1
|
Boone PM, Buenaventura T, King JWD, Merkenschlager M. X-linked competition - implications for human development and disease. Nat Rev Genet 2025:10.1038/s41576-025-00840-3. [PMID: 40355603 DOI: 10.1038/s41576-025-00840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
During early mammalian female development, X chromosome inactivation leads to random transcriptional silencing of one of the two X chromosomes. This inactivation is maintained through subsequent cell divisions, leading to intra-individual diversity, whereby cells express either the maternal or paternal X chromosome. Differences in X chromosome sequence content can trigger competitive interactions between clones that may alter organismal development and skew the representation of X-linked sequence variants in a cell-type-specific manner - a recently described phenomenon termed X-linked competition in analogy to existing cell competition paradigms. Skewed representation can define the phenotypic impact of X-linked variants, for example, the manifestation of disease in female carriers of X-linked disease alleles. Here, we review what is currently known about X-linked competition, reflect on what remains to be learnt and map out the implications for X-linked human disease.
Collapse
Affiliation(s)
- Philip M Boone
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Teresa Buenaventura
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - James W D King
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Merkenschlager
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
2
|
Giovenino C, Trajkova S, Pavinato L, Cardaropoli S, Pullano V, Ferrero E, Sukarova-Angelovska E, Carestiato S, Salmin P, Rinninella A, Battaglia A, Bertoli L, Fadda A, Palermo F, Carli D, Mussa A, Dimartino P, Bruselles A, Froukh T, Mandrile G, Pasini B, De Rubeis S, Buxbaum JD, Pippucci T, Tartaglia M, Rossato M, Delledonne M, Ferrero GB, Brusco A. Skewed X-chromosome inactivation in unsolved neurodevelopmental disease cases can guide re-evaluation For X-linked genes. Eur J Hum Genet 2023; 31:1228-1236. [PMID: 36879111 PMCID: PMC10620389 DOI: 10.1038/s41431-023-01324-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Despite major advances in genome technology and analysis, >50% of patients with a neurodevelopmental disorder (NDD) remain undiagnosed after extensive evaluation. A point in case is our clinically heterogeneous cohort of NDD patients that remained undiagnosed after FRAXA testing, chromosomal microarray analysis and trio exome sequencing (ES). In this study, we explored the frequency of non-random X chromosome inactivation (XCI) in the mothers of male patients and affected females, the rationale being that skewed XCI might be masking previously discarded genetic variants found on the X chromosome. A multiplex fluorescent PCR-based assay was used to analyse the pattern of XCI after digestion with HhaI methylation-sensitive restriction enzyme. In families with skewed XCI, we re-evaluated trio-based ES and identified pathogenic variants and a deletion on the X chromosome. Linkage analysis and RT-PCR were used to further study the inactive X chromosome allele, and Xdrop long-DNA technology was used to define chromosome deletion boundaries. We found skewed XCI (>90%) in 16/186 (8.6%) mothers of NDD males and in 12/90 (13.3%) NDD females, far beyond the expected rate of XCI in the normal population (3.6%, OR = 4.10; OR = 2.51). By re-analyzing ES and clinical data, we solved 7/28 cases (25%) with skewed XCI, identifying variants in KDM5C, PDZD4, PHF6, TAF1, OTUD5 and ZMYM3, and a deletion in ATRX. We conclude that XCI profiling is a simple assay that targets a subgroup of patients that can benefit from re-evaluation of X-linked variants, thus improving the diagnostic yield in NDD patients and identifying new X-linked disorders.
Collapse
Affiliation(s)
- Chiara Giovenino
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Slavica Trajkova
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Verdiana Pullano
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Enza Ferrero
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Elena Sukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Pediatric Diseases, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 1000, Skopje, Republic of North Macedonia
| | - Silvia Carestiato
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Paola Salmin
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | - Antonina Rinninella
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, 94124, Catania, Italy
| | - Anthony Battaglia
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Luca Bertoli
- Functional Genomics Lab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Antonio Fadda
- Functional Genomics Lab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Flavia Palermo
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Paola Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Bruselles
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, TO, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tommaso Pippucci
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marzia Rossato
- Functional Genomics Lab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Massimo Delledonne
- Functional Genomics Lab, Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | | | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy.
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy.
| |
Collapse
|
3
|
Hart M, Conrad J, Barrett E, Legg K, Ivey G, Lee PHU, Yung YC, Shim JW. X-linked hydrocephalus genes: Their proximity to telomeres and high A + T content compared to Parkinson's disease. Exp Neurol 2023; 366:114433. [PMID: 37156332 PMCID: PMC10330542 DOI: 10.1016/j.expneurol.2023.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Proximity to telomeres (i) and high adenine and thymine (A + T) content (ii) are two factors associated with high mutation rates in human chromosomes. We have previously shown that >100 human genes when mutated to cause congenital hydrocephalus (CH) meet either factor (i) or (ii) at 91% matching, while two factors are poorly satisfied in human genes associated with familial Parkinson's disease (fPD) at 59%. Using the sets of mouse, rat, and human chromosomes, we found that 7 genes associated with CH were located on the X chromosome of mice, rats, and humans. However, genes associated with fPD were in different autosomes depending on species. While the contribution of proximity to telomeres in the autosome was comparable in CH and fPD, high A + T content played a pivotal contribution in X-linked CH (43% in all three species) than in fPD (6% in rodents or 13% in humans). Low A + T content found in fPD cases suggests that PARK family genes harbor roughly 3 times higher chances of methylations in CpG sites or epigenetic changes than X-linked genes.
Collapse
Affiliation(s)
- Madeline Hart
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Joshua Conrad
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Emma Barrett
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Kaitlyn Legg
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gabrielle Ivey
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Yun C Yung
- Department of Neuroscience, The Scintillon Research Institute, San Diego, CA, United States
| | - Joon W Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States.
| |
Collapse
|
4
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
5
|
Pezzella N, Bove G, Tammaro R, Franco B. OFD1: One gene, several disorders. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:57-71. [PMID: 35112477 PMCID: PMC9303915 DOI: 10.1002/ajmg.c.31962] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022]
Abstract
The OFD1 protein is necessary for the formation of primary cilia and left–right asymmetry establishment but additional functions have also been ascribed to this multitask protein. When mutated, this protein results in a variety of phenotypes ranging from multiorgan involvement, such as OFD type I (OFDI) and Joubert syndromes (JBS10), and Primary ciliary dyskinesia (PCD), to the engagement of single tissues such as in the case of retinitis pigmentosa (RP23). The inheritance pattern of these condition differs from X‐linked dominant male‐lethal (OFDI) to X‐linked recessive (JBS10, PCD, and RP23). Distinctive biological peculiarities of the protein, which can contribute to explain the extreme clinical variability and the genetic mechanisms underlying the different disorders are discussed. The extensive spectrum of clinical manifestations observed in OFD1‐mutated patients represents a paradigmatic example of the complexity of genetic diseases. The elucidation of the mechanisms underlying this complexity will expand our comprehension of inherited disorders and will improve the clinical management of patients.
Collapse
Affiliation(s)
- Nunziana Pezzella
- Scuola Superiore Meridionale, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Guglielmo Bove
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Brunella Franco
- Scuola Superiore Meridionale, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Abstract
A number of genes that cause inherited kidney disorders reside on the X chromosome. Given that males have only a single active X chromosome, these disorders clinically manifest primarily in men and boys. However, phenotypes in female carriers of X-linked kidney conditions are becoming more and more recognized. This article reviews the biology of X inactivation as well as the kidney phenotype in women and girls with a number of X-linked kidney disorders including Alport syndrome, Fabry disease, nephrogenic diabetes insipidus, X-linked hypophosphatemic rickets, Dent disease, and Lowe syndrome.
Collapse
Affiliation(s)
- Catherine Quinlan
- Department of Nephrology, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle N Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN.
| |
Collapse
|
7
|
Tuekprakhon A, Pawestri AR, Suvannaboon R, Thongyou K, Trinavarat A, Atchaneeyasakul LO. Rare Co-Occurrence of Visual Snow in a Female Carrier With RPGR ORF15-Associated Retinal Disorder. Front Genet 2021; 12:728085. [PMID: 34659350 PMCID: PMC8517444 DOI: 10.3389/fgene.2021.728085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
X-linked retinitis pigmentosa (XLRP), a rare form of retinitis pigmentosa (RP), is predominantly caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. Affected males often present with severe phenotypes and early disease onset. In contrast, female carriers are usually asymptomatic or show stationary phenotypes. Herein, we reported an 8-year-old female carrier, a daughter of a confirmed RP father with RPGR mutation, with an early onset of progressive cone-rod pattern retinal dystrophy. Additionally, the carrier experienced visual snow-like symptom as long as she recalled. Ophthalmological examination showed the reduction of visual acuity and attenuation of photoreceptor functions since the age of 5 years. Further analysis revealed a heterozygous pathogenic variant of the RPGR gene and a random X-inactivation pattern. Although she harboured an identical RPGR variant as the father, there were phenotypic intrafamilial variations. The information on the variety of genotypic and phenotypic presentations in XLRP carriers is essential for further diagnosis, management, and monitoring of these cases, including the design of future gene therapy trials.
