigments. Then, we optimized the enzymatic steps of library construction to account for the smaller Drosophila genome size. Finally, we used our optimized protocol to generate ATAC-seq libraries that meet ENCODE quality metrics. Our optimized protocol enables extensive ATAC-seq experiments in Drosophila, thereby leveraging the advantages of this powerful model system to understand chromatin-mediated gene regulation.
Collapse
Affiliation(s)
- Collin B. Merrill
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108 USA
| | - Miguel A. Pabon
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA
| | - Austin B. Montgomery
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA
| | - Aylin R. Rodan
- grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA ,grid.280807.50000 0000 9555 3716Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84148 USA
| | - Adrian Rothenfluh
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108 USA ,grid.223827.e0000 0001 2193 0096Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA ,grid.223827.e0000 0001 2193 0096Department of Neurobiology, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
4
|
Boutanaev AM. Components of Intrageneric Genome Size Dynamics in Plants and Animals. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421080032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Hoke KL, Zimmer SL, Roddy AB, Ondrechen MJ, Williamson CE, Buan NR. Reintegrating Biology Through the Nexus of Energy, Information, and Matter. Integr Comp Biol 2021; 61:2082-2094. [PMID: 34374780 DOI: 10.1093/icb/icab174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Information, energy, and matter are fundamental properties of all levels of biological organization, and life emerges from the continuous flux of matter, energy, and information. This perspective piece defines and explains each of the three pillars of this nexus. We propose that a quantitative characterization of the complex interconversions between matter, energy, and information that comprise this nexus will help us derive biological insights that connect phenomena across different levels of biological organization. We articulate examples from multiple biological scales that highlight how this nexus approach leads to a more complete understanding of the biological system. Metrics of energy, information, and matter can provide a common currency that helps link phenomena across levels of biological organization. The propagation of energy and information through levels of biological organization can result in emergent properties and system-wide changes that impact other hierarchical levels. Deeper consideration of measured imbalances in energy, information, and matter can help researchers identify key factors that influence system function at one scale, highlighting avenues to link phenomena across levels of biological organization and develop predictive models of biological systems.
Collapse
Affiliation(s)
- Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth campus, Duluth, MN 55812
| | - Adam B Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | | | - Nicole R Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0662
| |
Collapse
|
6
|
Dwyer DS. Genomic Chaos Begets Psychiatric Disorder. Complex Psychiatry 2020; 6:20-29. [PMID: 34883501 PMCID: PMC7673594 DOI: 10.1159/000507988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
The processes that created the primordial genome are inextricably linked to current day vulnerability to developing a psychiatric disorder as summarized in this review article. Chaos and dynamic forces including duplication, transposition, and recombination generated the protogenome. To survive early stages of genome evolution, self-organization emerged to curb chaos. Eventually, the human genome evolved through a delicate balance of chaos/instability and organization/stability. However, recombination coldspots, silencing of transposable elements, and other measures to limit chaos also led to retention of variants that increase risk for disease. Moreover, ongoing dynamics in the genome creates various new mutations that determine liability for psychiatric disorders. Homologous recombination, long-range gene regulation, and gene interactions were all guided by spooky action-at-a-distance, which increased variability in the system. A probabilistic system of life was required to deal with a changing environment. This ensured the generation of outliers in the population, which enhanced the probability that some members would survive unfavorable environmental impacts. Some of the outliers produced through this process in man are ill suited to cope with the complex demands of modern life. Genomic chaos and mental distress from the psychological challenges of modern living will inevitably converge to produce psychiatric disorders in man.
Collapse
Affiliation(s)
- Donard S. Dwyer
- Departments of Psychiatry and Behavioral Medicine and Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
7
|
Veselý P, Šmarda P, Bureš P, Stirton C, Muasya AM, Mucina L, Horová L, Veselá K, Šilerová A, Šmerda J, Knápek O. Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. ANNALS OF BOTANY 2020; 126:323-330. [PMID: 32474609 PMCID: PMC7380457 DOI: 10.1093/aob/mcaa095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The idea that genome (size) evolution in eukaryotes could be driven by environmental factors is still vigorously debated. In extant plants, genome size correlates positively with stomatal size, leading to the idea that conditions enabling the existence of large stomata in fossil plants also supported growth of their genome size. We test this inductive assumption in drought-adapted, prostrate-leaved Cape (South Africa) geophytes where, compared with their upright-leaved geophytic ancestors, stomata develop in a favourably humid microclimate formed underneath their leaves. METHODS Stomatal parameters (leaf cuticle imprints) and genome size (flow cytometry) were measured in 16 closely related geophytic species pairs from seven plant families. In each pair, representing a different genus, we contrasted a prostrate-leaved species with its upright-leaved phylogenetic relative, the latter whose stomata are exposed to the ambient arid climate. KEY RESULTS Except for one, all prostrate-leaves species had larger stomata, and in 13 of 16 pairs they also had larger genomes than their upright-leaved relatives. Stomatal density and theoretical maximum conductance were less in prostrate-leaved species with small guard cells (<1 pL) but showed no systematic difference in species pairs with larger guard cells (>1 pL). Giant stomata were observed in the prostrate-leaved Satyrium bicorne (89-137 µm long), despite its relatively small genome (2C = 9 Gbp). CONCLUSIONS Our results imply that climate, through selection on stomatal size, might be able to drive genome size evolution in plants. The data support the idea that plants from 'greenhouse' geological periods with large stomata might have generally had larger genome sizes when compared with extant plants, though this might not have been solely due to higher atmospheric CO2 in these periods but could also have been due to humid conditions prevailing at fossil deposit sites.
Collapse
Affiliation(s)
- Pavel Veselý
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
- For correspondence. E-mail
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Charles Stirton
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Ladislav Mucina
- Iluka Chair in Vegetation Science and Biogeography, Harry Butler Institute, Murdoch University, Murdoch, Perth, Australia
- Department of Geography and Environmental Studies, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Lucie Horová
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Kristýna Veselá
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Alexandra Šilerová
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Jakub Šmerda
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| | - Ondřej Knápek
- Department of Botany and Zoology, Masaryk University, Kotlářská, Brno, Czech Republic
| |
Collapse
|
8
|
Boutanaev AM, Nemchinov LG. Genome Size Dynamics within Multiple Genera of Diploid Seed Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Zíková A, Yurchenko V, Lukeš J. Causes and Effects of Loss of Classical Nonhomologous End Joining Pathway in Parasitic Eukaryotes. mBio 2019; 10:e01541-19. [PMID: 31311886 PMCID: PMC6635534 DOI: 10.1128/mbio.01541-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/22/2023] Open
Abstract
We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.