Collapse
Affiliation(s)
- Aekkachai Tuekprakhon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Ragkit Suvannaboon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ketwarin Thongyou
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Trinavarat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Brown KE, Fisher AG. Reprogramming lineage identity through cell-cell fusion. Curr Opin Genet Dev 2021; 70:15-23. [PMID: 34087754 DOI: 10.1016/j.gde.2021.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
The conversion of differentiated cells to a pluripotent state through somatic cell nuclear transfer provided the first unequivocal evidence that differentiation was reversible. In more recent times, introducing a combination of key transcription factors into terminally differentiated mammalian cells was shown to drive their conversion to induced pluripotent stem cells (iPSCs). These discoveries were transformative, but the relatively slow speed (2-3 weeks) and low efficiency of reprogramming (0.1-1%) made deciphering the underlying molecular mechanisms difficult and complex. Cell fusion provides an alternative reprogramming approach that is both efficient and tractable, particularly when combined with modern multi-omics analysis of individual cells. Here we review the history and the recent advances in cell-cell fusion that are enabling a better understanding cell fate conversion, and we discuss how this knowledge could be used to shape improved strategies for regenerative medicine.
Collapse
Affiliation(s)
- Karen E Brown
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
9
|
Young AN, Perlas E, Ruiz-Blanes N, Hierholzer A, Pomella N, Martin-Martin B, Liverziani A, Jachowicz JW, Giannakouros T, Cerase A. Deletion of LBR N-terminal domains recapitulates Pelger-Huet anomaly phenotypes in mouse without disrupting X chromosome inactivation. Commun Biol 2021; 4:478. [PMID: 33846535 PMCID: PMC8041748 DOI: 10.1038/s42003-021-01944-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/24/2021] [Indexed: 11/08/2022] Open
Abstract
Mutations in the gene encoding Lamin B receptor (LBR), a nuclear-membrane protein with sterol reductase activity, have been linked to rare human disorders. Phenotypes range from a benign blood disorder, such as Pelger-Huet anomaly (PHA), affecting the morphology and chromatin organization of white blood cells, to embryonic lethality as for Greenberg dysplasia (GRBGD). Existing PHA mouse models do not fully recapitulate the human phenotypes, hindering efforts to understand the molecular etiology of this disorder. Here we show, using CRISPR/Cas-9 gene editing technology, that a 236bp N-terminal deletion in the mouse Lbr gene, generating a protein missing the N-terminal domains of LBR, presents a superior model of human PHA. Further, we address recent reports of a link between Lbr and defects in X chromosome inactivation (XCI) and show that our mouse mutant displays minor X chromosome inactivation defects that do not lead to any overt phenotypes in vivo. We suggest that our N-terminal deletion model provides a valuable pre-clinical tool to the research community and will aid in further understanding the etiology of PHA and the diverse functions of LBR.
Collapse
Affiliation(s)
- Alexander Neil Young
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo (RM), Italy
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emerald Perlas
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo (RM), Italy
| | - Nerea Ruiz-Blanes
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andreas Hierholzer
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo (RM), Italy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Nicola Pomella
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Belen Martin-Martin
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Joanna W Jachowicz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki, Greece
| | - Andrea Cerase
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo (RM), Italy.
- Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Indrieri A, Franco B. Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA): An Unconventional Mitochondrial Disorder. Genes (Basel) 2021; 12:genes12020263. [PMID: 33670341 PMCID: PMC7918533 DOI: 10.3390/genes12020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders, although heterogeneous, are traditionally described as conditions characterized by encephalomyopathy, hypotonia, and progressive postnatal organ failure. Here, we provide a systematic review of Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA), a rare, unconventional mitochondrial disorder which presents as a developmental disease; its main clinical features include microphthalmia with different degrees of severity, linear skin lesions, and central nervous system malformations. The molecular basis of this disorder has been elusive for several years. Mutations were eventually identified in three X-linked genes, i.e., HCCS, COX7B, and NDUFB11, which are all endowed with defined roles in the mitochondrial respiratory chain. A peculiar feature of this condition is its inheritance pattern: X-linked dominant male-lethal. Only female or XX male individuals can be observed, implying that nullisomy for these genes is incompatible with normal embryonic development in mammals. All three genes undergo X-inactivation that, according to our hypothesis, may contribute to the extreme variable expressivity observed in this condition. We propose that mitochondrial dysfunction should be considered as an underlying cause in developmental disorders. Moreover, LSDMCA should be taken into consideration by clinicians when dealing with patients with microphthalmia with or without associated skin phenotypes.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-1923-0615
| |
Collapse
|
11
|
Tian D, Zhao Y, Zhu R, Li Q, Liu X. Systematic review of CMTX1 patients with episodic neurological dysfunction. Ann Clin Transl Neurol 2020; 8:213-223. [PMID: 33314704 PMCID: PMC7818278 DOI: 10.1002/acn3.51271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE X-linked Charcot-Marie-Tooth type 1 (CMTX1) is an inherited peripheral neuropathy caused by mutations in the gap junction beta 1 (GJB1) gene, which encodes the connexin32 protein. A small number of patients with GJB1 mutations present with episodic neurological dysfunction and reversible white matter lesions, which has not been adequately reported. Here, we aim to enable clinicians to further understand this particular situation through systematically reviewing all published relevant cases. METHODS We conducted a comprehensive search of the PubMed electronic database for medical literature relevant to CMTX1 patients with episodic neurological dysfunction and then fully analyzed the general information, clinical manifestations, and characteristics of magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and nerve conduction study (NCS). RESULTS We identified 47 cases of CMTX1 associated with episodic central nervous system (CNS) dysfunction from 38 publications. CMTX1 patients experienced episodic CNS deficits at a young age, ranging from infancy to 26 years, and 45 (95.7%) of them were male. The CNS symptoms manifested as facial, lingual, or limb weakness in 44 (93.6%), dysarthria or dysphagia in 39 (83.0%), facial or limb numbness in 15 (31.9%), and ataxia in 10 (21.3%) patients. The duration of episodic symptoms ranged from 3 minutes to 6 months. Thirty (63.8%) CMTX1 cases have reported obvious predisposing factors, among which the most common factors were infection or fever (27.7%), travel to high altitude (12.8%), and intensive exercise (8.5%). As for brain MRI, most abnormal signals were found in bilateral deep white matter (88.9%) and corpus callosum (80.0%). In addition, most of the NCS results were abnormal, including prolonged latency, reduced amplitude, and slowed conduction velocity. The motor nerve conduction velocity (MNCV) of median nerve was the most detectable and valuable, ranging from 25 to 45 m/s. INTERPRETATION We have reported the most comprehensive summary of the demographic and clinical profile from 47 CMTX1 patients with episodic CNS deficits and provided new insight into the phenotype spectrum of CMTX1. We hope that our study can help clinicians make early diagnosis and implement the best prevention and treatment strategies for CMTX1 patients with episodic CNS deficits.