Collapse
Affiliation(s)
- Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Marija Krasilnikova
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Liu Y, El-Kassaby YA. Novel Insights into Plant Genome Evolution and Adaptation as Revealed through Transposable Elements and Non-Coding RNAs in Conifers. Genes (Basel) 2019; 10:genes10030228. [PMID: 30889931 PMCID: PMC6470726 DOI: 10.3390/genes10030228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/03/2023] Open
Abstract
Plant genomes are punctuated by repeated bouts of proliferation of transposable elements (TEs), and these mobile bursts are followed by silencing and decay of most of the newly inserted elements. As such, plant genomes reflect TE-related genome expansion and shrinkage. In general, these genome activities involve two mechanisms: small RNA-mediated epigenetic repression and long-term mutational decay and deletion, that is, genome-purging. Furthermore, the spatial relationships between TE insertions and genes are an important force in shaping gene regulatory networks, their downstream metabolic and physiological outputs, and thus their phenotypes. Such cascading regulations finally set up a fitness differential among individuals. This brief review demonstrates factual evidence that unifies most updated conceptual frameworks covering genome size, architecture, epigenetic reprogramming, and gene expression. It aims to give an overview of the impact that TEs may have on genome and adaptive evolution and to provide novel insights into addressing possible causes and consequences of intimidating genome sizes (20⁻30 Gb) in a taxonomic group, conifers.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
Malmstrøm M, Britz R, Matschiner M, Tørresen OK, Hadiaty RK, Yaakob N, Tan HH, Jakobsen KS, Salzburger W, Rüber L. The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes. Genome Biol Evol 2018; 10:1088-1103. [PMID: 29684203 PMCID: PMC5906920 DOI: 10.1093/gbe/evy058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
The world’s smallest fishes belong to the genus Paedocypris. These miniature fishes are endemic to an extreme habitat: the peat swamp forests in Southeast Asia, characterized by highly acidic blackwater. This threatened habitat is home to a large array of fishes, including a number of miniaturized but also developmentally truncated species. Especially the genus Paedocypris is characterized by profound, organism-wide developmental truncation, resulting in sexually mature individuals of <8 mm in length with a larval phenotype. Here, we report on evolutionary simplification in the genomes of two species of the dwarf minnow genus Paedocypris using whole-genome sequencing. The two species feature unprecedented Hox gene loss and genome reduction in association with their massive developmental truncation. We also show how other genes involved in the development of musculature, nervous system, and skeleton have been lost in Paedocypris, mirroring its highly progenetic phenotype. Further, our analyses suggest two mechanisms responsible for the genome streamlining in Paedocypris in relation to other Cypriniformes: severe intron shortening and reduced repeat content. As the first report on the genomic sequence of a vertebrate species with organism-wide developmental truncation, the results of our work enhance our understanding of genome evolution and how genotypes are translated to phenotypes. In addition, as a naturally simplified system closely related to zebrafish, Paedocypris provides novel insights into vertebrate development.
Collapse
Affiliation(s)
- Martin Malmstrøm
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway.,Zoological Institute, University of Basel, Switzerland
| | - Ralf Britz
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Michael Matschiner
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway.,Zoological Institute, University of Basel, Switzerland
| | - Ole K Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway
| | - Renny Kurnia Hadiaty
- Ichthyology Laboratory, Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Norsham Yaakob
- Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia
| | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Kjetill Sigurd Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway
| | - Walter Salzburger
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway.,Zoological Institute, University of Basel, Switzerland
| | - Lukas Rüber
- Naturhistorisches Museum Bern, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Switzerland
| |
Collapse
|
12
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
13
|
Lyu H, He Z, Wu CI, Shi S. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. THE NEW PHYTOLOGIST 2018; 217:428-438. [PMID: 28960318 DOI: 10.1111/nph.14784] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/10/2017] [Indexed: 05/18/2023]
Abstract
Several clades of mangrove trees independently invade the interface between land and sea at the margin of woody plant distribution. As phenotypic convergence among mangroves is common, the possibility of convergent adaptation in their genomes is quite intriguing. To study this molecular convergence, we sequenced multiple mangrove genomes. In this study, we focused on the evolution of transposable elements (TEs) in relation to the genome size evolution. TEs, generally considered genomic parasites, are the most common components of woody plant genomes. Analyzing the long terminal repeat-retrotransposon (LTR-RT) type of TE, we estimated their death rates by counting solo-LTRs and truncated elements. We found that all lineages of mangroves massively and convergently reduce TE loads in comparison to their nonmangrove relatives; as a consequence, genome size reduction happens independently in all six mangrove lineages; TE load reduction in mangroves can be attributed to the paucity of young elements; the rarity of young LTR-RTs is a consequence of fewer births rather than access death. In conclusion, mangrove genomes employ a convergent strategy of TE load reduction by suppressing element origination in their independent adaptation to a new environment.
Collapse
Affiliation(s)
- Haomin Lyu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Assaf ZJ, Tilk S, Park J, Siegal ML, Petrov DA. Deep sequencing of natural and experimental populations of Drosophila melanogaster reveals biases in the spectrum of new mutations. Genome Res 2017; 27:1988-2000. [PMID: 29079675 PMCID: PMC5741049 DOI: 10.1101/gr.219956.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 10/20/2017] [Indexed: 11/25/2022]
Abstract
Mutations provide the raw material of evolution, and thus our ability to study evolution depends fundamentally on having precise measurements of mutational rates and patterns. We generate a data set for this purpose using (1) de novo mutations from mutation accumulation experiments and (2) extremely rare polymorphisms from natural populations. The first, mutation accumulation (MA) lines are the product of maintaining flies in tiny populations for many generations, therefore rendering natural selection ineffective and allowing new mutations to accrue in the genome. The second, rare genetic variation from natural populations allows the study of mutation because extremely rare polymorphisms are relatively unaffected by the filter of natural selection. We use both methods in Drosophila melanogaster, first generating our own novel data set of sequenced MA lines and performing a meta-analysis of all published MA mutations (∼2000 events) and then identifying a high quality set of ∼70,000 extremely rare (≤0.1%) polymorphisms that are fully validated with resequencing. We use these data sets to precisely measure mutational rates and patterns. Highlights of our results include: a high rate of multinucleotide mutation events at both short (∼5 bp) and long (∼1 kb) genomic distances, showing that mutation drives GC content lower in already GC-poor regions, and using our precise context-dependent mutation rates to predict long-term evolutionary patterns at synonymous sites. We also show that de novo mutations from independent MA experiments display similar patterns of single nucleotide mutation and well match the patterns of mutation found in natural populations.
Collapse
Affiliation(s)
- Zoe June Assaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA.,Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Susanne Tilk
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Jane Park
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Mark L Siegal
- Department of Biology, New York University, New York, New York 10003, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
15
|
Hjelmen CE, Johnston JS. The mode and tempo of genome size evolution in the subgenus Sophophora. PLoS One 2017; 12:e0173505. [PMID: 28267812 PMCID: PMC5340367 DOI: 10.1371/journal.pone.0173505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/21/2017] [Indexed: 01/05/2023] Open
Abstract
Genome size varies widely across organisms, with no apparent tie to organismal complexity. While genome size is inherited, there is no established evolutionary model for this trait. Hypotheses have been postulated for the observed variation in genome sizes across species, most notably the effective population size hypothesis, the mutational equilibrium hypothesis, and the adaptive hypothesis. While much data has been collected on genome size, the above hypotheses have largely ignored impacts from phylogenetic relationships. In order to test these competing hypotheses, genome sizes of 87 Sophophora species were analyzed in a comparative phylogenetic approach using Pagel’s parameters of evolution, Blomberg’s K, Abouheif’s Cmean and Moran’s I. In addition to testing the mode and rate of genome size evolution in Sophophora species, the effect of number of taxa on detection of phylogenetic signal was analyzed for each of these comparative phylogenetic methods. Sophophora genome size was found to be dependent on the phylogeny, indicating that evolutionary time was important for predicting the variation among species. Genome size was found to evolve gradually on branches of the tree, with a rapid burst of change early in the phylogeny. These results suggest that Sophophora genome size has experienced gradual changes, which support the largely theoretical mutational equilibrium hypothesis. While some methods (Abouheif’s Cmean and Moran’s I) were found to be affected by increasing taxa numbers, more commonly used methods (λ and Blomberg’s K) were found to have increasing reliability with increasing taxa number, with significantly more support with fifteen or more taxa. Our results suggest that these comparative phylogenetic methods, with adequate taxon sampling, can be a powerful way to uncover the enigma that is genome size variation through incorporation of phylogenetic relationships.
Collapse
Affiliation(s)
- Carl E. Hjelmen
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
16
|
Arnqvist G, Sayadi A, Immonen E, Hotzy C, Rankin D, Tuda M, Hjelmen CE, Johnston JS. Genome size correlates with reproductive fitness in seed beetles. Proc Biol Sci 2016; 282:rspb.2015.1421. [PMID: 26354938 DOI: 10.1098/rspb.2015.1421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the 'C-value paradox'. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4-5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Elina Immonen
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Cosima Hotzy
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Daniel Rankin
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Department of Bioresource Sciences, Kyushu University, Fukuoka 812-8581, Japan Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Carl E Hjelmen
- Department of Entomology, Texas A&M University, College Station, TX 77843 2475, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843 2475, USA
| |
Collapse
|
17
|
Gupta A, LaBar T, Miyagi M, Adami C. Evolution of Genome Size in Asexual Digital Organisms. Sci Rep 2016; 6:25786. [PMID: 27181837 PMCID: PMC4867773 DOI: 10.1038/srep25786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some amoebas. This remarkable variation in genome size is the outcome of complex interactions between various evolutionary factors such as mutation rate and population size. While comparative genomics has uncovered how some of these evolutionary factors influence genome size, we still do not understand what drives genome size evolution. Specifically, it is not clear how the primordial mutational processes of base substitutions, insertions, and deletions influence genome size evolution in asexual organisms. Here, we use digital evolution to investigate genome size evolution by tracking genome edits and their fitness effects in real time. In agreement with empirical data, we find that mutation rate is inversely correlated with genome size in asexual populations. We show that at low point mutation rate, insertions are significantly more beneficial than deletions, driving genome expansion and the acquisition of phenotypic complexity. Conversely, the high mutational load experienced at high mutation rates inhibits genome growth, forcing the genomes to compress their genetic information. Our analyses suggest that the inverse relationship between mutation rate and genome size is a result of the tradeoff between evolving phenotypic innovation and limiting the mutational load.
Collapse
Affiliation(s)
- Aditi Gupta
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas LaBar
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Miyagi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Christoph Adami
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, USA.,Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Craddock EM, Gall JG, Jonas M. Hawaiian Drosophila genomes: size variation and evolutionary expansions. Genetica 2016; 144:107-24. [PMID: 26790663 DOI: 10.1007/s10709-016-9882-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/09/2016] [Indexed: 01/24/2023]
Abstract
This paper reports genome sizes of one Hawaiian Scaptomyza and 16 endemic Hawaiian Drosophila species that include five members of the antopocerus species group, one member of the modified mouthpart group, and ten members of the picture wing clade. Genome size expansions have occurred independently multiple times among Hawaiian Drosophila lineages, and have resulted in an over 2.3-fold range of genome sizes among species, with the largest observed in Drosophila cyrtoloma (1C = 0.41 pg). We find evidence that these repeated genome size expansions were likely driven by the addition of significant amounts of heterochromatin and satellite DNA. For example, our data reveal that the addition of seven heterochromatic chromosome arms to the ancestral haploid karyotype, and a remarkable proportion of ~70 % satellite DNA, account for the greatly expanded size of the D. cyrtoloma genome. Moreover, the genomes of 13/17 Hawaiian picture wing species are composed of substantial proportions (22-70 %) of detectable satellites (all but one of which are AT-rich). Our results suggest that in this tightly knit group of recently evolved species, genomes have expanded, in large part, via evolutionary amplifications of satellite DNA sequences in centric and pericentric domains (especially of the X and dot chromosomes), which have resulted in longer acrocentric chromosomes or metacentrics with an added heterochromatic chromosome arm. We discuss possible evolutionary mechanisms that may have shaped these patterns, including rapid fixation of novel expanded genomes during founder-effect speciation.