Collapse
Affiliation(s)
- Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qu Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Genotype-phenotype correlates of infantile-onset developmental & epileptic encephalopathy syndromes in South India: A single centre experience. Epilepsy Res 2020; 166:106398. [PMID: 32593896 DOI: 10.1016/j.eplepsyres.2020.106398] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION A paucity of literature exists on genotype- phenotype correlates of 'unknown-etiology' infantile-onset developmental-epileptic encephalopathies (DEE) from India. The primary objective was to explore the yield of genetic testing in identifying potential disease causing variants in electro-clinical phenotypes of DEE METHODS: An observational hospital-based study was undertaken on children with unexplained refractory seizure-onset ≤12 months age and developmental delay, whose families consented and underwent genetic testing during a three year time period (2016-2018) by next-generation sequencing (NGS) or multiplex ligand protein amplification. Yield was considered based on demonstration of pathogenic/likely pathogenic variants only and variants of unknown significance (VUS) were documented. RESULTS Pathogenic/likely pathogenic variants were identified in 26 (31.7 %) out of 82 children with DEE. These included those variants responsible for primarily DEE- 21(76.7 %); neuro-metabolic disorders- 3(18.6 %) and chromosomal deletions- 2(4.7 %). Of these patients, early-infantile epilepsy onset ≤ 6 months age was noted in 22(84.6 %). The DEE studied included Ohtahara syndrome associated with STXBP1 and SCN8A variants with yield of 50 % (2/4 tested); early myoclonic encephalopathy (no yield in 2); West syndrome with CDKL5, yield of 13.3 % (2/15 tested); epilepsy of infancy with migrating partial seizures due to CACNA1A and KCNT1 variants, yield of 67 % (2/3 tested); DEE-unclassified with KCNQ2, AP3B2, ZEB2, metabolic variants (SUOX, ALDH7A1, GLDC) and chromosome deletions (chr 1p36, chr2q24.3); yield of 32 % (8/25 tested). Patients with Dravet syndrome/Dravet-like phenotypes (N = 33) had variants in SCN1A (N = 10), SCN1B, CHD2; yield of 36.4 % (12/33 tested; 57.1 % from NGS). Eighteen patients with potential variants (SCN1A, SCN2A, SCN8A, KCNQ2, ALDH7A1 which also included VUS) could be offered targeted therapy. CONCLUSIONS Our study confirms a good yield of genetic testing in neonatal and infantile-onset DEE provided robust phenotyping of infants is attempted with prognostic and therapeutic implications, particularly relevant to centres with resource constraints.
Collapse
|
13
|
De Luca C, Race V, Keldermans L, Bauters M, Van Esch H. Challenges in molecular diagnosis of X-linked Intellectual disability. Br Med Bull 2020; 133:36-48. [PMID: 32043524 DOI: 10.1093/bmb/ldz039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intellectual disability (ID) affects 1-3% of the Western population and is heterogeneous in origin. Mutations in X-linked genes represent 5-10% of ID in males. Fragile X syndrome, due to the silencing of the FMR1 gene, is the most common form of ID, with a prevalence of around 1:5000 males. Females are usually non- or mildly affected carriers, and in a few rare cases, the only gender affected. Array comparative genome hybridization (aCGH) and next-generation sequencing (NGS) have dramatically changed the nature of human genome analysis leading to the identification of new X-linked intellectual disability syndromes and disease-causing genes. SOURCES OF DATA Original papers, reviews, guidelines and experiences of the diagnostic laboratories. AREAS OF AGREEMENT Family history and clinical examination still are essential to choose the appropriate diagnostic tests, including, a disease-specific genetic test, aCGH or FMR1 molecular analysis. If negative, NGS approaches like well-defined gene panels, whole exome, or even whole genome sequencing, are increasingly being used, improving diagnostics and leading to the identification of novel disease mechanisms. AREAS OF CONTROVERSY The main challenge in the era of NGS is filtering and interpretation of the data generated by the analysis of a single individual. In X-linked cases, assessing pathogenicity is particularly challenging, even more when the variant is found to be inherited from a healthy carrier mother or when a heterozygous X-linked mutation is found in an impaired female. GROWING POINTS At present, variant interpretation remains a challenging task, especially in X-linked disorders. We review the main difficulties and propose a comprehensive overview that might aid in variant interpretation. Establishing a genetic diagnosis facilitates counseling and allows better delineation of clinical phenotypes. AREAS TIMELY FOR DEVELOPING RESEARCH To improve variant interpretation, there is need to refine in silico predictions with specific criteria for each gene, and to develop cost-effective functional tools, which can be easily transferred to diagnostics.
Collapse
Affiliation(s)
- Chiara De Luca
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Valérie Race
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Liesbeth Keldermans
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Marijke Bauters
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium.,Laboratory for the Genetics of Cognition, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Vendramini-Pittoli S, Candido-Souza RM, Quiezi RG, Zechi-Ceide RM, Kokitsu-Nakata NM, Jehee FS, Ribeiro-Bicudo LA, FitzPatrick DR, Guion-Almeida ML, Richieri-Costa A. Microphthalmia, Linear Skin Defects, Callosal Agenesis, and Cleft Palate in a Patient with Deletion at Xp22.3p22.2. J Pediatr Genet 2020; 9:258-262. [PMID: 32765930 DOI: 10.1055/s-0039-3402047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/07/2019] [Indexed: 01/23/2023]
Abstract
The authors describe the clinical findings observed in a Brazilian girl that are suggestive of microphthalmia and linear skin defects (MLS) also known as MIDAS syndrome (OMIM #309801). She also presented with short stature, agenesis of corpus callosum, cleft palate, enamel defects, and genitourinary anomalies, which are rarely reported within the clinical spectrum of MLS. The 11,5 Mb deletion in Xp22.3p22.2 observed in the patient includes the entire HCCS gene (responsible for the MLS phenotype) and also encompasses several other genes involved with behavioral phenotypes, craniofacial and central nervous system development such as MID1, NLGN4X, AMELX , ARHGAP6, and TBL1X. The whole clinical features of our proband possibly represents an unusual MLS syndromic phenotype caused by an Xp22.3p22.2 continuous gene deletion.
Collapse
Affiliation(s)
- Siulan Vendramini-Pittoli
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rosana Maria Candido-Souza
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Gonçalves Quiezi
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Roseli Maria Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Nancy Mizue Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | | | | | - David R FitzPatrick
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Maria Leine Guion-Almeida
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| | - Antonio Richieri-Costa
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
15
|
Iijima T, Hayami N, Takaichi K, Morisada N, Nozu K, Iijima K, Sawa N, Hoshino J, Ubara Y. An Orofaciodigital Syndrome 1 Patient and Her Mother Carry the Same OFD1 Mutation but Have Different X Chromosome Inactivation Patterns. Intern Med 2019; 58:2989-2992. [PMID: 31243241 PMCID: PMC6859397 DOI: 10.2169/internalmedicine.2571-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orofaciodigital syndrome 1 (OFD-1) is a rare, X-linked, dominantly inherited disorder caused by an OFD1 mutation that can cause polycystic kidneys. A 37-year-old woman on hemodialysis therapy was admitted to our hospital for trans-catheter arterial embolization therapy for enlarged polycystic kidneys. Lobulated tongue and brachydactyly were noticed, prompting an OFD1 sequencing analysis. Sequencing revealed a causal four-base-pair deletion in exon 13, both in the patient and in her mother, whose renal function had been retained. The peripheral leukocyte X chromosome inactivation pattern was skewed in the patient but not in her mother, suggesting some role in their phenotypic difference.
Collapse
Affiliation(s)
| | - Noriko Hayami
- Nephrology Center, Toranomon Hospital Kajigaya, Japan
| | - Kenmei Takaichi
- Nephrology Center, Toranomon Hospital Kajigaya, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Japan
| | | | - Kandai Nozu
- Department of Pediatrics, Kobe University, Japan
| | | | - Naoki Sawa
- Nephrology Center, Toranomon Hospital Kajigaya, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Japan
| | - Junichi Hoshino
- Nephrology Center, Toranomon Hospital Kajigaya, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital Kajigaya, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Japan
| |
Collapse
|
16
|
Yatsenko SA, Rajkovic A. Genetics of human female infertility†. Biol Reprod 2019; 101:549-566. [PMID: 31077289 PMCID: PMC8127036 DOI: 10.1093/biolre/ioz084] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
About 10% of women of reproductive age are unable to conceive or carry a pregnancy to term. Female factors alone account for at least 35% of all infertility cases and comprise a wide range of causes affecting ovarian development, maturation of oocytes, and fertilization competence, as well as the potential of a fertilized egg for preimplantation development, implantation, and fetal growth. Genetic abnormalities leading to infertility in females comprise large chromosome abnormalities, submicroscopic chromosome deletion and duplications, and DNA sequence variations in the genes that control numerous biological processes implicated in oogenesis, maintenance of ovarian reserve, hormonal signaling, and anatomical and functional development of female reproductive organs. Despite the great number of genes implicated in reproductive physiology by the study of animal models, only a subset of these genes is associated with human infertility. In this review, we mainly focus on genetic alterations identified in humans and summarize recent knowledge on the molecular pathways of oocyte development and maturation, the crucial role of maternal-effect factors during embryogenesis, and genetic conditions associated with ovarian dysgenesis, primary ovarian insufficiency, early embryonic lethality, and infertility.