Collapse
Affiliation(s)
- Elysse M Craddock
- Natural Sciences Building, Purchase College, State University of New York, 735 Anderson Hill Road, Purchase, NY, 10577, USA.
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Mark Jonas
- Natural Sciences Building, Purchase College, State University of New York, 735 Anderson Hill Road, Purchase, NY, 10577, USA
| |
Collapse
|
19
|
Senerchia N, Felber F, Parisod C. Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation. Proc Biol Sci 2015; 282:20142874. [PMID: 25716787 DOI: 10.1098/rspb.2014.2874] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interspecific hybridization leads to new interactions among divergent genomes, revealing the nature of genetic incompatibilities having accumulated during and after the origin of species. Conflicts associated with misregulation of transposable elements (TEs) in hybrids expectedly result in their activation and genome-wide changes that may be key to species boundaries. Repetitive genomes of wild wheats have diverged under differential dynamics of specific long terminal repeat retrotransposons (LTR-RTs), offering unparalleled opportunities to address the underpinnings of plant genome reorganization by selfish sequences. Using reciprocal F1 hybrids between three Aegilops species, restructuring and epigenetic repatterning was assessed at random and LTR-RT sequences with amplified fragment length polymorphism and sequence-specific amplified polymorphisms as well as their methylation-sensitive counterparts, respectively. Asymmetrical reorganization of LTR-RT families predicted to cause conflicting interactions matched differential survival of F1 hybrids. Consistent with the genome shock model, increasing divergence of merged LTR-RTs yielded higher levels of changes in corresponding genome fractions and lead to repeated reorganization of LTR-RT sequences in F1 hybrids. Such non-random reorganization of hybrid genomes is coherent with the necessary repression of incompatible TE loci in support of hybrid viability and indicates that TE-driven genomic conflicts may represent an overlooked factor supporting reproductive isolation.
Collapse
Affiliation(s)
- Natacha Senerchia
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland
| | - François Felber
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland Musée et Jardins Botaniques Cantonaux, Lausanne 1007, Switzerland
| | - Christian Parisod
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland
| |
Collapse
|
20
|
Roth G, Walkowiak W. The Influence of Genome and Cell Size on Brain Morphology in Amphibians. Cold Spring Harb Perspect Biol 2015; 7:a019075. [PMID: 26261281 DOI: 10.1101/cshperspect.a019075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection.
Collapse
Affiliation(s)
- Gerhard Roth
- University of Bremen, Brain Research Institute, D-283345 Bremen, Germany
| | - Wolfgang Walkowiak
- University of Cologne, Biocenter, Institute for Zoology, D-50674 Köln, Germany
| |
Collapse
|
21
|
Ai B, Wang ZS, Ge S. GENOME SIZE IS NOT CORRELATED WITH EFFECTIVE POPULATION SIZE IN THEORYZASPECIES. Evolution 2012; 66:3302-10. [DOI: 10.1111/j.1558-5646.2012.01674.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Sun C, Shepard DB, Chong RA, López Arriaza J, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 2011; 4:168-83. [PMID: 22200636 PMCID: PMC3318908 DOI: 10.1093/gbe/evr139] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2011] [Indexed: 01/20/2023] Open
Abstract
Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ~14 to ~120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Biology, Colorado State University
| | - Donald B. Shepard
- Department of Biology, Colorado State University
- Current address: Department of Fisheries, Wildlife and Conservation Biology; University of Minnesota
| | | | | | - Kathryn Hall
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Todd A. Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | | | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | | |
Collapse
|
23
|
Maciak S, Janko K, Kotusz J, Choleva L, Boroń A, Juchno D, Kujawa R, Kozłowski J, Konarzewski M. Standard Metabolic Rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01870.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Rankin DJ, Bichsel M, Wagner A. Mobile DNA can drive lineage extinction in prokaryotic populations. J Evol Biol 2010; 23:2422-31. [PMID: 20860700 DOI: 10.1111/j.1420-9101.2010.02106.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Natural selection ultimately acts on genes and other DNA sequences. Adaptations that are good for the gene can have adverse effects at higher levels of organization, including the individual or the population. Mobile genetic elements illustrate this principle well, because they can self-replicate within a genome at a cost to their host. As they are costly and can be transmitted horizontally, mobile elements can be seen as genomic parasites. It has been suggested that mobile elements may cause the extinction of their host populations. In organisms with very large populations, such as most bacteria, individual selection is highly effective in purging genomes of deleterious elements, suggesting that extinction is unlikely. Here we investigate the conditions under which mobile DNA can drive bacterial lineages to extinction. We use a range of epidemiological and ecological models to show that harmful mobile DNA can invade, and drive populations to extinction, provided their transmission rate is high and that mobile element-induced mortality is not too high. Population extinction becomes more likely when there are more elements in the population. Even if elements are costly, extinction can still occur because of the combined effect of horizontal gene transfer, a mortality induced by mobile elements. Our study highlights the potential of mobile DNA to be selected at the population level, as well as at the individual level.
Collapse
Affiliation(s)
- D J Rankin
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
25
|
McCoy MW, Allen AP, Gillooly JF. The random nature of genome architecture: predicting open reading frame distributions. PLoS One 2009; 4:e6456. [PMID: 19649247 PMCID: PMC2714469 DOI: 10.1371/journal.pone.0006456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/23/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A better understanding of the size and abundance of open reading frames (ORFS) in whole genomes may shed light on the factors that control genome complexity. Here we examine the statistical distributions of open reading frames (i.e. distribution of start and stop codons) in the fully sequenced genomes of 297 prokaryotes, and 14 eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS By fitting mixture models to data from whole genome sequences we show that the size-frequency distributions for ORFS are strikingly similar across prokaryotic and eukaryotic genomes. Moreover, we show that i) a large fraction (60-80%) of ORF size-frequency distributions can be predicted a priori with a stochastic assembly model based on GC content, and that (ii) size-frequency distributions of the remaining "non-random" ORFs are well-fitted by log-normal or gamma distributions, and similar to the size distributions of annotated proteins. CONCLUSIONS/SIGNIFICANCE Our findings suggest stochastic processes have played a primary role in the evolution of genome complexity, and that common processes govern the conservation and loss of functional genomics units in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Michael W McCoy
- Department of Biology, Boston University, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
26
|
Abstract
Elevated levels of genetic drift are hypothesized to be a dominant factor that influences genome size evolution across all life-forms. However, increased levels of drift appear to be correlated with genome expansion in eukaryotes but with genome contraction in bacteria, suggesting that these two groups of organisms experience vastly different mutational inputs and selective constraints. To determine the contribution of small insertion and deletion events to the differences in genome organization between eukaryotes and prokaryotes, we systematically surveyed 17 taxonomic groups across the three domains of life. Based on over 5,000 indel events in noncoding regions, we found that deletional events outnumbered insertions in all groups examined. The extent of deletional bias, when measured by the total length of insertions to deletions, revealed a marked disparity between eukaryotes and prokaryotes, whereas the ratio was close to one in the three eukaryotic groups examined, deletions outweighed insertions by at least a factor of 10 in most prokaryotes. Moreover, the strength of deletional bias is associated with the proportion of coding regions in prokaryotic genomes. Considering that genetic drift is a stochastic process and does not discriminate the exact nature of mutations, the degree of bias toward deletions provides an explanation to the differential responses of eukaryotes and prokaryotes to elevated levels of drift. Furthermore, deletional bias, rather than natural selection, is the primary mechanism by which the compact gene packing within most prokaryotic genomes is maintained.
Collapse
Affiliation(s)
- Chih-Horng Kuo
- Department of Ecology & Evolutionary Biology, University of Arizona, USA
| | | |
Collapse
|
27
|
Patrushev LI, Minkevich IG. The problem of the eukaryotic genome size. BIOCHEMISTRY (MOSCOW) 2009; 73:1519-52. [PMID: 19216716 DOI: 10.1134/s0006297908130117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current state of knowledge concerning the unsolved problem of the huge interspecific eukaryotic genome size variations not correlating with the species phenotypic complexity (C-value enigma also known as C-value paradox) is reviewed. Characteristic features of eukaryotic genome structure and molecular mechanisms that are the basis of genome size changes are examined in connection with the C-value enigma. It is emphasized that endogenous mutagens, including reactive oxygen species, create a constant nuclear environment where any genome evolves. An original quantitative model and general conception are proposed to explain the C-value enigma. In accordance with the theory, the noncoding sequences of the eukaryotic genome provide genes with global and differential protection against chemical mutagens and (in addition to the anti-mutagenesis and DNA repair systems) form a new, third system that protects eukaryotic genetic information. The joint action of these systems controls the spontaneous mutation rate in coding sequences of the eukaryotic genome. It is hypothesized that the genome size is inversely proportional to functional efficiency of the anti-mutagenesis and/or DNA repair systems in a particular biological species. In this connection, a model of eukaryotic genome evolution is proposed.
Collapse
Affiliation(s)
- L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | |
Collapse
|
28
|
Smith JJ, Putta S, Zhu W, Pao GM, Verma IM, Hunter T, Bryant SV, Gardiner DM, Harkins TT, Voss SR. Genic regions of a large salamander genome contain long introns and novel genes. BMC Genomics 2009; 10:19. [PMID: 19144141 PMCID: PMC2633012 DOI: 10.1186/1471-2164-10-19] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 01/13/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 x 10(9) bp) were isolated and sequenced to characterize the structure of genic regions. RESULTS Annotation of genes within BACs showed that axolotl introns are on average 10x longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86%) of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5x larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! CONCLUSION This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Srikrishna Putta
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - Wei Zhu
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gerald M Pao
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Inder M Verma
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony Hunter
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan V Bryant
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
- The Developmental Biology Center, University of California Irvine, Irvine, CA 92697, USA
| | - David M Gardiner
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
- The Developmental Biology Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
29
|
Abstract
Reptiles are a karyologically heterogeneous group, where some orders and suborders exhibit characteristics similar to those of anamniotes and others share similarities with homeotherms. The class also shows different evolutionary trends, for instance in genome and chromosome size and composition. The turtle DNA base composition is similar to that of mammals, whereas that of lizards and snakes is more similar to that of anamniotes. The major karyological differences between turtles and squamates are the size and composition of the genome and the rate at which chromosomes change. Turtles have larger and more variable genome sizes, and a greater amount of middle repetitive DNA that differs even among related species. In lizards and snakes size of the genome are smaller, single-copy DNA is constant within each suborder, and differences in repetitive DNA involve fractions that become increasingly heterogeneous with widening phylogenetic distance. With regard to variation in karyotype morphology, turtles and crocodiles show low variability in chromosome number, morphology, and G-banding pattern. Greater variability is found among squamates, which have a similar degree of karyotypic change-as do some mammals, such as carnivores and bats-and in which there are also differences among congeneric species. An interesting relationship has been highlighted in the entire class Reptilia between rates of change in chromosomes, number of living species, and rate of extinction. However, different situations obtain in turtles and crocodiles on the one hand, and squamates on the other. In the former, the rate of change in chromosomes is lower and the various evolutionary steps do not seem to have entailed marked chromosomal variation, whereas squamates have a higher rate of change in chromosomes clearly related to the number of living species, and chromosomal variation seems to have played an important role in the evolution of several taxa. The different evolutionary trends in chromosomes observed between turtles and crocodiles on the one hand and squamates on the other might depend on their different patterns of G-banding.