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA
| |
Collapse
|
17
|
Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J 2019; 38:embj.2018101033. [PMID: 31088843 DOI: 10.15252/embj.2018101033] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are being increasingly utilized worldwide in investigating human development, and modeling and discovering therapies for a wide range of diseases as well as a source for cellular therapy. Yet, since the first isolation of human embryonic stem cells (hESCs) 20 years ago, followed by the successful reprogramming of human-induced pluripotent stem cells (hiPSCs) 10 years later, various studies shed light on abnormalities that sometimes accumulate in these cells in vitro Whereas genetic aberrations are well documented, epigenetic alterations are not as thoroughly discussed. In this review, we highlight frequent epigenetic aberrations found in hPSCs, including alterations in DNA methylation patterns, parental imprinting, and X chromosome inactivation. We discuss the potential origins of these abnormalities in hESCs and hiPSCs, survey the different methods for detecting them, and elaborate on their potential consequences for the different utilities of hPSCs.
Collapse
Affiliation(s)
- Shiran Bar
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
18
|
Geens M, Chuva De Sousa Lopes SM. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum Reprod Update 2018; 23:520-532. [PMID: 28582519 DOI: 10.1093/humupd/dmx015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSC), both embryonic and induced (hESC and hiPSC), are regarded as a valuable in vitro model for early human development. In order to fulfil this promise, it is important that these cells mimic as closely as possible the in vivo molecular events, both at the genetic and epigenetic level. One of the most important epigenetic events during early human development is X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female cells. XCI is important for proper development and aberrant XCI has been linked to several pathologies. Recently, novel data obtained using high throughput single-cell technology during human preimplantation development have suggested that the XCI mechanism is substantially different from XCI in mouse. It has also been suggested that hPSC show higher complexity in XCI than the mouse. Here we compare the available recent data to understand whether XCI during human preimplantation can be properly recapitulated using hPSC. OBJECTIVE AND RATIONALE We will summarize what is known on the timing and mechanisms of XCI during human preimplantation development. We will compare this to the XCI patterns that are observed during hPSC derivation, culture and differentiation, and comment on the cause of the aberrant XCI patterns observed in hPSC. Finally, we will discuss the implications of the aberrant XCI patterns on the applicability of hPSC as an in vitro model for human development and as cell source for regenerative medicine. SEARCH METHODS Combinations of the following keywords were applied as search criteria in the PubMed database: X chromosome inactivation, preimplantation development, embryonic stem cells, induced pluripotent stem cells, primordial germ cells, differentiation. OUTCOMES Recent single-cell RNASeq data have shed new light on the XCI process during human preimplantation development. These indicate a gradual inactivation on both XX chromosomes, starting from Day 4 of development and followed by a random choice to inactivate one of them, instead of the mechanism in mice where imprinted XCI is followed by random XCI. We have put these new findings in perspective using previous data obtained in human (and mouse) embryos. In addition, there is an ongoing discussion whether or not hPSC lines show X chromosome reactivation upon derivation, mimicking the earliest embryonic cells, and the XCI states observed during culture of hPSC are highly variable. Recent studies have shown that hPSC rapidly progress to highly aberrant XCI patterns and that this process is probably driven by suboptimal culture conditions. Importantly, these aberrant XCI states seem to be inherited by the differentiated hPSC-progeny. WIDER IMPLICATIONS The aberrant XCI states (and epigenetic instability) observed in hPSC throw a shadow on their applicability as an in vitro model for development and disease modelling. Moreover, as the aberrant XCI states observed in hPSC seem to shift to a more malignant phenotype, this may also have important consequences for the safety aspect of using hPSC in the clinic.
Collapse
Affiliation(s)
- Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Reproductive Medicine, Ghent-Fertility and Stem Cell Team (G-FaST), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Zhang Q, Zhao Y, Bao X, Luo J, Zhang X, Li J, Wei L, Wu X. Familial cases and male cases with MECP2 mutations. Am J Med Genet B Neuropsychiatr Genet 2017; 174:451-457. [PMID: 28394482 PMCID: PMC5485058 DOI: 10.1002/ajmg.b.32534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/06/2017] [Indexed: 12/03/2022]
Abstract
This is the first report of Chinese familial cases with Rett syndrome (RTT) or X-linked mental retardation (XLMR). RTT is a neurodevelopmental disorder that almost exclusively affects females. Most RTT cases are sporadic. We have studied eight cases with MECP2 mutations in six Chinese families, including three females and five males with RTT or XLMR. All shared identical MECP2 mutations with their mothers. The three females fulfilled the diagnostic criteria for RTT, while the five males were XLMR. A random X-chromosome inactive (XCI) pattern was seen in all the three female patients and two mothers while a skewed XCI in the rest four mothers. The clinical manifestations and pathogenic gene spectrum between male and female patients were different. The different MECP2 mutations and different XCI pattern may be the determinants of the phenotypic heterogeneity between the family members.
Collapse
Affiliation(s)
- Qingping Zhang
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Ying Zhao
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Xinhua Bao
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Jinjun Luo
- Departments of Neurology and PharmacologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvania
| | - Xiaoying Zhang
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Jiarui Li
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking University, Center for BioinformaticsBeijingChina
| | - Liping Wei
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking University, Center for BioinformaticsBeijingChina
| | - Xiru Wu
- Department of PediatricsPeking University First HospitalBeijingChina
| |
Collapse
|
20
|
Rose C, Callebaut I, Pascal L, Oudin C, Fournier M, Gouya L, Lambilliotte A, Kannengiesser C. Lethal ALAS2 mutation in males X-linked sideroblastic anaemia. Br J Haematol 2016; 178:648-651. [PMID: 27292130 DOI: 10.1111/bjh.14164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Rose
- Service d'Oncologie et d'Hématologie, Hôpital Saint Vincent de Paul, Université Catholique de Lille, Lille, France
| | - Isabelle Callebaut
- CNRS UMR7590, Sorbonne Universités, Université Pierre et Marie Curie-Paris6 - MNHN - IRD - IUC, Paris, France
| | - Laurent Pascal
- Service d'Oncologie et d'Hématologie, Hôpital Saint Vincent de Paul, Université Catholique de Lille, Lille, France
| | - Claire Oudin
- Département de génétique, hôpital Bichat, HUPNVS, Paris, France
| | | | - Laurent Gouya
- Inserm U773, Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Anne Lambilliotte
- Service d'Hématologie, Département de Pédiatrie, Hôpital Jeanne de Flandres, CHRU, Lille, France
| | - Caroline Kannengiesser
- Département de génétique, hôpital Bichat, HUPNVS, Paris, France.,Inserm U773, Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| |
Collapse
|
21
|
Locke MEO, Milojevic M, Eitutis ST, Patel N, Wishart AE, Daley M, Hill KA. Genomic copy number variation in Mus musculus. BMC Genomics 2015; 16:497. [PMID: 26141061 PMCID: PMC4490682 DOI: 10.1186/s12864-015-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. RESULTS We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR). CONCLUSION The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Collapse
Affiliation(s)
- M Elizabeth O Locke
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Susan T Eitutis
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Nisha Patel
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Andrea E Wishart
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Mark Daley
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Kathleen A Hill
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
22
|
Abstract
A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
23
|
Narayanan MJ, Rangasamy S, Narayanan V. Incontinentia pigmenti (Bloch–Sulzberger syndrome). NEUROCUTANEOUS SYNDROMES 2015; 132:271-80. [DOI: 10.1016/b978-0-444-62702-5.00020-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Abu-Amero KK, Kondkar AA, Oystreck DT, Khan AO, Bosley TM. Microdeletions involving Chromosomes 12 and 22 Associated with Syndromic Duane Retraction Syndrome. Ophthalmic Genet 2014; 35:162-9. [DOI: 10.3109/13816810.2014.921317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Khaled K Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | | | | | | | | |
Collapse
|
25
|
Del Giudice E, Macca M, Imperati F, D'Amico A, Parent P, Pasquier L, Layet V, Lyonnet S, Stamboul-Darmency V, Thauvin-Robinet C, Franco B. CNS involvement in OFD1 syndrome: a clinical, molecular, and neuroimaging study. Orphanet J Rare Dis 2014; 9:74. [PMID: 24884629 PMCID: PMC4113190 DOI: 10.1186/1750-1172-9-74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/29/2014] [Indexed: 01/29/2023] Open
Abstract
Background Oral-facial-digital type 1 syndrome (OFD1; OMIM 311200) belongs to the expanding group of disorders ascribed to ciliary dysfunction. With the aim of contributing to the understanding of the role of primary cilia in the central nervous system (CNS), we performed a thorough characterization of CNS involvement observed in this disorder. Methods A cohort of 117 molecularly diagnosed OFD type I patients was screened for the presence of neurological symptoms and/or cognitive/behavioral abnormalities on the basis of the available information supplied by the collaborating clinicians. Seventy-one cases showing CNS involvement were further investigated through neuroimaging studies and neuropsychological testing. Results Seventeen patients were molecularly diagnosed in the course of this study and five of these represent new mutations never reported before. Among patients displaying neurological symptoms and/or cognitive/behavioral abnormalities, we identified brain structural anomalies in 88.7%, cognitive impairment in 68%, and associated neurological disorders and signs in 53% of cases. The most frequently observed brain structural anomalies included agenesis of the corpus callosum and neuronal migration/organisation disorders as well as intracerebral cysts, porencephaly and cerebellar malformations. Conclusions Our results support recent published findings indicating that CNS involvement in this condition is found in more than 60% of cases. Our findings correlate well with the kind of brain developmental anomalies described in other ciliopathies. Interestingly, we also described specific neuropsychological aspects such as reduced ability in processing verbal information, slow thought process, difficulties in attention and concentration, and notably, long-term memory deficits which may indicate a specific role of OFD1 and/or primary cilia in higher brain functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Brunella Franco
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.