Collapse
Affiliation(s)
- Ettore Olmo
- Istituto di Biologia e Genetica, Università Politecnica delle Marche and Istituto Nazionale di Biosistemi e Biostrutture, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
30
|
Abstract
Transposable elements are often considered parasitic DNA sequences, able to invade the genome of their host thanks to their self-replicating ability. This colonization process has been extensively studied, both theoretically and experimentally, but their long-term coevolution with the genomes is still poorly understood. In this work, we aim to challenge previous population genetics models by considering features of transposable elements as quantitative, rather than discrete, variables. We also describe more realistic transposable element dynamics by accounting for the variability of the insertion effect, from deleterious to adaptive, as well as mutations leading to a loss of transposition activity and to nonautonomous copies. Individual-based simulations of the behavior of a transposable-element family over several thousand generations show different ways in which active or inactive copies can be maintained for a very long time. Results reveal an unexpected impact of genetic drift on the "junk DNA" content of the genome and strongly question the likelihood of the sustainable long-term stable transposition-selection equilibrium on which numerous previous works were based.
Collapse
|
31
|
Gallach M, Arnau V, Marín I. Global patterns of sequence evolution in Drosophila. BMC Genomics 2007; 8:408. [PMID: 17996078 PMCID: PMC2180185 DOI: 10.1186/1471-2164-8-408] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 11/09/2007] [Indexed: 01/30/2023] Open
Abstract
Background Sequencing of the genomes of several Drosophila allows for the first precise analyses of how global sequence patterns change among multiple, closely related animal species. A basic question is whether there are characteristic features that differentiate chromosomes within a species or between different species. Results We explored the euchromatin of the chromosomes of seven Drosophila species to establish their global patterns of DNA sequence diversity. Between species, differences in the types and amounts of simple sequence repeats were found. Within each species, the autosomes have almost identical oligonucleotide profiles. However, X chromosomes and autosomes have, in all species, a qualitatively different composition. The X chromosomes are less complex than the autosomes, containing both a higher amount of simple DNA sequences and, in several cases, chromosome-specific repetitive sequences. Moreover, we show that the right arm of the X chromosome of Drosophila pseudoobscura, which evolved from an autosome 10 – 18 millions of years ago, has a composition which is identical to that of the original, left arm of the X chromosome. Conclusion The consistent differences among species, differences among X chromosomes and autosomes and the convergent evolution of X and neo-X chromosomes demonstrate that strong forces are acting on drosophilid genomes to generate peculiar chromosomal landscapes. We discuss the relationships of the patterns observed with differential recombination and mutation rates and with the process of dosage compensation.
Collapse
Affiliation(s)
- Miguel Gallach
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain.
| | | | | |
Collapse
|
32
|
Abstract
Estimates of cell volume in fossilized bones of extinct dinosaurs indicate that genome size underwent a significant reduction in the early theropods, from which birds later evolved. This suggests that birds' small genomes are not an adaptation to metabolic demands associated with flight.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
33
|
Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM. The mode and tempo of genome size evolution in eukaryotes. Genome Res 2007; 17:594-601. [PMID: 17420184 PMCID: PMC1855170 DOI: 10.1101/gr.6096207] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic genome size varies over five orders of magnitude; however, the distribution is strongly skewed toward small values. Genome size is highly correlated to a number of phenotypic traits, suggesting that the relative lack of large genomes in eukaryotes is due to selective removal. Using phylogenetic contrasts, we show that the rate of genome size evolution is proportional to genome size, with the fastest rates occurring in the largest genomes. This trend is evident across the 20 major eukaryotic clades analyzed, indicating that over long time scales, proportional change is the dominant and universal mode of genome-size evolution in eukaryotes. Our results reveal that the evolution of eukaryotic genome size can be described by a simple proportional model of evolution. This model explains the skewed distribution of eukaryotic genome sizes without invoking strong selection against large genomes.
Collapse
Affiliation(s)
- Matthew J Oliver
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | | | | | | | |
Collapse
|
34
|
Keeling PJ. Ostreococcus tauri: seeing through the genes to the genome. Trends Genet 2007; 23:151-4. [PMID: 17331615 DOI: 10.1016/j.tig.2007.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/06/2006] [Accepted: 02/13/2007] [Indexed: 11/30/2022]
Abstract
The marine green alga Ostreococcus tauri is the smallest-known free-living eukaryote. The recent sequencing of its genome extends this distinction, because it also has one of the smallest and most compact nuclear genomes. For other highly compacted genomes (e.g. those of microsporidian parasites and relic endosymbiont nucleomorphs), compaction is associated with severe gene loss. By contrast, O. tauri has retained a large complement of genes. Studying O. tauri should shed light on forces, other than parasitism and endosymbiosis, that result in densely packed genomes.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
35
|
Lee CT, Risom T, Strauss WM. Evolutionary Conservation of MicroRNA Regulatory Circuits: An Examination of MicroRNA Gene Complexity and Conserved MicroRNA-Target Interactions through Metazoan Phylogeny. DNA Cell Biol 2007; 26:209-18. [PMID: 17465887 DOI: 10.1089/dna.2006.0545] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During the last decade, a variety of critical biological processes, including early embryo development, cell proliferation, differentiation, apoptosis, and metabolic regularity, have been shown to be genetically regulated by a large gene family encoding a class of tiny RNA molecules termed microRNAs (miRNAs). All miRNAs share a common biosynthetic pathway and reaction mechanisms. The sequence of many miRNAs is found to be conserved, in their mature form, among different organisms. In addition, the evolutionary appearance of multicellular organisms appears to correlate with the appearance of the miRNA pathway for regulating gene expression. The miRNA pathway has the potential to regulate vast networks of gene products in a coordinate manner. Recent evidence has not only implicated the miRNA pathway in regulating a vast array of basic cellular processes but also specialized processes that are required for cellular identity and tissue specificity. A survey of the literature shows that some miRNA pathways are conserved virtually intact throughout phylogeny while miRNA diversity also correlates with speciation. The number of miRNA genes, the expression of miRNAs, and target diversities of miRNAs tend to be positively correlated with morphological complexities observed in animals. Thus, organismal complexity can be estimated by the complexity of the miRNA circuitry. The complexity of the miRNA gene families establishes a link between genotypic complexity and phenotypic complexity in animal evolution. In this paper, we start with the discussion of miRNA conservation. Then we interpret the trends in miRNA conservation to deduce miRNA evolutionary trends in metazoans. Based on these conservation patterns observed in each component of the miRNA regulatory system, we attempt to propose a global insight on the probable consistency between morphological evolution in animals and the molecular evolution of miRNA gene activity in the cell.