| | | |
Collapse
|
26
|
Ben-David E, Shohat S, Shifman S. Allelic expression analysis in the brain suggests a role for heterogeneous insults affecting epigenetic processes in autism spectrum disorders. Hum Mol Genet 2014; 23:4111-24. [PMID: 24659497 DOI: 10.1093/hmg/ddu128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoallelic expression, including genomic imprinting, X-chromosome inactivation and random monoallelic expression of autosomal genes are epigenetic phenomena. Genes that are expressed in a monoallelic way may be more vulnerable to genetic or epigenetic mutations. Thus, comprehensive exploration of monoallelic expression in human brains may shed light on complex brain disorders. Autism-related disorders are known to be associated with imprinted genes on chromosome 15. However, it is not clear whether other imprinted regions or other types of monoallelic expression are associated with autism spectrum disorder (ASD). Here, we performed a genome-wide survey of allele expression imbalance (AEI) in the human brain using single-nucleotide polymorphisms (SNPs), in 18 individuals with ASD and 15 controls. Individuals with ASD had the most extreme number of monoallelic expressed SNPs in both the autosomes and the X chromosome. In two cases that were studied in detail, the monoallelic expression was confined to specific brain region or cell type. Using these data, we were also able to define the allelic expression status of known imprinted genes in the human brain and to identify abnormal imprinting in an individual with ASD. Lastly, we developed an analysis of individual-level expression, focusing on the difference of each individual from the mean. We found that individuals with ASD had more genes that were up- or down-regulated in an individual-specific manner. We also identified pathways perturbed in specific individuals. These results underline the heterogeneity in gene regulation in ASD, at the level of both allelic and total expression.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Shohat
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Shimojima K, Shimada S, Sugawara M, Yoshikawa N, Niijima S, Urao M, Yamamoto T. Challenges in genetic counseling because of intra-familial phenotypic variation of oral-facial-digital syndrome type 1. Congenit Anom (Kyoto) 2013; 53:155-9. [PMID: 24712474 DOI: 10.1111/j.1741-4520.2012.00384.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/04/2012] [Indexed: 11/28/2022]
Abstract
Oral-facial-digital syndrome type 1 (OFD1; MIM 311200) is characterized by multiple anomalies of the oral cavity, face and digits. We report a family with OFD1, where two female siblings and their mother shared the same mutation of the responsible gene (OFD1) c.1193_1196delAATC. Phenotypic variability was observed among them; the mother showed minimal features of OFD1, whereas her two daughters showed partial features and the full spectrum of OFD1, respectively. Thus, OFD1 was suspected only after a health check-up during pregnancy of the second patient showing fetal brain anomaly and maternal polycystic kidney. For these reasons, there was a delay in the recognition of OFD1 in this family. Patients with OFD1 show phenotypic variability, which poses challenges for genetic counseling.
Collapse
Affiliation(s)
- Keiko Shimojima
- Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Vreeburg M, Sallevelt SCEH, Stegmann APA, van Geel M, Detisch YJHA, Schrander-Stumpel CTRM, van Steensel MAM, Marcus-Soekarman D. Cutaneous clues for diagnosing X-chromosomal disorders. Clin Genet 2013; 85:328-35. [PMID: 23578112 DOI: 10.1111/cge.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 11/28/2022]
Abstract
In a multidisciplinary outpatient clinic for hereditary skin diseases and/or syndromes involving the skin, 7% (30 of 409) of patients were found to have an abnormality involving the X chromosome, a mutation in a gene located on the X chromosome or a clinical diagnosis of an X-linked monogenetic condition. The collaboration of a dermatologist and a clinical geneticist proves to be very valuable in recognizing and diagnosing these conditions. By combining their specific expertize in counselling an individual patient, X-linked diagnoses were recognized and could be confirmed by molecular and/or cytogenetic studies in 24 of 30 cases. Mosaicism plays an important role in many X-linked hereditary skin disorders. From our experience, we extracted clinical clues for specialists working in the field of genetics and/or dermatology for considering X-linked disorders involving the skin.
Collapse
|
29
|
Abu-Amero KK, Kondkar AA, Alorainy IA, Khan AO, Al-Enazy LA, Oystreck DT, Bosley TM. Xq26.3 microdeletion in a male with Wildervanck Syndrome. Ophthalmic Genet 2013; 35:18-24. [PMID: 23373430 DOI: 10.3109/13816810.2013.766218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Wildervanck Syndrome (WS; cervico-oculo-acoustic syndrome) consists of Duane retraction syndrome (DRS), the Klippel-Feil anomaly, and congenital deafness. It is much more common in females than males and could be due to an X-linked mutation that is lethal to hemizygous males. We present the genetic evaluation of a male with WS and his family. MATERIALS AND METHODS Clinical evaluation and neuroimaging, sequencing of candidate genes, and array comparative genomic hybridization. RESULTS The patient had bilateral type 1 DRS, fusion of almost the entire cervical spine, and bilateral severe sensorineural hearing loss due to bilateral cochlear dysplasia; he also had congenital heart disease requiring surgery. His parents were unrelated, and he had eight unaffected siblings. The patient had no mutation found by Sanger sequencing of HOXA1, KIF21A, SALL4, and CHN1. He had a 3kB deletion in the X-chromosome at Xq26.3 that was not found in his mother, one unaffected sibling, or 56 healthy controls of matching ethnicity. This deletion encompassed only one gene, Fibroblast Growth Factor Homologous Factor 13 (FGF13), which encodes a 216-amino acid protein that acts intracellularly in neurons throughout brain development. CONCLUSIONS Analysis of this patient's phenotype and genotype open the possibility that X-chromosome deletions may be a cause of WS with larger deletions being lethal to males and that FGF13 mutations may be a cause of WS.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
30
|
Indrieri A, Conte I, Chesi G, Romano A, Quartararo J, Tatè R, Ghezzi D, Zeviani M, Goffrini P, Ferrero I, Bovolenta P, Franco B. The impairment of HCCS leads to MLS syndrome by activating a non-canonical cell death pathway in the brain and eyes. EMBO Mol Med 2013; 5:280-93. [PMID: 23239471 PMCID: PMC3569643 DOI: 10.1002/emmm.201201739] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial-dependent (intrinsic) programmed cell death (PCD) is an essential homoeostatic mechanism that selects bioenergetically proficient cells suitable for tissue/organ development. However, the link between mitochondrial dysfunction, intrinsic apoptosis and developmental anomalies has not been demonstrated to date. Now we provide the evidence that non-canonical mitochondrial-dependent apoptosis explains the phenotype of microphthalmia with linear skin lesions (MLS), an X-linked developmental disorder caused by mutations in the holo-cytochrome c-type synthase (HCCS) gene. By taking advantage of a medaka model that recapitulates the MLS phenotype we demonstrate that downregulation of hccs, an essential player of the mitochondrial respiratory chain (MRC), causes increased cell death via an apoptosome-independent caspase-9 activation in brain and eyes. We also show that the unconventional activation of caspase-9 occurs in the mitochondria and is triggered by MRC impairment and overproduction of reactive oxygen species (ROS). We thus propose that HCCS plays a key role in central nervous system (CNS) development by modulating a novel non-canonical start-up of cell death and provide the first experimental evidence for a mechanistic link between mitochondrial dysfunction, intrinsic apoptosis and developmental disorders.
Collapse
|
31
|
Halley P, Khorkova O, Wahlestedt C. Natural antisense transcripts as therapeutic targets. ACTA ACUST UNITED AC 2013; 10:e119-e125. [PMID: 25580147 DOI: 10.1016/j.ddstr.2013.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Paul Halley
- Department of Psychiatry and Behavioral Sciences, and Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Olga Khorkova
- OPKO-CURNA 10320 USA Today Way, Miramar, FL 33025, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, and Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
32
|
Indrieri A, van Rahden V, Tiranti V, Morleo M, Iaconis D, Tammaro R, D’Amato I, Conte I, Maystadt I, Demuth S, Zvulunov A, Kutsche K, Zeviani M, Franco B. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet 2012; 91:942-9. [PMID: 23122588 PMCID: PMC3487127 DOI: 10.1016/j.ajhg.2012.09.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/31/2012] [Accepted: 09/28/2012] [Indexed: 11/16/2022] Open
Abstract
Microphthalmia with linear skin lesions (MLS) is an X-linked dominant male-lethal disorder associated with mutations in holocytochrome c-type synthase (HCCS), which encodes a crucial player of the mitochondrial respiratory chain (MRC). Unlike other mitochondrial diseases, MLS is characterized by a well-recognizable neurodevelopmental phenotype. Interestingly, not all clinically diagnosed MLS cases have mutations in HCCS, thus suggesting genetic heterogeneity for this disorder. Among the possible candidates, we analyzed the X-linked COX7B and found deleterious de novo mutations in two simplex cases and a nonsense mutation, which segregates with the disease, in a familial case. COX7B encodes a poorly characterized structural subunit of cytochrome c oxidase (COX), the MRC complex IV. We demonstrated that COX7B is indispensable for COX assembly, COX activity, and mitochondrial respiration. Downregulation of the COX7B ortholog (cox7B) in medaka (Oryzias latipes) resulted in microcephaly and microphthalmia that recapitulated the MLS phenotype and demonstrated an essential function of complex IV activity in vertebrate CNS development. Our results indicate an evolutionary conserved role of the MRC complexes III and IV for the proper development of the CNS in vertebrates and uncover a group of mitochondrial diseases hallmarked by a developmental phenotype.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | | | - Valeria Tiranti
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology, 20126 Milan, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - Ilaria D’Amato
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology, 20126 Milan, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
| | - Isabelle Maystadt
- Centre de Genetique Humaine, Institut de Pathologie et de Genetique, 6041 Gosselies (Charleroi), Belgium
| | | | - Alex Zvulunov
- Schneider Children’s Medical Center of Israel, Faculty of Health Sciences, Medical School for International Health, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Kerstin Kutsche
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, The Foundation “Carlo Besta” Institute of Neurology, 20126 Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy
- Medical Genetics Services, Department of Pediatrics, Federico II University, 80131 Naples, Italy
| |
Collapse
|
33
|
Bisschoff IJ, Zeschnigk C, Horn D, Wellek B, Rieß A, Wessels M, Willems P, Jensen P, Busche A, Bekkebraten J, Chopra M, Hove HD, Evers C, Heimdal K, Kaiser AS, Kunstmann E, Robinson KL, Linné M, Martin P, McGrath J, Pradel W, Prescott KE, Roesler B, Rudolf G, Siebers-Renelt U, Tyshchenko N, Wieczorek D, Wolff G, Dobyns WB, Morris-Rosendahl DJ. Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciodigital syndrome: a study of the extensive clinical variability. Hum Mutat 2012; 34:237-47. [PMID: 23033313 DOI: 10.1002/humu.22224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/06/2012] [Indexed: 01/08/2023]
Abstract
OFD1, now recognized as a ciliopathy, is characterized by malformations of the face, oral cavity and digits, and is transmitted as an X-linked condition with lethality in males. Mutations in OFD1 also cause X-linked Joubert syndrome (JBTS10) and Simpson-Golabi-Behmel syndrome type 2 (SGBS2). We have studied 55 sporadic and six familial cases of suspected OFD1. Comprehensive mutation analysis in OFD1 revealed mutations in 37 female patients from 30 families; 22 mutations have not been previously described including two heterozygous deletions spanning OFD1 and neighbouring genes. Analysis of clinical findings in patients with mutations revealed that oral features are the most reliable diagnostic criteria. A first, detailed evaluation of brain MRIs from seven patients with cognitive defects illustrated extensive variability with the complete brain phenotype consisting of complete agenesis of the corpus callosum, large single or multiple interhemispheric cysts, striking cortical infolding of gyri, ventriculomegaly, mild molar tooth malformation and moderate to severe cerebellar vermis hypoplasia. Although the OFD1 gene apparently escapes X-inactivation, skewed inactivation was observed in seven of 14 patients. The direction of skewing did not correlate with disease severity, reinforcing the hypothesis that additional factors contribute to the extensive intrafamilial variability.
Collapse
Affiliation(s)
- Izak J Bisschoff
- Institute of Human Genetics, University Clinic Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ohhata T, Wutz A. Reactivation of the inactive X chromosome in development and reprogramming. Cell Mol Life Sci 2012; 70:2443-61. [PMID: 23052214 PMCID: PMC3689915 DOI: 10.1007/s00018-012-1174-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/26/2012] [Accepted: 09/17/2012] [Indexed: 01/01/2023]
Abstract
In mammals, one of the two X chromosomes of female cells is inactivated for dosage compensation between the sexes. X chromosome inactivation is initiated in early embryos by the noncoding Xist RNA. Subsequent chromatin modifications on the inactive X chromosome (Xi) lead to a remarkable stability of gene repression in somatic cell lineages. In mice, reactivation of genes on the Xi accompanies the establishment of pluripotent cells of the female blastocyst and the development of primordial germ cells. Xi reactivation also occurs when pluripotency is established during the reprogramming of somatic cells to induced pluripotent stem cells. The mechanism of Xi reactivation has attracted increasing interest for studying changes in epigenetic patterns and for improving methods of cell reprogramming. Here, we review recent advances in the understanding of Xi reactivation during development and reprogramming and illustrate potential clinical applications.
Collapse
Affiliation(s)
- Tatsuya Ohhata
- Wellcome Trust and MRC Stem Cell Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR UK
- Present Address: Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192 Japan
| | - Anton Wutz
- Wellcome Trust and MRC Stem Cell Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR UK
| |
Collapse
|
35
|
Germain DP, Benistan K, Angelova L. X-linked inheritance and its implication in the diagnosis and management of female patients in Fabry disease. Rev Med Interne 2011; 31 Suppl 2:S209-13. [PMID: 21211665 DOI: 10.1016/s0248-8663(10)70013-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- D P Germain
- University of Versailles - St Quentin en Yvelines (UVSQ), Faculté de Médecine Paris - Ile de France Ouest (PIFO), France.
| | | | | |
Collapse
|
36
|
Makhlouf M, Rougeulle C. Linking X chromosome inactivation to pluripotency: Necessity or fate? Trends Mol Med 2011; 17:329-36. [PMID: 21411371 DOI: 10.1016/j.molmed.2011.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 01/19/2023]
Abstract
Silencing one X chromosome is essential for the development of female mammals, but the regulation of this process appears to vary between species. In the mouse, which has thus far been the leading model system in the field, X chromosome inactivation (XCI) is tightly coupled to pluripotency and the underlying mechanisms have just begun to be deciphered. However, mechanistic aspects of XCI regulation in other species have yet to be thoroughly investigated. Here we review current knowledge of the developmental regulation of XCI in mice and humans and discuss the extent to which the intimate link between XCI and pluripotency extends beyond rodents.
Collapse
Affiliation(s)
- Mélanie Makhlouf
- UMR7216 Epigenetics and Cell Fate, CNRS/Université Paris Diderot, 35 rue Hélène Brion, 75013 Paris, France
| | | |
Collapse
|
37
|
Brugmann SA, Cordero DR, Helms JA. Craniofacial ciliopathies: A new classification for craniofacial disorders. Am J Med Genet A 2010; 152A:2995-3006. [PMID: 21108387 PMCID: PMC3121325 DOI: 10.1002/ajmg.a.33727] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Craniofacial anomalies are some of the most variable and common defects affecting the population. Herein, we examine a group of craniofacial disorders that are the result of defects in primary cilia; ubiquitous, microtubule-based organelles that transduce molecular signals and facilitate the interactions between the cell and its environment. Based on the frequent appearance of craniofacial phenotypes in diseases born from defective primary cilia (ciliopathies) we propose a new class of craniofacial disorders referred to as craniofacial ciliopathies. We explore the most frequent phenotypes associated with ciliopathic conditions and the ciliary gene mutations responsible for craniofacial defects. Finally, we propose that some non-classified disorders may now be classified as craniofacial ciliopathies.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
38
|
Pinto LLC, Vieira TA, Giugliani R, Schwartz IVD. Expression of the disease on female carriers of X-linked lysosomal disorders: a brief review. Orphanet J Rare Dis 2010; 5:14. [PMID: 20509947 PMCID: PMC2889886 DOI: 10.1186/1750-1172-5-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 05/28/2010] [Indexed: 01/01/2023] Open
Abstract
Most lysosomal diseases (LD) are inherited as autosomal recessive traits, but two important conditions have X-linked inheritance: Fabry disease and Mucopolysaccharidosis II (MPS II). These two diseases show a very different pattern regarding expression on heterozygotes, which does not seem to be explained by the X-inactivation mechanism only. While MPS II heterozygotes are asymptomatic in most instances, in Fabry disease most of female carriers show some disease manifestation, which is sometimes severe. It is known that there is a major difference among X-linked diseases depending on the cell autonomy of the gene product involved and, therefore, on the occurrence of cross-correction. Since lysosomal enzymes are usually secreted and uptaken by neighbor cells, the different findings between MPS II and Fabry disease heterozygotes can also be due to different efficiency of cross-correction (higher in MPS II and lower in Fabry disease). In this paper, we review these two X-linked LD in order to discuss the mechanisms that could explain the different rates of penetrance and expressivity observed in the heterozygotes; this could be helpful to better understand the expression of X-linked traits.