Collapse
Affiliation(s)
- Chung-Tien Lee
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
36
|
Redi CA, Garagna S, Zuccotti M, Capanna E. Genome size: a novel genomic signature in support of Afrotheria. J Mol Evol 2007; 64:484-7. [PMID: 17479346 DOI: 10.1007/s00239-006-0237-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 01/08/2007] [Indexed: 11/26/2022]
Abstract
Molecular phylogenetic analyses suggest an emerging phylogeny for the extant Placentalia (eutherian) that radically departs from morphologically based constructions of the past. Placental mammals are partitioned into four supraordinal clades: Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. Afrotheria form an endemic African clade that includes elephant shrews, golden moles, tenrecs, aardvarks, hyraxes, elephants, dugongs, and manatees. Datamining databases of genome size (GS) shows that till today just one afrotherian GS has been evaluated, that of the aardvark Orycteropus afer. We show that the GSs of six selected representatives across the Afrotheria supraordinal group are among the highest for the extant Placentalia, providing a novel genomic signature of this enigmatic group. The mean GS value of Afrotheria, 5.3 +/- 0.7 pg, is the highest reported for the extant Placentalia. This should assist in planning new genome sequencing initiatives.
Collapse
|
37
|
Pie MR, Torres RA, Brito DMA. Evolution of genome size in fishes: a phylogenetic test of the Hinegardner and Rosen hypothesis. Genetica 2006; 131:51-8. [PMID: 17063380 DOI: 10.1007/s10709-006-9112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
Despite remarkable advances in genomic studies over the past few decades, surprisingly little is known about the processes governing genome evolution at macroevolutionary timescales. In a seminal paper, Hinegardner and Rosen (Am Nat 106:621-644, 1972) suggested that taxa characterized by larger genomes should also display disproportionately stronger fluctuations in genome size. Therefore, according to the Hinegardner and Rosen (HR) hypothesis, there should be a negative correlation between average within-family genome size and its corresponding coefficient of variation (CV), a prediction that was supported by their analysis of the genomes of 275 species of fish. In this study we reevaluate the HR hypothesis using an expanded dataset (2050 genome size records). Moreover, in addition to the use of standard linear regression techniques, we also conducted modern comparative analyses that take into account phylogenetic non-independence. Our analyses failed to confirm the negative relationship detected in the original study, suggesting that the evolution of genome size in fishes might be more complex than envisioned by the HR hypothesis. Interestingly, the frequency distribution of fish genome sizes was strongly skewed, even on a logarithmic scale, suggesting that the dynamics underlying genome size evolution are driven by multiplicative phenomena, which might include chromosomal rearrangements and the expansion of transposable elements.
Collapse
Affiliation(s)
- Marcio R Pie
- Laboratório de Parasitologia Evolutiva, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, C.P. 19020, Curitiba PR 81531-980, Brazil.
| | | | | |
Collapse
|
38
|
Abstract
Human tissue-specific genes were reported to be longer than housekeeping genes (both in coding and intronic parts). The competing neutralist and adaptationist models were proposed to explain this observation. Here I show that in human genome the longest are genes with the intermediate expression pattern. From the standpoint of information theory, the regulation of such genes should be most complex. In the genomewide context, they are found here to have the higher informational load on all available levels: from participation in protein interaction networks, pathways and modules reflected in Gene Ontology categories through transcription factor regulatory sets and protein functional domains to amino acid tuples (words) in encoded proteins and nucleotide tuples in introns and promoter regions. Thus, the intermediately expressed genes have the higher functional and regulatory complexity that is reflected in their greater length (which is consistent with the 'genome design' model). The dichotomy of housekeeping versus tissue-specific entities is more pronounced on the modular level than on the molecular level. There are much lesser intermediate-specific modules (modules overrepresented in the intermediately expressed genes) than housekeeping or tissue-specific modules (normalized to gene number). The dichotomy of housekeeping versus tissue-specific genes and modules in multicellular organisms is probably caused by the burden of regulatory complexity acted on the intermediately expressed genes.
Collapse
|
39
|
Vinogradov AE, Anatskaya OV. Genome size and metabolic intensity in tetrapods: a tale of two lines. Proc Biol Sci 2006; 273:27-32. [PMID: 16519230 PMCID: PMC1560010 DOI: 10.1098/rspb.2005.3266] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We show the negative link between genome size and metabolic intensity in tetrapods, using the heart index (relative heart mass) as a unified indicator of metabolic intensity in poikilothermal and homeothermal animals. We found two separate regression lines of heart index on genome size for reptiles-birds and amphibians-mammals (the slope of regression is steeper in reptiles-birds). We also show a negative correlation between GC content and nucleosome formation potential in vertebrate DNA, and, consistent with this relationship, a positive correlation between genome GC content and nuclear size (independent of genome size). It is known that there are two separate regression lines of genome GC content on genome size for reptiles-birds and amphibians-mammals: reptiles-birds have the relatively higher GC content (for their genome sizes) compared to amphibians-mammals. Our results suggest uniting all these data into one concept. The slope of negative regression between GC content and nucleosome formation potential is steeper in exons than in non-coding DNA (where nucleosome formation potential is generally higher), which indicates a special role of non-coding DNA for orderly chromatin organization. The chromatin condensation and nuclear size are supposed to be key parameters that accommodate the effects of both genome size and GC content and connect them with metabolic intensity. Our data suggest that the reptilian-birds clade evolved special relationships among these parameters, whereas mammals preserved the amphibian-like relationships. Surprisingly, mammals, although acquiring a more complex general organization, seem to retain certain genome-related properties that are similar to amphibians. At the same time, the slope of regression between nucleosome formation potential and GC content is steeper in poikilothermal than in homeothermal genomes, which suggests that mammals and birds acquired certain common features of genomic organization.