Collapse
Affiliation(s)
- Louise L C Pinto
- Postgraduate Program in Child and Adolescent Health, UFRGS, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
39
|
Macca M, Franco B. The molecular basis of oral-facial-digital syndrome, type 1. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 151C:318-25. [PMID: 19876934 DOI: 10.1002/ajmg.c.30224] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oral-facial-digital syndrome type 1 (OFDI; OFD1; OMIM 311200) is a rare developmental disorder transmitted as an X-linked dominant condition with embryonic male lethality. OFD1 is characterized by malformation of the oral cavity, face, and digits. Central nervous system (CNS) abnormalities and cystic kidney disease can also be part of this condition. This disorder is due to mutations in the OFD1 gene that encodes a centrosomal protein localized at the basal bodies at the origin of primary cilia. Characterization of in vitro and in vivo models demonstrated that, similarly to what described for other ciliary proteins, Ofd1 inactivation is associated to defective sonic hedgehog (Shh) and canonical Wnt signaling pathways. Functional studies have demonstrated that OFD1 has a crucial role in the biology of primary cilia thus ascribing this pleiotropic disease to the growing number of disorders associated to dysfunction of primary cilia. OFD1 shares phenotypic similarities with this latter group of disorders, such as cystic kidneys, skeletal, and CNS abnormalities. Future studies will address whether all clinical manifestations of these diseases can be entirely explained by cilia dysfunction or may also be due to direct roles of the proteins involved.
Collapse
Affiliation(s)
- Marina Macca
- Department of Pediatrics of the Federico II University of Naples, Italy
| | | |
Collapse
|
40
|
Sawalha AH, Harley JB, Scofield RH. Autoimmunity and Klinefelter's syndrome: when men have two X chromosomes. J Autoimmun 2009; 33:31-4. [PMID: 19464849 PMCID: PMC2885450 DOI: 10.1016/j.jaut.2009.03.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 11/19/2022]
Abstract
Similar to other autoimmune diseases, systemic lupus erythematosus (SLE) predominately affects women. Recent reports demonstrate excess Klinefelter's among men with SLE and a possible under-representation of Turner's syndrome among women with SLE as well as a case report of a 46,XX boy with SLE. These data suggest that risk of SLE is related to a gene dose effect for the X chromosome. Such an effect could be mediated by abnormal inactivation of genes on the X chromosome as has been demonstrated for CD40L, or by genetic polymorphism as has been demonstrated for Xq28. On the other hand, a gene dose effect could also be mediated by a gene without an SLE-associated polymorphism in that a gene that avoids X inactivation will have a higher level of expression in persons with two X chromosomes.
Collapse
Affiliation(s)
- Amr H. Sawalha
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, MS24, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Medical Service, Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104 USA
| | - John B. Harley
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, MS24, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Medical Service, Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104 USA
| | - R. Hal Scofield
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, MS24, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Medical Service, Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
41
|
Zhang Y, Chen D, Wang Z. Analyses of mental dysfunction-related ACSl4 in Drosophila reveal its requirement for Dpp/BMP production and visual wiring in the brain. Hum Mol Genet 2009; 18:3894-905. [PMID: 19617635 DOI: 10.1093/hmg/ddp332] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Long-chain acyl-CoA synthetases (ACSLs) convert long-chain fatty acids to acyl-CoAs, the activated substrates essential in various metabolic and signaling pathways. Mutations in ACSL4 are associated with non-syndromic X-linked mental retardation (MRX). However, the developmental functions of ACSL4 and how it is involved in the pathogenesis of MRX remain largely unknown. The Drosophila ACSL-like protein is highly homologous to human ACSL3 and ACSL4, and we designate it as dAcsl. In this study, we demonstrate that dAcsl and ACSL4 are highly conserved in terms of ACSL4's ability to substitute the functions of dAcsl in organismal viability, lipid storage and the neural wiring in visual center. In neurodevelopment, decapentaplegic (Dpp, a BMP-like molecule) production diminished specifically in the larval brain of dAcsl mutants. Consistent with the Dpp reduction, the number of glial cells and neurons dramatically decreased and the retinal axons mis-targeted in the visual cortex. All these defects in Drosophila brain were rescued by the wild-type ACSL4 but not by the mutant products found in MRX patients. Interestingly, expression of an MRX-associated ACSL4 mutant form in a wild-type background led to the lesions in visual center, suggesting a dominant negative effect. These findings validate Drosophila as a model system to reveal the connection between ACSL4 and BMP pathway in neurodevelopment, and to infer the pathogenesis of ACSL4-related MRX.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
42
|
Abstract
OBJECTIVE The history of the discovery of mechanisms contributing to sex difference helps to better appreciate gender factors in a variety of disease states. The objective of this article is to illustrate four mechanisms of sex differences in disease incidence: X-linkage (including inactivation, escape from inactivating, skewed inactivation), sex-specific exposure to disease-producing pathogens, fetal microchimerism, and iron depletion. METHODS This is a historic review. RESULTS An emphasis on sex difference led to the uncovering of four different mechanisms by which illness rates differ in men and women. CONCLUSIONS Research into many disease states can benefit from a focus on potential mechanisms that yield sex differences in illness susceptibility, progression, and outcome.
Collapse
Affiliation(s)
- Mary V Seeman
- Centre for Addiction and Mental Health, Psychiatry, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
43
|
Orstavik KH. X chromosome inactivation in clinical practice. Hum Genet 2009; 126:363-73. [PMID: 19396465 DOI: 10.1007/s00439-009-0670-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 04/07/2009] [Indexed: 01/19/2023]
Abstract
X chromosome inactivation (XCI) is the transcriptional silencing of the majority of genes on one of the two X chromosomes in mammalian females. Females are, therefore, mosaics for two cell lines, one with the maternal X and one with the paternal X as the active chromosome. The relative proportion of the two cell lines, the X inactivation pattern, may be analyzed by simple assays in DNA from available tissues. This review focuses on medical issues related to XCI in X-linked disorders, and on the value of X inactivation analysis in clinical practice.
Collapse
Affiliation(s)
- Karen Helene Orstavik
- Department of Medical Genetics, Oslo University Hospital, Rikshospitalet and Faculty Division Rikshospitalet, University of Oslo, Forskningsveien 2B, 0027, Oslo, Norway.
| |
Collapse
|
44
|
Goltz-Gorlin (focal dermal hypoplasia) and the microphthalmia with linear skin defects (MLS) syndrome: no evidence of genetic overlap. Eur J Hum Genet 2009; 17:1207-15. [PMID: 19277062 DOI: 10.1038/ejhg.2009.40] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Focal dermal hypoplasia (FDH) is an X-linked developmental disorder with male lethality characterized by patchy dermal hypoplasia, skeletal and dental malformations, and microphthalmia or anophthalmia. Recently, heterozygous loss-of-function mutations in the PORCN gene have been described to cause FDH. FDH shows some clinical overlap with the microphthalmia with linear skin defects (MLS) syndrome, another X-linked male lethal condition, associated with mutations of HCCS in the majority of cases. We performed DNA sequencing of PORCN in 13 female patients with the clinical diagnosis of FDH as well as four female patients with MLS syndrome and no mutation in HCCS. We identified PORCN mutations in all female patients with FDH. Eleven patients seem to have constitutional PORCN alterations in the heterozygous state and two individuals are mosaic for the heterozygous sequence change in PORCN. No PORCN mutation was identified in the MLS-affected patients, providing further evidence that FDH and MLS do not overlap genetically. X chromosome inactivation (XCI) analysis revealed a random or slightly skewed XCI pattern in leukocytes of individuals with intragenic PORCN mutation suggesting that defective PORCN does not lead to selective growth disadvantage, at least in leukocytes. We conclude that the PORCN mutation detection rate is high in individuals with a clear-cut FDH phenotype and somatic mosaicism can be present in a significant proportion of patients with mild or classic FDH.
Collapse
|
45
|
Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet 2009; 40:1065-7. [PMID: 19165920 DOI: 10.1038/ng.194] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CASK is a multi-domain scaffolding protein that interacts with the transcription factor TBR1 and regulates expression of genes involved in cortical development such as RELN. Here we describe a previously unreported X-linked brain malformation syndrome caused by mutations of CASK. All five affected individuals with CASK mutations had congenital or postnatal microcephaly, disproportionate brainstem and cerebellar hypoplasia, and severe mental retardation.
Collapse
|
46
|
Piluso G, D'Amico F, Saccone V, Bismuto E, Rotundo IL, Di Domenico M, Aurino S, Schwartz CE, Neri G, Nigro V. A missense mutation in CASK causes FG syndrome in an Italian family. Am J Hum Genet 2009; 84:162-77. [PMID: 19200522 PMCID: PMC2668001 DOI: 10.1016/j.ajhg.2008.12.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/19/2008] [Accepted: 12/27/2008] [Indexed: 11/19/2022] Open
Abstract
First described in 1974, FG syndrome (FGS) is an X-linked multiple congenital anomaly/mental retardation (MCA/MR) disorder, characterized by high clinical variability and genetic heterogeneity. Five loci (FGS1-5) have so far been linked to this phenotype on the X chromosome, but only one gene, MED12, has been identified to date. Mutations in this gene account for a restricted number of FGS patients with a more distinctive phenotype, referred to as the Opitz-Kaveggia phenotype. We report here that a p.R28L (c.83G-->T) missense mutation in CASK causes FGS phenotype in an Italian family previously mapped to Xp11.4-p11.3 (FGS4). The identified missense mutation cosegregates with the phenotype in this family and is absent in 1000 control X chromosomes of the same ethnic origin. An extensive analysis of CASK protein functions as well as structural and dynamic studies performed by molecular dynamics (MD) simulation did not reveal significant alterations induced by the p.R28L substitution. However, we observed a partial skipping of the exon 2 of CASK, presumably a consequence of improper recognition of exonic splicing enhancers (ESEs) induced by the c.83G-->T transversion. CASK is a multidomain scaffold protein highly expressed in the central nervous system (CNS) with specific localization to the synapses, where it forms large signaling complexes regulating neurotransmission. We suggest that the observed phenotype is most likely a consequence of an altered CASK expression profile during embryogenesis, brain development, and differentiation.
Collapse
Affiliation(s)
- Giulio Piluso
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Napoli 80138, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Prattichizzo C, Macca M, Novelli V, Giorgio G, Barra A, Franco B, Oral-Facial-Digital Type I (OFDI) Collaborative Group. Mutational spectrum of the oral-facial-digital type I syndrome: a study on a large collection of patients. Hum Mutat 2008; 29:1237-46. [PMID: 18546297 DOI: 10.1002/humu.20792] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oral-facial-digital type I (OFDI) syndrome is a male-lethal X-linked dominant developmental disorder belonging to the heterogeneous group of oral-facial-digital syndromes (OFDS). OFDI is characterized by malformations of the face, oral cavity, and digits. Central nervous system (CNS) abnormalities and cystic kidney disease can also be part of this condition. This rare genetic disorder is due to mutations in the OFD1 gene that encodes a centrosome/basal body protein necessary for primary cilium assembly and for left-right axis determination, thus ascribing OFDI to the growing number of disorders associated to ciliary dysfunction. We now report a mutation analysis study in a cohort of 100 unrelated affected individuals collected worldwide. Putative disease-causing mutations were identified in 81 patients (81%). We describe 67 different mutations, 64 of which represent novel mutations, including 36 frameshift, nine missense, 11 splice-site, and 11 nonsense mutations. Most of them concentrate in exons 3, 8, 9, 12, 13, and 16, suggesting that these exons may represent mutational hotspots. Phenotypic characterization of the patients provided a better definition of the clinical features of OFDI syndrome. Our results indicate that renal cystic disease is present in 60% of cases >18 years of age. Genotype-phenotype correlation did not reveal significant associations apart for the high-arched/cleft palate most frequently associated to missense and splice-site mutations. Our results contribute to further expand our knowledge on the molecular basis of OFDI syndrome.
Collapse
Collaborators
F Abdulla, M Abramowicz, S Amy, I Schafer, A Bankier, S White, M G Barcina, L E Bartoshesky, K Jenny, F A Beemer, P Benke, R C Betz, G Bianchini, L Garavelli, S Bigoni, L Bird, J Chibuk, D Masser-Frye, N Brunetti, A Scarcella, H G Brunner, J Burn, R Carmi, C Castellan, P Castelluccio, B Castle, M A Chiong, E M Cutiongco, F Collins, E Couchon, A Curry, M Pastore, C Curry, A Swenerton, T Treisman, J Dean, K Devriendt, G Matthijs, J W Dunlap, V Shashi, N Elcioglu, P Farndon, G B Ferrero, R Ferrier, N Foulds, J M Friedman, A Gal, U Orth, M Gardner, O Gerola, G Gillessen-Kaesbach, F Giuliano, C Turc-Carel, E Gödde, V Graber, G E Graham, F Gurrieri, L Harbour, A Henderson, E Jones, H Heran, T Homfray, R Taylor, E Iwarsson, P Jensen, A Jezela-Stanek, S Joss, G Taylor, S L Keeling, R Klatt, A Teebi, M Klehr-Martinelli, D Kotzot, M Lees, S Loughlin, K Lhotta, F Macdonald, F Mari, A Renieri, S Marlin, J McGaughran, F McKenzie, D R McLeod, A Megarbane, C R Mota, J Mucke, A Tzschach, E Obersztyn, R Okhowat, A Shinzel, R Pfau, B Pober, F L Raymond, E Reich, T Reimschisel, J Robertson, J Roggenbuck, A Sabato, J Sanchez Del Pozo, C Schell-Apacik, E Schwaab, A Selicorni, S Sell, S Smithson, A Stray-Pedersen, T Tan, H Thiese, J Tol, O Toprak, D Trump, J Whittaker, D Williams, L Zelante, B Zoll,
Collapse
|
48
|
Sharma VM, Ruiz de Luzuriaga AM, Waggoner D, Greenwald M, Stein SL. Microphthalmia with linear skin defects: a case report and review. Pediatr Dermatol 2008; 25:548-52. [PMID: 18950397 DOI: 10.1111/j.1525-1470.2008.00724.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microphthalmia with linear skin defects syndrome is an X-linked dominant disorder characterized by microphthalmia and other ocular anomalies as well as linear, jagged skin defects typically involving the scalp, face, neck, and upper trunk. Other associated characteristics include short stature, developmental delay, congenital heart defects, diaphragmatic hernia, agenesis of the corpus callosum, anencephaly, hydrocephalus, and seizures. Microphthalmia with linear skin defects syndrome is now known to be associated with a deletion of the X chromosome at Xp22. This is an area that has been found to include the HCCS gene, which encodes a holocytochrome c-type synthase believed to be critical in the regulation of apoptosis. We present a patient with classic clinical and genetic findings of MLS syndrome and discuss the primary characteristics and management of this disorder.
Collapse
Affiliation(s)
- Vishakha M Sharma
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
49
|
Hayashi S, Mizuno S, Migita O, Okuyama T, Makita Y, Hata A, Imoto I, Inazawa J. TheCASKgene harbored in a deletion detected by array-CGH as a potential candidate for a gene causative of X-linked dominant mental retardation. Am J Med Genet A 2008; 146A:2145-51. [DOI: 10.1002/ajmg.a.32433] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Migeon BR. X inactivation, female mosaicism, and sex differences in renal diseases. J Am Soc Nephrol 2008; 19:2052-9. [PMID: 18448583 DOI: 10.1681/asn.2008020198] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A good deal of sex differences in kidney disease is attributable to sex differences in the function of genes on the X chromosome. Males are uniquely vulnerable to mutations in their single copy of X-linked genes, whereas females are often mosaic, having a mixture of cells expressing different sets of X-linked genes. This cellular mosaicism created by X inactivation in females is most often advantageous, protecting carriers of X-linked mutations from the severe clinical manifestations seen in males. Even subtle differences in expression of many of the 1100 X-linked genes may contribute to sex differences in the clinical expression of renal diseases.
Collapse
Affiliation(s)
- Barbara R Migeon
- McKusick-Nathans Institute of Genetic Medicine, 459 Broadway Research Building, 733 N. Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|