Collapse
Affiliation(s)
- Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St Petersburg 194064, Russia.
| | | |
Collapse
|
40
|
Liu S, Zhang C, Zhou Y. Uneven size distribution of mammalian genes in the number of tissues expressed and in the number of co-expressed genes. Hum Mol Genet 2006; 15:1313-8. [PMID: 16537573 DOI: 10.1093/hmg/ddl051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tissue specificity, the traditional predictor of gene function, has recently been used to interpret the selective pressure associated with gene architecture. In this work, we examine gene structures and their relation to the number of tissues expressed and to the number of co-expressed genes, using a recent atlas of microarray-based mouse gene expression in 55 normal tissues. We define tissue specificity and expression-pattern specificity according to the number of tissues expressed and the number of co-expressed genes, respectively. We find that, consistent with previous findings, tissue non-specific (housekeeping) genes are short in all gene regions (coding regions, intron, 5' and 3' untranslated regions). However, in contrast to previous suggestion that tissue-specific genes are long, the genes that are the most tissue-specific (expressed only in one tissue) are also short. We further show that both expression-pattern-specific and non-specific genes are long in coding and non-coding regions. The origins for short tissue-specific genes and long expression-pattern-specific genes are not clear. Genes with highly non-specific expression patterns (i.e. genes with a large number of co-expressed genes) are composed of genes that spread all tissues but are overwhelmingly enriched in the central nervous system (e.g. brain). Thus, the large sizes of these genes are possibly related to the functional complexity and/or accelerated evolutions of the central nervous system.
Collapse
Affiliation(s)
- Song Liu
- Department of Physiology and Biophysics, Howard Hughes Medical Institute Center for Single Molecule Biophysics, State University of New York at Buffalo, 124 Sherman Hall, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
41
|
Abstract
Genome complexity is correlated with biological complexity. A recent paper by Michael Lynch proposes that evolution of complex genomic architecture was driven primarily by non-adaptive stochastic forces, rather than by adaptive evolution.1 A general negative relationship between selection efficiency and genome complexity provides a strong support for this hypothesis. The broad capacity of this theory is both its appeal and source for criticism.
Collapse
Affiliation(s)
- Soojin V Yi
- School of Biology, 310 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
42
|
Abstract
The present review considered: (a) the factors that conditioned the early transition from non-life to life; (b) genome structure and complexity in prokaryotes, eukaryotes, and organelles; (c) comparative human chromosome genomics; and (d) the Brazilian contribution to some of these studies. Understanding the dialectical conflict between freedom and organization is fundamental to give meaning to the patterns and processes of organic evolution.
Collapse
Affiliation(s)
- Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
43
|
Yi S, Streelman JT. Genome size is negatively correlated with effective population size in ray-finned fish. Trends Genet 2005; 21:643-6. [PMID: 16213058 DOI: 10.1016/j.tig.2005.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 08/11/2005] [Accepted: 09/16/2005] [Indexed: 11/21/2022]
Abstract
A recent theory suggesting that genome size and complexity can increase as a passive consequence of small effective population size has generated much controversy. In this article, we demonstrate that freshwater fish species, which have smaller effective population sizes than marine fish species, have larger genomes. We show that genome size is negatively correlated with genetic variability, independent of phylogeny, body size and generation time. Genome duplication is also observed predominantly in freshwater fish. These results suggest that the raw materials of complexity originate under conditions of reduced selection efficiency.
Collapse
Affiliation(s)
- Soojin Yi
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| | | |
Collapse
|
44
|
Keeling PJ, Slamovits CH. Causes and effects of nuclear genome reduction. Curr Opin Genet Dev 2005; 15:601-8. [PMID: 16188433 DOI: 10.1016/j.gde.2005.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
Eukaryotic nuclear genomes are generally considered to be large and gene-sparse, but extreme reduction has taken place several times, resulting in small genomes with a high gene-density. This process involves losing genes, compacting those that remain, or often both. Recently sequenced nuclear genomes include several that have converged to similar gene-densities by many means: variation in numbers and lengths of genes, intergenic regions and introns all contribute, but not equally in any given genome. Genomes of microsporidia and nucleomorphs have taken compaction much further, and in these hyper-compacted genomes there is evidence that some basic processes such as gene expression might be affected by genome form. In these genomes, normally weak forces might become more significant drivers of genome evolution.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | | |
Collapse
|
45
|
Redi CA, Zacharias H, Merani S, Oliveira-Miranda M, Aguilera M, Zuccotti M, Garagna S, Capanna E. Genome Sizes in Afrotheria, Xenarthra, Euarchontoglires, and Laurasiatheria. J Hered 2005; 96:485-93. [PMID: 15994420 DOI: 10.1093/jhered/esi080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Topical literature and Web site databases provide genome sizes for approximately 4,000 animal species, invertebrates and vertebrates, 330 of which are mammals. We provide the genome size for 67 mammalian species, including 51 never reported before. Knowledge of genome size facilitates sequencing projects. The data presented here encompassed 5 Metatheria (order Didelphimorphia) and 62 Eutheria: 15 Xenarthra, 24 Euarchontoglires (Rodentia), as well as 23 Laurasiatheria (22 Chiroptera and 1 species from Perissodactyla). Already available karyotypes supplement the haploid nuclear DNA contents of the respective species. Thus, we established the first comprehensive set of genome size measurements for 15 Xenarthra species (armadillos) and for 12 house-mouse species; each group was previously represented by only one species. The Xenarthra exhibited much larger genomes than the modal 3 pg DNA known for mammals. Within the genus Mus, genome sizes varied between 2.98 pg and 3.68 pg. The 22 bat species we measured support the low 2.63 pg modal value for Chiroptera. In general, the genomes of Euarchontoglires and Laurasiatheria were found being smaller than those of (Afrotheria and) Xenarthra. Interspecific variation in genome sizes is discussed with particular attention to repetitive elements, which probably promoted the adaptation of extant mammals to their environment.
Collapse
Affiliation(s)
- C A Redi
- Laboratorio di Biologia dello Sviluppo e Centro di Eccellenza di Biologia Applicata, Università di Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|